Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 26;75(Pt 8):1265–1269. doi: 10.1107/S2056989019010454

Palladium(II) complexes of a bridging amine bis­(phenolate) ligand featuring κ2 and κ3 coordination modes

Brendan J Graziano a, Bradley M Wile a,*, Matthias Zeller b
PMCID: PMC6690448  PMID: 31417804

The crystal structure of a palladium(II) coordination compound features the same ligand bound to the metal center in both a κ2 and κ3 fashion.

Keywords: coordination compound, palladium(II), bidentate & tridentate coordination, amine bis­(phenolate), crystal structure

Abstract

Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis­(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely di­chlorido­({6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II) chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](meth­yl)amino}­eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in inter­molecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains di­chlorido­({6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II), {(L 2)PdCl2}, and chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](methyl)amino}eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II), {(L 2 X)PdCl}, mol­ecules as well as fractional water and methanol solvent mol­ecules.

Chemical context  

The activity of early transition-metal and rare-earth complexes of amine bis­(phenolate) ligands for olefin (Tshuva et al., 2000) and cyclic ester polymerization (Carpentier, 2015) has been well documented. Several studies (Tshuva et al., 2001; Qian et al., 2011) demonstrated that the coordination mode and donor identity play a significant role in the activity of complexes derived from amine bis­(phenolate) and related ligands. Amine bis­(phenolate) complexes of iron have been employed as catalysts for cross-coupling (Chowdhury et al., 2008), polymerization (Allan et al., 2014) and CO2 conversion (Andrea et al., 2018) and as functional models for various non-heme metalloenzymes (Karimpour et al., 2013; Strautmann et al., 2011). While a relatively limited number of late transition-metal amine bis­(phenolate) complexes have been employed as catalysts, nearly all have been observed to bind through both amine and both phenolate donor atoms to form κ4 complexes. Related complexes featuring κ2 or κ3 coordination modes may offer unique insight into catalyst identity for species that may not be directly observed.

Several related complexes feature ligands similar to these amine bis­(phenolate) species bound in a κ3 fashion. Notably, Zn phen­oxy di­amine complexes are highly active catalysts for the polymerization of lactide. (Williams et al., 2003; Labourdette et al., 2009) Related modification to the amine bis­(phenolate) framework generated ‘claw-type’ κ3 Zn (Song et al., 2012; Wang et al., 2010) and Ti (Zhao et al., 2014) complexes that serve as competent polymerization catalysts. To our knowledge, only one report describes Pd complexes with amine bis­(phenolate) ligands bound in a κ2 or κ3 coord­ination mode, in which both amine donors remain bound, and one phenolate donor may bind to the Pd center (Graziano et al., 2019). These species exhibit coordination behavior that varies with the steric parameters of the phenolate ortho and para substituents, with larger cumyl substituents favoring the formation of κ2 complexes. In this work, we describe diffraction data for a related Pd complex featuring the ligand {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) bound in both κ2 or κ3 coordination modes within a single unit cell. The presence of palladium(II) complexes displaying both κ2 and κ3 coordination modes arising from the same solution suggests a dynamic process in which phenol donors may coordinate or de-coordinate based on the electronic demands at the metal center.graphic file with name e-75-01265-scheme1.jpg

Structural commentary  

The asymmetric unit of the structure (Fig. 1) consists of two distinct palladium(II) complexes of the amine bis­(phenolate) {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) and fractional qu­anti­ties of methanol and water crystallization solvents. Both metal centers adopt similar distorted square-planar geometric arrangements, in which both nitro­gen atoms of the ligand are bound to the Pd center to form a five-membered ring, and either one or two chlorine atoms are present to complete the coordination sphere depending on the coordination mode of the ligand. In both complexes, the N—Pd—N bond angle is similar to those observed for related amine bis­(phenolate) Pd complexes (Graziano et al., 2019), as described in Table 1.

Figure 1.

Figure 1

The asymmetric unit of the title compound with only the major components of disorder shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are omitted for clarity and hydrogen bonds are shown as dotted lines.

Table 1. N—Pd—N bond angles for amine bis­(phenolate) PdII complexes.

Complex Reference N—Pd—N
[(κ2-N,N)PdCl2] This work 85.44
[(κ3-N,N,O)PdCl] This work 85.84
[(κ2-N,N)PdCl2] Graziano et al. (2019) 82.8
[(κ2-N,N)PdCl2] Graziano et al. (2019) 85.58
[(κ3-N,N,O)PdCl] Graziano et al. (2019) 82.82
[(κ3-N,N,O)PdCl] Graziano et al. (2019) 86.86
[(κ3-N,N,O)PdCl] Graziano et al. (2019) 82.9
[(κ3-N,N,O)PdCl] Graziano et al. (2019) 83.0
[(κ2-N,N,)PdCl2] Ding et al. (2011) 84.07

Deprotonation and coordination of O1, presumably in the presence of water during crystallization, gives rise to the [(κ3-N,N,O)PdCl] complex. This complex is only slightly distorted from ideal square-planar geometry (τ4 parameter = 0.0823; Yang et al., 2007), and Pd1 lies 0.073 Å above the plane defined by O1/N1/N2/Cl1. The phenol ring containing O2 is disordered by rotation about the C20—C21 bond, such that in the minor component a close O2B—H2C⋯Cl1 inter­action of ∼2.065 Å is observed (see Refinement section for details of the disorder). An additional close contact of ∼2.460 Å is observed between Cl1 and the O3—H bond of an unbound phenol from the neighboring [(κ2-N,N)PdCl2] complex.

The [(κ2-N,N)PdCl2] complex also exhibits only minor distortions from an ideal square-planar geometry (τ4 parameter = 0.0638; Yang et al., 2007), and Pd2 lies within (±0.001 Å) the plane defined by N3/N4/Cl2/Cl3. Both phenol rings in this complex are disordered by rotation about the C54—C55 bond and the C39—C40 bond, giving rise to a close O3B—H3D⋯Cl3 inter­action of ∼2.12 Å and an O4B—H4D⋯Cl2 inter­action of ∼2.05 Å, respectively.

Solution NMR data (see Synthesis and crystallization section) suggest that the conformations observed in the solid state are retained on the NMR timescale. Signals attributed to both the κ2 and κ3 complexes are observed, including signals attributed to the protonated phenol moieties. Signals attributed to the ligand methyl­ene groups are rendered diastereotopic upon coordination of the distal donor atoms to the Pd center, while methyl­ene units for unbound donors remain magnetically equivalent.

Supra­molecular features  

Hydrogen bonding (Table 2) is observed between phenol O2—H2, co-crystallized methanol solvent O5—H5, and O1 of a neighboring complex, forming a two-dimensional network in the bc plane between [(κ3-N,N,O)PdCl] subunits. Details of this inter­action are illustrated in Fig. 2, which depicts the inter­action between neighboring κ3 species, viewed along the a axis. Additional O—H⋯Cl inter­actions are observed between O3—H3 and Cl1, and O6—H6 and Cl3, though neither of these inter­actions forms an extended network. The inter­action between O3—H3 and Cl1 is of inter­est as it is the only observed close contact between the κ2 and κ3 complexes within the asymmetric unit. This feature is absent in the minor component, in which the [(κ2-N,N)PdCl2] phenol hy­droxy moiety O3B—H3D exhibits an intra­molecular close contact with Cl3. Within the minor component, a related intra­molecular close contact is observed between the remaining [(κ2-N,N)PdCl2] phenol hy­droxy group O4B—H4D and Cl2.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.95 2.787 (3) 171
C69—H69A⋯Cl1 0.98 2.90 3.642 (4) 134
C69—H69C⋯O3 0.98 2.57 3.267 (4) 128
O5B—H5C⋯O1 0.84 (2) 1.95 (3) 2.772 (6) 168 (12)
O6—H6⋯Cl2 0.84 2.90 3.592 (2) 141
O6—H6⋯Cl3 0.84 2.41 3.129 (2) 144
O6B—H6B⋯Cl2 0.84 2.45 3.242 (13) 157
O2—H2⋯O5i 0.84 1.88 2.715 (3) 170
O2B—H2C⋯Cl1 0.84 2.06 2.858 (13) 157
O3—H3⋯Cl1 0.84 2.46 3.1764 (17) 144
O3B—H3D⋯Cl3 0.84 2.12 2.886 (10) 152
O4—H4⋯O6ii 0.84 1.95 2.750 (3) 160
O4B—H4D⋯Cl2 0.84 2.05 2.726 (12) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure viewed along the a axis, showing hydrogen bonding (in pink) between neighboring κ3 amine bis­(phenolate) PdII complexes.

Synthesis and crystallization  

Both species within this unit cell are generated upon combining equimolar qu­anti­ties (0.254 mmol) of the {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) ligand and bis­(benzo­nitrile)­dichloro­palladium(II) in 5 mL of aceto­nitrile, using the method reported previously by Wile and co-workers (Graziano et al., 2019) as shown in Fig. 3. The titular compound was obtained as an orange solid (116 mg, 0.169 mmol, 67%). Single crystals suitable for X-ray diffraction studies were grown from a concentrated solution of the metal complex in methanol, layered with distilled water (∼10:1 v/v).

Figure 3.

Figure 3

Preparation of κ2 and κ3 amine bis­(phenolate) PdII complexes.

1H and 13C NMR spectra reveal signals attributed to both κ2 and κ3 Pd complexes in CDCl3 solution. The equilibrium, and the position of several signals shifts slightly when CD3OD is employed as the solvent for NMR characterization. The cleanest spectral data were obtained in CDCl3, and are reported below. Upon coordination, several methyl­ene H’s were rendered diastereotopic. Spectroscopic assignments were confirmed through the use of 2D NMR (COSY, HSQC, HMBC) and polarization transfer (DEPT-135) experiments. 1H (CDCl3, 400.132 MHz) δ = 8.05 (s, 1H, OH), 7.51 (s, 1H, aryl C-H), 7.42 (m, 1H, aryl C-H), 7.36 (m, 2H, aryl C-H), 7.17–7.08 (m, 2H, aryl C-H), 6.83 (s, 1H, OH), 6.55 (m, 1H, aryl C-H), 4.64–4.50 (m, 2H, CH2), 3.79–3.65 (m, 1H, CH2), 3.59–3.48 (m, 1H, CH2), 3.35–3.20 (m, 3H), 3.00 (d, J = 13.6 Hz, 1H, CH2), 2.92–2.80 (m, 2H, CH2), 2.73–2.64 (m, 1H, CH2), 2.47 (s, 1H), 2.37–2.29 (m, 1H, CH2), 2.19–2.10 (m, 1H, CH2), 1.62 (s, 3H, CH3), 1.50 (s, 3H, CH3), 1.47–1.38 (m, 15H, CH3), 1.32 (s, 6H, CH3), 1.30 (s, 3H, CH3), 1.27 (s, 6H, CH3), 1.19 (s, 6H, CH3); 13C{1H} (CDCl3, 100.613 MHz) δ = 158.1 (4°), 153.3 (4°), 141.6 (4°), 139.6 (4°), 136.3 (4°), 129.0 (aryl C-H), 128.7 (4°), 125.5 (4°), 124.9 (4°), 124.0 (aryl C-H), 121.0 (4°), 117.6 (4°), 65.5 (CH2), 62.6 (CH2), 62.5 (CH2), 61.1 (CH2), 55.8 (CH2), 51.5, 41.7 (CH3), 35.4 (tBu 4°), 35.3 (tBu 4°), 35.0 (tBu 4°), 34.3 (tBu 4°), 34.1 (tBu 4°), 33.8 (tBu 4°), 31.6 (CH3), 30.2 (CH3), 30.1 (CH3), 29.9 (CH3), 29.6 (CH3). m.p. 435 K (decomp.)

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH4O·0.315H2O
M r 1427.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.8843 (5), 29.780 (1), 16.6629 (6)
β (°) 109.5536 (12)
V3) 7427.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.42 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.656, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 87447, 22272, 18396
R int 0.041
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.076, 1.03
No. of reflections 22272
No. of parameters 900
No. of restraints 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.12, −0.92

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011), OLEX2 (Dolomanov, 2009), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

Water H atoms were restrained to have O—H bond lengths of 0.84 (2) Å, and 1.36 (2) Å H⋯H distances (DFIX, esd = 0.02 Å). All H atoms attached to carbon atoms as well as phenol and methanol hydroxyl hydrogens were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties, and to 0.99 and 0.98 Å for aliphatic CH2 and CH3 moieties, respectively. Phenol and methanol O—H distances were constrained to 0.84 Å. Methyl CH3 and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. U iso(H) values were set to a multiple of U eq(C/O) with 1.5 for CH3, OH and water, and 1.2 for C—H, CH2, units, respectively.

Three of the four phenol hydroxyl groups are positionally disordered by rotation of the aromatic ring. For two of the three minor moieties, the O—C distance and the 1,3 O to C distances of the minor and major moieties were restrained to be similar (SADI command of SHELX, esd = 0.02 Å). Minor O atom O2B was constrained to have the same ADP as the C atom to which it is bonded. Two phenol H-atom positions were positionally restrained based on hydrogen-bonding considerations and to avoid close contacts to C-bound H atoms. Subject to these conditions, the occupancy rates of the major moieties refined to 0.917 (3), 0.857 (4) and 0.899 (4).

A tert-butyl group was refined as rotationally disordered. The two moieties were restrained to have similar geometries, the central C atoms to share one ADP, and the U ij components of ADPs were restrained to be similar (SIMU command of SHELX, esd = 0.01 Å2). Subject to these conditions the occupancy ratio refined to 0.716 (8):0.284 (8).

One solvate methanol mol­ecule was refined as disordered over two orientations, and another to be disordered with a water mol­ecule. The O—C distances of the major and minor methanol mol­ecules were restrained to be similar (SADI, esd = 0.02 Å), and the U ij components of ADPs were restrained to be similar for the three methanol and the one water moiety (SIMU, esd = 0.01 Å2). Subject to these conditions the occupancy ratio refined to 0.685 (8):0.315 (8) for the methanol-to-water ratio, and 0.843 (4):0.157 (4) for the methanol-to-methanol ratio.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019010454/lh5914sup1.cif

e-75-01265-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019010454/lh5914Isup2.hkl

e-75-01265-Isup2.hkl (1.7MB, hkl)

CCDC reference: 1940199

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH4O·0.315H2O F(000) = 3022
Mr = 1427.41 Dx = 1.276 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 15.8843 (5) Å Cell parameters from 9425 reflections
b = 29.780 (1) Å θ = 2.9–36.3°
c = 16.6629 (6) Å µ = 0.64 mm1
β = 109.5536 (12)° T = 100 K
V = 7427.6 (4) Å3 Plate, orange
Z = 4 0.42 × 0.27 × 0.09 mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer 22272 independent reflections
Radiation source: sealed tube X-ray source 18396 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromator Rint = 0.041
ω and phi scans θmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −22→22
Tmin = 0.656, Tmax = 0.747 k = −42→35
87447 measured reflections l = −18→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0251P)2 + 7.3036P] where P = (Fo2 + 2Fc2)/3
22272 reflections (Δ/σ)max = 0.006
900 parameters Δρmax = 2.12 e Å3
186 restraints Δρmin = −0.92 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Three of the four phenol hydroxyl groups are positionally disordered by rotation of the aromatic ring. For two of the three minor moieties the O-C distance and the 1,3 O to C distances of the minor and major moieties were restrained to be similar. Minor O atom O2B was constrained to have the same ADP as the C atom it is bonded to. Two phenol H atom positions were positionally restrained based on H-bonding considerations and to avoid close contacts to C bound H atoms. Subject to these conditions the occupancy rates of the major moieties refined to 0.917 (3), 0.857 (4) and 0.899 (4). A tert butyl group was refined as rotationally disordered. The two moieties were restrained to have similar geometries, the central C atoms to share one ADP, and Uij components of ADPs were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.716 (8) to 0.284 (8). One solvate methanol molecule was refined as disordered over two orientations, and another to be disordered with a water molecule. The O-C distance of the major and minor methanol molecules were restrained to be similar, and Uij components of ADPs were restrained to be similar for the three methanol and the one water moiety. Water H atoms were restrained to have O-H bond lengths of 0.84 (2) Angstroms, and 1.36 (2) Angstrom H···H distances. Subject to these conditions the occupancy ratio refined to 0.685 (8) to 0.315 (8) for the methanol to water ratio, and 0.843 (4) to 0.157 (4) for the methanol to methanol ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.17953 (11) 0.80735 (7) 0.30459 (11) 0.0194 (3)
H1A 0.124296 0.825478 0.291263 0.023*
H1B 0.164217 0.775609 0.310792 0.023*
C2 0.21826 (11) 0.81161 (6) 0.23312 (11) 0.0186 (3)
H2A 0.177086 0.797913 0.180441 0.022*
H2B 0.225933 0.843696 0.221660 0.022*
C3 0.25578 (12) 0.87326 (6) 0.38525 (12) 0.0189 (3)
H3A 0.274902 0.882313 0.337477 0.028*
H3B 0.300237 0.883118 0.438856 0.028*
H3C 0.197988 0.887119 0.379094 0.028*
C4 0.29176 (14) 0.73906 (6) 0.23957 (13) 0.0252 (4)
H4A 0.259934 0.735029 0.178526 0.038*
H4B 0.255957 0.726570 0.272035 0.038*
H4C 0.349382 0.723493 0.255466 0.038*
C5 0.22069 (11) 0.80871 (6) 0.46069 (11) 0.0175 (3)
H5A 0.159724 0.819662 0.453394 0.021*
H5B 0.219857 0.775496 0.462801 0.021*
C6 0.28488 (11) 0.82650 (6) 0.54299 (11) 0.0172 (3)
C7 0.25435 (12) 0.85501 (6) 0.59361 (12) 0.0203 (3)
H7 0.192537 0.862079 0.576693 0.024*
C8 0.31289 (13) 0.87344 (6) 0.66884 (12) 0.0214 (4)
C9 0.40305 (12) 0.86206 (6) 0.69068 (11) 0.0195 (3)
H9 0.443524 0.874213 0.741761 0.023*
C10 0.43751 (11) 0.83389 (6) 0.64207 (11) 0.0176 (3)
C11 0.37664 (11) 0.81525 (6) 0.56647 (11) 0.0165 (3)
C12 0.27754 (14) 0.90546 (7) 0.72233 (13) 0.0278 (4)
C13 0.2301 (2) 0.94537 (9) 0.66700 (18) 0.0493 (7)
H13A 0.271220 0.960154 0.642776 0.074*
H13B 0.211116 0.966851 0.702121 0.074*
H13C 0.177649 0.934537 0.620839 0.074*
C14 0.2107 (2) 0.88091 (10) 0.75446 (19) 0.0514 (7)
H14A 0.162850 0.868296 0.705981 0.077*
H14B 0.185163 0.902034 0.785119 0.077*
H14C 0.241205 0.856620 0.792902 0.077*
C15 0.35247 (18) 0.92506 (9) 0.79799 (15) 0.0401 (6)
H15A 0.394948 0.941150 0.777254 0.060*
H15B 0.383447 0.900697 0.835955 0.060*
H15C 0.326986 0.945892 0.829225 0.060*
C16 0.53860 (11) 0.82428 (6) 0.66905 (11) 0.0190 (3)
C17 0.57415 (12) 0.84092 (7) 0.59878 (12) 0.0238 (4)
H17A 0.544245 0.824557 0.545847 0.036*
H17B 0.638691 0.835647 0.616394 0.036*
H17C 0.562100 0.873116 0.589428 0.036*
C18 0.55738 (13) 0.77371 (7) 0.68368 (13) 0.0239 (4)
H18A 0.525242 0.757245 0.631485 0.036*
H18B 0.537201 0.763440 0.730096 0.036*
H18C 0.621664 0.768247 0.698789 0.036*
C19 0.59150 (13) 0.84892 (8) 0.75145 (13) 0.0289 (4)
H19A 0.655086 0.841619 0.766644 0.043*
H19B 0.569987 0.839469 0.797507 0.043*
H19C 0.583179 0.881385 0.742794 0.043*
C20 0.36366 (12) 0.80514 (6) 0.20834 (11) 0.0194 (3)
H20A 0.422187 0.789679 0.228461 0.023*
H20B 0.334165 0.797097 0.147732 0.023*
C21 0.37937 (12) 0.85519 (6) 0.21469 (11) 0.0179 (3)
C22 0.44292 (12) 0.87334 (7) 0.28698 (11) 0.0201 (3)
H22 0.476336 0.853829 0.331313 0.024* 0.917 (3)
C23 0.45843 (12) 0.91936 (7) 0.29554 (12) 0.0216 (4)
C24 0.40753 (12) 0.94681 (7) 0.22901 (12) 0.0224 (4)
H24 0.416930 0.978327 0.234504 0.027*
C25 0.34364 (12) 0.93061 (7) 0.15490 (12) 0.0209 (4)
C26 0.33134 (12) 0.88384 (7) 0.14817 (11) 0.0213 (4)
H26 0.289926 0.871434 0.097885 0.026* 0.083 (3)
C27 0.52639 (14) 0.93896 (7) 0.37683 (13) 0.0274 (4)
C28 0.5518 (2) 0.98740 (10) 0.36385 (17) 0.0528 (8)
H28A 0.577123 0.988309 0.317726 0.079*
H28B 0.596057 0.998444 0.416539 0.079*
H28C 0.498403 1.006414 0.348971 0.079*
C29 0.61076 (15) 0.90945 (10) 0.40685 (17) 0.0475 (7)
H29A 0.594515 0.879079 0.418959 0.071*
H29B 0.653492 0.922361 0.458601 0.071*
H29C 0.637970 0.908136 0.362089 0.071*
C30 0.48404 (16) 0.93941 (8) 0.44706 (13) 0.0320 (5)
H30A 0.431519 0.959059 0.430062 0.048*
H30B 0.527586 0.950598 0.500060 0.048*
H30C 0.465948 0.908872 0.455959 0.048*
C31 0.28669 (13) 0.96291 (7) 0.08547 (13) 0.0235 (4)
C32 0.18826 (14) 0.95698 (8) 0.07806 (15) 0.0310 (4)
H32A 0.151257 0.978120 0.035828 0.047*
H32B 0.181486 0.962839 0.133454 0.047*
H32C 0.169280 0.926184 0.060189 0.047*
C33 0.29709 (16) 0.95343 (8) −0.00108 (13) 0.0342 (5)
H33A 0.257826 0.973494 −0.044085 0.051*
H33B 0.280830 0.922156 −0.017292 0.051*
H33C 0.359260 0.958571 0.002776 0.051*
C34 0.31216 (15) 1.01223 (7) 0.10743 (15) 0.0335 (5)
H34A 0.274848 1.031531 0.061685 0.050*
H34B 0.375168 1.016687 0.113673 0.050*
H34C 0.302732 1.019955 0.160962 0.050*
C35 0.82670 (13) 0.78738 (7) 0.62727 (12) 0.0227 (4)
H35A 0.824884 0.784692 0.685884 0.027*
H35B 0.814599 0.819066 0.609060 0.027*
C36 0.75680 (12) 0.75753 (6) 0.56829 (12) 0.0214 (4)
H36A 0.763320 0.726637 0.591504 0.026*
H36B 0.696603 0.768609 0.563713 0.026*
C37 0.94963 (15) 0.73294 (7) 0.67850 (12) 0.0260 (4)
H37A 0.906169 0.708645 0.657586 0.039*
H37B 0.956574 0.739453 0.738028 0.039*
H37C 1.007331 0.723757 0.674484 0.039*
C38 0.72900 (13) 0.79913 (7) 0.43422 (14) 0.0276 (4)
H38A 0.733626 0.797676 0.377086 0.041*
H38B 0.762670 0.825093 0.464726 0.041*
H38C 0.666107 0.802153 0.429580 0.041*
C39 0.98438 (13) 0.81102 (7) 0.66335 (12) 0.0242 (4)
H39A 0.994263 0.813458 0.725091 0.029*
H39B 1.042106 0.803016 0.656532 0.029*
C40 0.95395 (12) 0.85599 (7) 0.62173 (12) 0.0223 (4)
C41 0.96205 (12) 0.86495 (7) 0.54242 (12) 0.0216 (4)
H41 0.992642 0.844110 0.518897 0.026* 0.899 (4)
C42 0.92636 (12) 0.90370 (6) 0.49693 (12) 0.0206 (3)
C43 0.88280 (12) 0.93363 (6) 0.53447 (12) 0.0220 (4)
H43 0.856925 0.959867 0.503581 0.026*
C44 0.87513 (12) 0.92721 (6) 0.61466 (12) 0.0230 (4)
C45 0.91311 (13) 0.88776 (7) 0.65884 (12) 0.0247 (4)
H45 0.911017 0.882651 0.714420 0.030* 0.101 (4)
C46 0.9314 (4) 0.9110 (2) 0.4058 (6) 0.0242 (7) 0.716 (8)
C47 1.0265 (4) 0.9038 (3) 0.4074 (6) 0.083 (3) 0.716 (8)
H47A 1.029465 0.908772 0.350239 0.125* 0.716 (8)
H47B 1.045109 0.872976 0.425470 0.125* 0.716 (8)
H47C 1.066331 0.924959 0.447385 0.125* 0.716 (8)
C48 0.9003 (4) 0.95804 (12) 0.3720 (3) 0.0453 (12) 0.716 (8)
H48A 0.905189 0.961543 0.315213 0.068* 0.716 (8)
H48B 0.937886 0.980505 0.410573 0.068* 0.716 (8)
H48C 0.837993 0.962226 0.368466 0.068* 0.716 (8)
C49 0.8698 (3) 0.87713 (15) 0.3444 (2) 0.0431 (11) 0.716 (8)
H49A 0.808235 0.881608 0.343165 0.065* 0.716 (8)
H49B 0.889015 0.846534 0.363541 0.065* 0.716 (8)
H49C 0.872653 0.881615 0.287067 0.065* 0.716 (8)
C46B 0.9326 (11) 0.9135 (5) 0.4130 (16) 0.0242 (7) 0.284 (8)
C47B 1.0007 (11) 0.8840 (6) 0.3924 (10) 0.060 (5) 0.284 (8)
H47D 1.005037 0.892881 0.337305 0.090* 0.284 (8)
H47E 0.981869 0.852516 0.389804 0.090* 0.284 (8)
H47F 1.059127 0.887487 0.436844 0.090* 0.284 (8)
C48B 0.9648 (9) 0.9616 (3) 0.4077 (8) 0.049 (3) 0.284 (8)
H48D 0.971671 0.966356 0.352024 0.073* 0.284 (8)
H48E 1.022428 0.966322 0.452747 0.073* 0.284 (8)
H48F 0.920922 0.982931 0.415005 0.073* 0.284 (8)
C49B 0.8410 (6) 0.9070 (6) 0.3445 (6) 0.056 (4) 0.284 (8)
H49D 0.821845 0.875775 0.345083 0.084* 0.284 (8)
H49E 0.845064 0.914116 0.288509 0.084* 0.284 (8)
H49F 0.797498 0.927024 0.356195 0.084* 0.284 (8)
C50 0.82772 (15) 0.96168 (7) 0.65348 (14) 0.0302 (4)
C51 0.74905 (17) 0.93991 (9) 0.67292 (17) 0.0415 (6)
H51A 0.707962 0.926466 0.620829 0.062*
H51B 0.717428 0.962812 0.694078 0.062*
H51C 0.771552 0.916550 0.716264 0.062*
C52 0.78897 (16) 1.00097 (8) 0.59236 (17) 0.0397 (6)
H52A 0.745544 0.989460 0.539595 0.060*
H52B 0.837358 1.016372 0.579297 0.060*
H52C 0.759325 1.022123 0.619244 0.060*
C53 0.89511 (18) 0.98139 (9) 0.73532 (16) 0.0434 (6)
H53A 0.945630 0.994493 0.722265 0.065*
H53B 0.916729 0.957504 0.777697 0.065*
H53C 0.865827 1.004723 0.758047 0.065*
C54 0.71609 (11) 0.71773 (6) 0.43015 (12) 0.0199 (3)
H54A 0.651256 0.724189 0.411538 0.024*
H54B 0.733107 0.714500 0.378453 0.024*
C55 0.73381 (11) 0.67400 (6) 0.47843 (11) 0.0181 (3)
C56 0.81404 (11) 0.65147 (6) 0.49064 (11) 0.0190 (3)
H56 0.853784 0.662458 0.463438 0.023* 0.857 (4)
C57 0.83762 (12) 0.61328 (6) 0.54161 (11) 0.0192 (3)
C58 0.77628 (13) 0.59762 (6) 0.57860 (12) 0.0223 (4)
H58 0.791871 0.571904 0.614255 0.027*
C59 0.69358 (12) 0.61752 (7) 0.56624 (12) 0.0219 (4)
C60 0.67343 (11) 0.65639 (7) 0.51527 (12) 0.0206 (3)
H60 0.617740 0.671004 0.505629 0.025* 0.143 (4)
C61 0.92834 (13) 0.59069 (7) 0.55567 (13) 0.0244 (4)
C62 0.94060 (16) 0.54802 (8) 0.60966 (15) 0.0349 (5)
H62A 0.892231 0.526887 0.582237 0.052*
H62B 0.939272 0.555719 0.666405 0.052*
H62C 0.998155 0.534161 0.614894 0.052*
C63 0.93679 (14) 0.57830 (8) 0.46884 (14) 0.0304 (4)
H63A 0.887427 0.558430 0.437847 0.046*
H63B 0.993754 0.562897 0.477896 0.046*
H63C 0.934557 0.605684 0.435584 0.046*
C64 1.00323 (13) 0.62374 (8) 0.60294 (15) 0.0335 (5)
H64A 1.061471 0.609641 0.612221 0.050*
H64B 0.997492 0.631604 0.657991 0.050*
H64C 0.998313 0.650978 0.568673 0.050*
C65 0.62817 (14) 0.59830 (8) 0.60747 (15) 0.0327 (5)
C66 0.61091 (16) 0.63295 (9) 0.66877 (16) 0.0403 (6)
H66A 0.585029 0.660190 0.637104 0.060*
H66B 0.667416 0.640399 0.713348 0.060*
H66C 0.569293 0.620302 0.694870 0.060*
C67 0.54135 (17) 0.58412 (11) 0.5376 (2) 0.0559 (8)
H67A 0.513127 0.610499 0.504278 0.084*
H67B 0.500538 0.570766 0.563928 0.084*
H67C 0.555000 0.562032 0.500144 0.084*
C68 0.6653 (2) 0.55572 (9) 0.66041 (19) 0.0482 (7)
H68A 0.677181 0.532695 0.623551 0.072*
H68B 0.621436 0.544351 0.685028 0.072*
H68C 0.720940 0.563107 0.706248 0.072*
O5 0.3231 (2) 0.70311 (9) 0.50018 (17) 0.0253 (7) 0.685 (8)
H5 0.347038 0.728568 0.510765 0.038* 0.685 (8)
C69 0.3784 (3) 0.67414 (13) 0.4738 (3) 0.0462 (12) 0.685 (8)
H69A 0.387186 0.686296 0.422488 0.069* 0.685 (8)
H69B 0.350314 0.644488 0.461162 0.069* 0.685 (8)
H69C 0.436337 0.671417 0.519210 0.069* 0.685 (8)
O5B 0.3750 (8) 0.6952 (2) 0.5134 (4) 0.042 (2) 0.315 (8)
H5C 0.380 (7) 0.7231 (9) 0.520 (6) 0.063* 0.315 (8)
H5D 0.341 (7) 0.690 (3) 0.462 (3) 0.063* 0.315 (8)
O6 1.02032 (15) 0.66923 (8) 0.36487 (12) 0.0432 (6) 0.843 (4)
H6 1.001717 0.691429 0.385152 0.065* 0.843 (4)
C70 1.1050 (3) 0.65658 (16) 0.4205 (2) 0.0439 (9) 0.843 (4)
H70A 1.149634 0.678422 0.416707 0.066* 0.843 (4)
H70B 1.120249 0.626776 0.404579 0.066* 0.843 (4)
H70C 1.104027 0.655737 0.478980 0.066* 0.843 (4)
O6B 1.1055 (10) 0.7095 (5) 0.3721 (9) 0.063 (4) 0.157 (4)
H6B 1.082514 0.725418 0.400806 0.095* 0.157 (4)
C70B 1.104 (3) 0.6652 (8) 0.3948 (17) 0.065 (6) 0.157 (4)
H70D 1.116875 0.663148 0.456460 0.097* 0.157 (4)
H70E 1.148844 0.648392 0.378888 0.097* 0.157 (4)
H70F 1.044521 0.652638 0.365208 0.097* 0.157 (4)
N1 0.24699 (9) 0.82353 (5) 0.38574 (9) 0.0144 (3)
N2 0.30708 (9) 0.78810 (5) 0.25896 (9) 0.0153 (3)
N3 0.91741 (10) 0.77394 (5) 0.62590 (9) 0.0177 (3)
N4 0.76653 (9) 0.75710 (5) 0.48193 (9) 0.0172 (3)
O1 0.40507 (8) 0.78699 (4) 0.51791 (7) 0.0172 (2)
O2 0.26805 (12) 0.86608 (5) 0.07650 (10) 0.0330 (4) 0.917 (3)
H2 0.290674 0.844771 0.057669 0.049* 0.917 (3)
O2B 0.5034 (9) 0.8514 (5) 0.3518 (8) 0.0201 (3) 0.083 (3)
H2C 0.486603 0.824743 0.353287 0.030* 0.083 (3)
O3 0.59302 (10) 0.67610 (6) 0.50671 (11) 0.0295 (5) 0.857 (4)
H3 0.575190 0.690570 0.460818 0.044* 0.857 (4)
O3B 0.8753 (6) 0.6616 (3) 0.4513 (7) 0.024 (3) 0.143 (4)
H3D 0.871900 0.689051 0.438845 0.036* 0.143 (4)
O4 0.90424 (13) 0.88163 (6) 0.73783 (10) 0.0337 (5) 0.899 (4)
H4 0.943603 0.863677 0.766568 0.051* 0.899 (4)
O4B 1.0122 (8) 0.8408 (4) 0.5013 (7) 0.022 (4) 0.101 (4)
H4D 1.041665 0.820583 0.533947 0.033* 0.101 (4)
Pd1 0.36273 (2) 0.79241 (2) 0.39043 (2) 0.01248 (3)
Pd2 0.90248 (2) 0.75700 (2) 0.50140 (2) 0.01722 (3)
Cl1 0.49514 (3) 0.75869 (2) 0.39289 (3) 0.02383 (9)
Cl2 1.05553 (3) 0.75220 (2) 0.52937 (3) 0.02905 (11)
Cl3 0.87855 (4) 0.74325 (2) 0.35902 (3) 0.03647 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0134 (7) 0.0250 (9) 0.0175 (8) −0.0010 (7) 0.0021 (6) −0.0029 (7)
C2 0.0145 (7) 0.0250 (9) 0.0142 (8) 0.0016 (7) 0.0021 (6) −0.0014 (7)
C3 0.0197 (8) 0.0139 (8) 0.0249 (9) 0.0018 (7) 0.0096 (7) 0.0010 (6)
C4 0.0309 (10) 0.0181 (9) 0.0260 (10) −0.0027 (8) 0.0089 (8) −0.0083 (7)
C5 0.0146 (7) 0.0226 (8) 0.0172 (8) −0.0009 (7) 0.0077 (6) 0.0005 (6)
C6 0.0163 (7) 0.0203 (8) 0.0161 (8) 0.0004 (7) 0.0069 (6) 0.0010 (6)
C7 0.0205 (8) 0.0225 (9) 0.0211 (8) 0.0021 (7) 0.0111 (7) 0.0003 (7)
C8 0.0271 (9) 0.0227 (9) 0.0182 (8) 0.0001 (7) 0.0125 (7) −0.0017 (7)
C9 0.0240 (8) 0.0212 (8) 0.0138 (8) −0.0039 (7) 0.0072 (6) −0.0014 (6)
C10 0.0188 (7) 0.0206 (8) 0.0141 (8) −0.0004 (7) 0.0062 (6) 0.0018 (6)
C11 0.0192 (7) 0.0180 (8) 0.0143 (7) 0.0009 (7) 0.0081 (6) 0.0019 (6)
C12 0.0350 (10) 0.0260 (10) 0.0278 (10) 0.0001 (9) 0.0177 (9) −0.0087 (8)
C13 0.0653 (18) 0.0386 (14) 0.0454 (15) 0.0174 (13) 0.0202 (13) −0.0054 (12)
C14 0.0624 (17) 0.0483 (16) 0.0654 (18) −0.0167 (14) 0.0506 (15) −0.0241 (14)
C15 0.0536 (14) 0.0372 (13) 0.0344 (12) −0.0036 (11) 0.0212 (11) −0.0139 (10)
C16 0.0166 (7) 0.0236 (9) 0.0152 (8) −0.0016 (7) 0.0035 (6) 0.0024 (6)
C17 0.0196 (8) 0.0282 (10) 0.0242 (9) −0.0026 (8) 0.0082 (7) 0.0057 (8)
C18 0.0211 (8) 0.0255 (9) 0.0235 (9) 0.0006 (8) 0.0052 (7) 0.0051 (7)
C19 0.0241 (9) 0.0357 (11) 0.0210 (9) −0.0026 (8) −0.0002 (7) −0.0032 (8)
C20 0.0224 (8) 0.0240 (9) 0.0139 (8) 0.0036 (7) 0.0090 (6) −0.0010 (6)
C21 0.0202 (8) 0.0204 (8) 0.0158 (8) 0.0021 (7) 0.0095 (6) 0.0029 (6)
C22 0.0193 (8) 0.0277 (9) 0.0151 (8) 0.0027 (7) 0.0079 (6) 0.0033 (7)
C23 0.0213 (8) 0.0276 (10) 0.0185 (8) −0.0027 (7) 0.0099 (7) 0.0000 (7)
C24 0.0246 (9) 0.0232 (9) 0.0227 (9) 0.0002 (7) 0.0125 (7) 0.0018 (7)
C25 0.0217 (8) 0.0244 (9) 0.0194 (8) 0.0047 (7) 0.0104 (7) 0.0042 (7)
C26 0.0218 (8) 0.0266 (9) 0.0155 (8) 0.0042 (7) 0.0065 (7) 0.0019 (7)
C27 0.0283 (9) 0.0310 (11) 0.0220 (9) −0.0034 (8) 0.0072 (8) −0.0010 (8)
C28 0.0636 (17) 0.0521 (16) 0.0329 (13) −0.0340 (14) 0.0032 (12) 0.0030 (12)
C29 0.0257 (10) 0.0689 (19) 0.0408 (14) 0.0030 (12) 0.0016 (10) −0.0218 (13)
C30 0.0417 (12) 0.0330 (11) 0.0198 (9) 0.0031 (10) 0.0085 (9) −0.0029 (8)
C31 0.0241 (9) 0.0231 (9) 0.0247 (9) 0.0063 (8) 0.0102 (7) 0.0061 (7)
C32 0.0258 (9) 0.0290 (11) 0.0387 (12) 0.0067 (8) 0.0113 (9) 0.0069 (9)
C33 0.0408 (12) 0.0397 (12) 0.0238 (10) 0.0187 (10) 0.0129 (9) 0.0132 (9)
C34 0.0360 (11) 0.0259 (10) 0.0376 (12) 0.0029 (9) 0.0109 (9) 0.0079 (9)
C35 0.0272 (9) 0.0251 (9) 0.0226 (9) 0.0019 (8) 0.0172 (7) 0.0005 (7)
C36 0.0222 (8) 0.0219 (9) 0.0272 (9) 0.0018 (7) 0.0176 (7) 0.0017 (7)
C37 0.0385 (11) 0.0247 (10) 0.0163 (9) 0.0086 (8) 0.0115 (8) 0.0048 (7)
C38 0.0190 (8) 0.0242 (10) 0.0375 (11) 0.0018 (7) 0.0065 (8) 0.0133 (8)
C39 0.0252 (9) 0.0256 (9) 0.0168 (8) 0.0005 (8) 0.0005 (7) −0.0001 (7)
C40 0.0208 (8) 0.0230 (9) 0.0192 (9) −0.0031 (7) 0.0015 (7) −0.0006 (7)
C41 0.0182 (8) 0.0226 (9) 0.0228 (9) 0.0006 (7) 0.0055 (7) −0.0012 (7)
C42 0.0178 (8) 0.0222 (9) 0.0217 (9) −0.0028 (7) 0.0063 (7) −0.0009 (7)
C43 0.0195 (8) 0.0187 (8) 0.0262 (9) −0.0032 (7) 0.0056 (7) −0.0029 (7)
C44 0.0221 (8) 0.0213 (9) 0.0248 (9) −0.0063 (7) 0.0069 (7) −0.0085 (7)
C45 0.0270 (9) 0.0259 (10) 0.0189 (9) −0.0061 (8) 0.0047 (7) −0.0055 (7)
C46 0.0223 (9) 0.0295 (12) 0.0238 (19) 0.0036 (9) 0.0115 (9) 0.0053 (10)
C47 0.030 (2) 0.177 (10) 0.052 (4) 0.025 (4) 0.026 (2) 0.043 (5)
C48 0.076 (3) 0.0276 (17) 0.037 (2) 0.0010 (19) 0.025 (2) 0.0098 (14)
C49 0.065 (3) 0.041 (2) 0.0230 (16) −0.007 (2) 0.0152 (16) −0.0002 (15)
C46B 0.0223 (9) 0.0295 (12) 0.0238 (19) 0.0036 (9) 0.0115 (9) 0.0053 (10)
C47B 0.073 (11) 0.086 (10) 0.033 (6) 0.066 (9) 0.035 (8) 0.035 (7)
C48B 0.070 (8) 0.035 (5) 0.059 (7) −0.011 (5) 0.045 (6) 0.005 (4)
C49B 0.035 (5) 0.114 (12) 0.020 (4) −0.021 (6) 0.010 (4) 0.007 (5)
C50 0.0325 (10) 0.0257 (10) 0.0349 (11) −0.0077 (9) 0.0146 (9) −0.0142 (9)
C51 0.0402 (12) 0.0415 (14) 0.0515 (15) −0.0076 (11) 0.0270 (12) −0.0154 (11)
C52 0.0388 (12) 0.0252 (11) 0.0575 (16) 0.0020 (10) 0.0193 (11) −0.0127 (10)
C53 0.0499 (14) 0.0412 (14) 0.0401 (14) −0.0137 (12) 0.0164 (11) −0.0247 (11)
C54 0.0139 (7) 0.0249 (9) 0.0192 (8) 0.0001 (7) 0.0032 (6) 0.0056 (7)
C55 0.0139 (7) 0.0220 (8) 0.0165 (8) −0.0012 (7) 0.0027 (6) 0.0019 (6)
C56 0.0166 (7) 0.0227 (9) 0.0169 (8) −0.0015 (7) 0.0043 (6) −0.0008 (7)
C57 0.0185 (8) 0.0197 (8) 0.0164 (8) 0.0005 (7) 0.0019 (6) −0.0023 (6)
C58 0.0257 (9) 0.0195 (8) 0.0196 (9) −0.0019 (7) 0.0049 (7) 0.0011 (7)
C59 0.0195 (8) 0.0242 (9) 0.0212 (9) −0.0050 (7) 0.0057 (7) 0.0004 (7)
C60 0.0137 (7) 0.0262 (9) 0.0198 (8) −0.0008 (7) 0.0029 (6) 0.0022 (7)
C61 0.0218 (8) 0.0233 (9) 0.0247 (9) 0.0042 (7) 0.0035 (7) −0.0028 (7)
C62 0.0362 (11) 0.0291 (11) 0.0325 (12) 0.0114 (9) 0.0025 (9) 0.0028 (9)
C63 0.0256 (9) 0.0338 (11) 0.0305 (11) 0.0042 (9) 0.0078 (8) −0.0080 (9)
C64 0.0188 (9) 0.0328 (11) 0.0414 (13) 0.0047 (8) 0.0002 (8) −0.0139 (9)
C65 0.0266 (10) 0.0385 (12) 0.0348 (11) −0.0073 (9) 0.0127 (9) 0.0074 (9)
C66 0.0344 (11) 0.0534 (15) 0.0414 (13) 0.0084 (11) 0.0236 (10) 0.0136 (11)
C67 0.0356 (13) 0.068 (2) 0.0628 (19) −0.0263 (14) 0.0140 (13) 0.0035 (15)
C68 0.0594 (16) 0.0381 (14) 0.0593 (17) −0.0032 (13) 0.0362 (14) 0.0174 (12)
O5 0.0307 (15) 0.0231 (12) 0.0259 (12) −0.0020 (11) 0.0144 (11) −0.0014 (9)
C69 0.055 (2) 0.0218 (17) 0.081 (3) −0.0019 (16) 0.048 (2) −0.003 (2)
O5B 0.076 (6) 0.021 (3) 0.038 (3) −0.006 (3) 0.030 (4) 0.003 (2)
O6 0.0493 (13) 0.0515 (14) 0.0208 (10) 0.0174 (10) 0.0011 (9) −0.0052 (8)
C70 0.0377 (15) 0.064 (2) 0.033 (2) 0.0077 (17) 0.0156 (16) −0.0036 (16)
O6B 0.079 (8) 0.072 (8) 0.053 (7) −0.012 (7) 0.041 (6) −0.011 (6)
C70B 0.078 (10) 0.083 (10) 0.039 (10) 0.007 (9) 0.027 (9) −0.005 (9)
N1 0.0122 (6) 0.0162 (7) 0.0139 (6) 0.0005 (5) 0.0033 (5) −0.0014 (5)
N2 0.0167 (6) 0.0152 (7) 0.0141 (6) 0.0005 (5) 0.0051 (5) −0.0017 (5)
N3 0.0210 (7) 0.0190 (7) 0.0146 (7) 0.0020 (6) 0.0077 (6) 0.0015 (5)
N4 0.0145 (6) 0.0208 (7) 0.0171 (7) 0.0022 (6) 0.0063 (5) 0.0058 (6)
O1 0.0178 (5) 0.0212 (6) 0.0125 (5) 0.0049 (5) 0.0051 (4) −0.0003 (5)
O2 0.0432 (10) 0.0242 (8) 0.0200 (8) 0.0074 (7) −0.0048 (7) −0.0029 (6)
O2B 0.0193 (8) 0.0277 (9) 0.0151 (8) 0.0027 (7) 0.0079 (6) 0.0033 (7)
O3 0.0151 (7) 0.0379 (10) 0.0363 (10) 0.0050 (7) 0.0096 (7) 0.0192 (8)
O3B 0.018 (4) 0.024 (5) 0.038 (6) −0.002 (4) 0.019 (4) 0.001 (4)
O4 0.0495 (11) 0.0335 (10) 0.0188 (8) 0.0011 (8) 0.0122 (7) −0.0041 (7)
O4B 0.020 (6) 0.032 (8) 0.014 (6) 0.014 (5) 0.008 (5) 0.005 (5)
Pd1 0.01173 (5) 0.01425 (6) 0.01174 (6) 0.00192 (5) 0.00432 (4) −0.00027 (4)
Pd2 0.01268 (6) 0.02854 (7) 0.01189 (6) 0.00021 (5) 0.00602 (4) 0.00231 (5)
Cl1 0.02027 (19) 0.0316 (2) 0.0220 (2) 0.01215 (18) 0.01026 (16) 0.00532 (18)
Cl2 0.01481 (18) 0.0442 (3) 0.0303 (2) 0.00095 (19) 0.01044 (17) 0.0005 (2)
Cl3 0.0303 (2) 0.0669 (4) 0.0157 (2) −0.0060 (3) 0.01236 (19) −0.0033 (2)

Geometric parameters (Å, º)

C1—N1 1.496 (2) C41—H41 0.9500
C1—C2 1.518 (2) C42—C43 1.398 (3)
C1—H1A 0.9900 C42—C46B 1.46 (3)
C1—H1B 0.9900 C42—C46 1.562 (10)
C2—N2 1.503 (2) C43—C44 1.395 (3)
C2—H2A 0.9900 C43—H43 0.9500
C2—H2B 0.9900 C44—C45 1.410 (3)
C3—N1 1.488 (2) C44—C50 1.538 (3)
C3—H3A 0.9800 C45—O4 1.382 (2)
C3—H3B 0.9800 C45—H45 0.9500
C3—H3C 0.9800 C46—C47 1.518 (7)
C4—N2 1.498 (2) C46—C48 1.530 (7)
C4—H4A 0.9800 C46—C49 1.533 (7)
C4—H4B 0.9800 C47—H47A 0.9800
C4—H4C 0.9800 C47—H47B 0.9800
C5—C6 1.505 (2) C47—H47C 0.9800
C5—N1 1.509 (2) C48—H48A 0.9800
C5—H5A 0.9900 C48—H48B 0.9800
C5—H5B 0.9900 C48—H48C 0.9800
C6—C7 1.393 (2) C49—H49A 0.9800
C6—C11 1.417 (2) C49—H49B 0.9800
C7—C8 1.399 (3) C49—H49C 0.9800
C7—H7 0.9500 C46B—C47B 1.519 (16)
C8—C9 1.396 (3) C46B—C49B 1.531 (16)
C8—C12 1.534 (3) C46B—C48B 1.534 (15)
C9—C10 1.399 (2) C47B—H47D 0.9800
C9—H9 0.9500 C47B—H47E 0.9800
C10—C11 1.419 (2) C47B—H47F 0.9800
C10—C16 1.542 (2) C48B—H48D 0.9800
C11—O1 1.346 (2) C48B—H48E 0.9800
C12—C14 1.526 (3) C48B—H48F 0.9800
C12—C15 1.531 (3) C49B—H49D 0.9800
C12—C13 1.538 (3) C49B—H49E 0.9800
C13—H13A 0.9800 C49B—H49F 0.9800
C13—H13B 0.9800 C50—C51 1.535 (3)
C13—H13C 0.9800 C50—C52 1.538 (3)
C14—H14A 0.9800 C50—C53 1.540 (3)
C14—H14B 0.9800 C51—H51A 0.9800
C14—H14C 0.9800 C51—H51B 0.9800
C15—H15A 0.9800 C51—H51C 0.9800
C15—H15B 0.9800 C52—H52A 0.9800
C15—H15C 0.9800 C52—H52B 0.9800
C16—C19 1.535 (3) C52—H52C 0.9800
C16—C18 1.539 (3) C53—H53A 0.9800
C16—C17 1.542 (3) C53—H53B 0.9800
C17—H17A 0.9800 C53—H53C 0.9800
C17—H17B 0.9800 C54—C55 1.507 (2)
C17—H17C 0.9800 C54—N4 1.516 (2)
C18—H18A 0.9800 C54—H54A 0.9900
C18—H18B 0.9800 C54—H54B 0.9900
C18—H18C 0.9800 C55—C56 1.394 (2)
C19—H19A 0.9800 C55—C60 1.402 (2)
C19—H19B 0.9800 C56—O3B 1.377 (9)
C19—H19C 0.9800 C56—C57 1.394 (3)
C20—C21 1.509 (3) C56—H56 0.9500
C20—N2 1.511 (2) C57—C58 1.396 (3)
C20—H20A 0.9900 C57—C61 1.536 (3)
C20—H20B 0.9900 C58—C59 1.392 (3)
C21—C22 1.396 (3) C58—H58 0.9500
C21—C26 1.404 (2) C59—C60 1.408 (3)
C22—O2B 1.350 (10) C59—C65 1.535 (3)
C22—C23 1.392 (3) C60—O3 1.369 (2)
C22—H22 0.9500 C60—H60 0.9500
C23—C24 1.397 (3) C61—C62 1.531 (3)
C23—C27 1.537 (3) C61—C64 1.542 (3)
C24—C25 1.396 (3) C61—C63 1.542 (3)
C24—H24 0.9500 C62—H62A 0.9800
C25—C26 1.406 (3) C62—H62B 0.9800
C25—C31 1.543 (3) C62—H62C 0.9800
C26—O2 1.383 (2) C63—H63A 0.9800
C26—H26 0.9500 C63—H63B 0.9800
C27—C28 1.532 (3) C63—H63C 0.9800
C27—C30 1.533 (3) C64—H64A 0.9800
C27—C29 1.539 (3) C64—H64B 0.9800
C28—H28A 0.9800 C64—H64C 0.9800
C28—H28B 0.9800 C65—C67 1.536 (3)
C28—H28C 0.9800 C65—C66 1.540 (4)
C29—H29A 0.9800 C65—C68 1.545 (3)
C29—H29B 0.9800 C66—H66A 0.9800
C29—H29C 0.9800 C66—H66B 0.9800
C30—H30A 0.9800 C66—H66C 0.9800
C30—H30B 0.9800 C67—H67A 0.9800
C30—H30C 0.9800 C67—H67B 0.9800
C31—C33 1.532 (3) C67—H67C 0.9800
C31—C34 1.535 (3) C68—H68A 0.9800
C31—C32 1.537 (3) C68—H68B 0.9800
C32—H32A 0.9800 C68—H68C 0.9800
C32—H32B 0.9800 O5—C69 1.403 (5)
C32—H32C 0.9800 O5—H5 0.8400
C33—H33A 0.9800 C69—H69A 0.9800
C33—H33B 0.9800 C69—H69B 0.9800
C33—H33C 0.9800 C69—H69C 0.9800
C34—H34A 0.9800 O5B—H5C 0.84 (2)
C34—H34B 0.9800 O5B—H5D 0.86 (2)
C34—H34C 0.9800 O6—C70 1.405 (5)
C35—C36 1.503 (3) O6—H6 0.8400
C35—N3 1.503 (2) C70—H70A 0.9800
C35—H35A 0.9900 C70—H70B 0.9800
C35—H35B 0.9900 C70—H70C 0.9800
C36—N4 1.498 (2) O6B—C70B 1.373 (18)
C36—H36A 0.9900 O6B—H6B 0.8400
C36—H36B 0.9900 C70B—H70D 0.9800
C37—N3 1.490 (2) C70B—H70E 0.9800
C37—H37A 0.9800 C70B—H70F 0.9800
C37—H37B 0.9800 N1—Pd1 2.0369 (14)
C37—H37C 0.9800 N2—Pd1 2.0739 (14)
C38—N4 1.496 (2) N3—Pd2 2.0699 (15)
C38—H38A 0.9800 N4—Pd2 2.0735 (14)
C38—H38B 0.9800 O1—Pd1 2.0085 (12)
C38—H38C 0.9800 O2—H2 0.8400
C39—C40 1.511 (3) O2B—H2C 0.8400
C39—N3 1.515 (2) O3—H3 0.8400
C39—H39A 0.9900 O3B—H3D 0.8400
C39—H39B 0.9900 O4—H4 0.8400
C40—C41 1.396 (3) O4B—H4D 0.8400
C40—C45 1.403 (3) Pd1—Cl1 2.3186 (4)
C41—C42 1.393 (3) Pd2—Cl3 2.3102 (5)
C41—O4B 1.410 (9) Pd2—Cl2 2.3216 (5)
N1—C1—C2 109.06 (14) C45—C44—C50 121.37 (18)
N1—C1—H1A 109.9 O4—C45—C40 122.71 (19)
C2—C1—H1A 109.9 O4—C45—C44 116.44 (18)
N1—C1—H1B 109.9 C40—C45—C44 120.79 (18)
C2—C1—H1B 109.9 C40—C45—H45 119.6
H1A—C1—H1B 108.3 C44—C45—H45 119.6
N2—C2—C1 108.93 (14) C47—C46—C48 109.4 (6)
N2—C2—H2A 109.9 C47—C46—C49 109.2 (6)
C1—C2—H2A 109.9 C48—C46—C49 107.5 (5)
N2—C2—H2B 109.9 C47—C46—C42 109.8 (6)
C1—C2—H2B 109.9 C48—C46—C42 111.7 (5)
H2A—C2—H2B 108.3 C49—C46—C42 109.2 (5)
N1—C3—H3A 109.5 C46—C47—H47A 109.5
N1—C3—H3B 109.5 C46—C47—H47B 109.5
H3A—C3—H3B 109.5 H47A—C47—H47B 109.5
N1—C3—H3C 109.5 C46—C47—H47C 109.5
H3A—C3—H3C 109.5 H47A—C47—H47C 109.5
H3B—C3—H3C 109.5 H47B—C47—H47C 109.5
N2—C4—H4A 109.5 C46—C48—H48A 109.5
N2—C4—H4B 109.5 C46—C48—H48B 109.5
H4A—C4—H4B 109.5 H48A—C48—H48B 109.5
N2—C4—H4C 109.5 C46—C48—H48C 109.5
H4A—C4—H4C 109.5 H48A—C48—H48C 109.5
H4B—C4—H4C 109.5 H48B—C48—H48C 109.5
C6—C5—N1 111.11 (14) C46—C49—H49A 109.5
C6—C5—H5A 109.4 C46—C49—H49B 109.5
N1—C5—H5A 109.4 H49A—C49—H49B 109.5
C6—C5—H5B 109.4 C46—C49—H49C 109.5
N1—C5—H5B 109.4 H49A—C49—H49C 109.5
H5A—C5—H5B 108.0 H49B—C49—H49C 109.5
C7—C6—C11 120.74 (16) C42—C46B—C47B 112.4 (14)
C7—C6—C5 119.95 (15) C42—C46B—C49B 109.6 (13)
C11—C6—C5 119.27 (15) C47B—C46B—C49B 109.3 (15)
C6—C7—C8 121.32 (17) C42—C46B—C48B 111.8 (14)
C6—C7—H7 119.3 C47B—C46B—C48B 104.6 (14)
C8—C7—H7 119.3 C49B—C46B—C48B 109.1 (14)
C9—C8—C7 117.04 (16) C46B—C47B—H47D 109.5
C9—C8—C12 122.84 (17) C46B—C47B—H47E 109.5
C7—C8—C12 120.11 (17) H47D—C47B—H47E 109.5
C8—C9—C10 124.11 (17) C46B—C47B—H47F 109.5
C8—C9—H9 117.9 H47D—C47B—H47F 109.5
C10—C9—H9 117.9 H47E—C47B—H47F 109.5
C9—C10—C11 117.78 (16) C46B—C48B—H48D 109.5
C9—C10—C16 120.90 (16) C46B—C48B—H48E 109.5
C11—C10—C16 121.31 (15) H48D—C48B—H48E 109.5
O1—C11—C6 120.19 (15) C46B—C48B—H48F 109.5
O1—C11—C10 120.80 (15) H48D—C48B—H48F 109.5
C6—C11—C10 119.00 (16) H48E—C48B—H48F 109.5
C14—C12—C15 109.5 (2) C46B—C49B—H49D 109.5
C14—C12—C8 109.80 (18) C46B—C49B—H49E 109.5
C15—C12—C8 112.38 (18) H49D—C49B—H49E 109.5
C14—C12—C13 108.8 (2) C46B—C49B—H49F 109.5
C15—C12—C13 106.8 (2) H49D—C49B—H49F 109.5
C8—C12—C13 109.47 (18) H49E—C49B—H49F 109.5
C12—C13—H13A 109.5 C51—C50—C44 110.77 (17)
C12—C13—H13B 109.5 C51—C50—C52 106.7 (2)
H13A—C13—H13B 109.5 C44—C50—C52 111.90 (19)
C12—C13—H13C 109.5 C51—C50—C53 110.3 (2)
H13A—C13—H13C 109.5 C44—C50—C53 109.49 (18)
H13B—C13—H13C 109.5 C52—C50—C53 107.55 (19)
C12—C14—H14A 109.5 C50—C51—H51A 109.5
C12—C14—H14B 109.5 C50—C51—H51B 109.5
H14A—C14—H14B 109.5 H51A—C51—H51B 109.5
C12—C14—H14C 109.5 C50—C51—H51C 109.5
H14A—C14—H14C 109.5 H51A—C51—H51C 109.5
H14B—C14—H14C 109.5 H51B—C51—H51C 109.5
C12—C15—H15A 109.5 C50—C52—H52A 109.5
C12—C15—H15B 109.5 C50—C52—H52B 109.5
H15A—C15—H15B 109.5 H52A—C52—H52B 109.5
C12—C15—H15C 109.5 C50—C52—H52C 109.5
H15A—C15—H15C 109.5 H52A—C52—H52C 109.5
H15B—C15—H15C 109.5 H52B—C52—H52C 109.5
C19—C16—C18 107.87 (15) C50—C53—H53A 109.5
C19—C16—C17 107.20 (16) C50—C53—H53B 109.5
C18—C16—C17 109.50 (16) H53A—C53—H53B 109.5
C19—C16—C10 112.13 (16) C50—C53—H53C 109.5
C18—C16—C10 110.82 (15) H53A—C53—H53C 109.5
C17—C16—C10 109.22 (14) H53B—C53—H53C 109.5
C16—C17—H17A 109.5 C55—C54—N4 113.32 (14)
C16—C17—H17B 109.5 C55—C54—H54A 108.9
H17A—C17—H17B 109.5 N4—C54—H54A 108.9
C16—C17—H17C 109.5 C55—C54—H54B 108.9
H17A—C17—H17C 109.5 N4—C54—H54B 108.9
H17B—C17—H17C 109.5 H54A—C54—H54B 107.7
C16—C18—H18A 109.5 C56—C55—C60 118.83 (17)
C16—C18—H18B 109.5 C56—C55—C54 119.49 (16)
H18A—C18—H18B 109.5 C60—C55—C54 121.60 (16)
C16—C18—H18C 109.5 O3B—C56—C55 125.6 (4)
H18A—C18—H18C 109.5 O3B—C56—C57 112.4 (4)
H18B—C18—H18C 109.5 C55—C56—C57 121.86 (17)
C16—C19—H19A 109.5 C55—C56—H56 119.1
C16—C19—H19B 109.5 C57—C56—H56 119.1
H19A—C19—H19B 109.5 C56—C57—C58 117.18 (17)
C16—C19—H19C 109.5 C56—C57—C61 119.84 (17)
H19A—C19—H19C 109.5 C58—C57—C61 122.97 (17)
H19B—C19—H19C 109.5 C59—C58—C57 123.78 (18)
C21—C20—N2 114.07 (14) C59—C58—H58 118.1
C21—C20—H20A 108.7 C57—C58—H58 118.1
N2—C20—H20A 108.7 C58—C59—C60 116.87 (17)
C21—C20—H20B 108.7 C58—C59—C65 121.44 (18)
N2—C20—H20B 108.7 C60—C59—C65 121.68 (17)
H20A—C20—H20B 107.6 O3—C60—C55 123.03 (17)
C22—C21—C26 119.40 (17) O3—C60—C59 115.54 (17)
C22—C21—C20 119.85 (16) C55—C60—C59 121.40 (17)
C26—C21—C20 120.75 (16) C55—C60—H60 119.3
O2B—C22—C23 109.9 (6) C59—C60—H60 119.3
O2B—C22—C21 128.2 (6) C62—C61—C57 112.43 (18)
C23—C22—C21 121.46 (17) C62—C61—C64 107.75 (17)
C23—C22—H22 119.3 C57—C61—C64 108.80 (16)
C21—C22—H22 119.3 C62—C61—C63 108.59 (17)
C22—C23—C24 117.35 (17) C57—C61—C63 109.50 (16)
C22—C23—C27 120.83 (17) C64—C61—C63 109.73 (18)
C24—C23—C27 121.78 (18) C61—C62—H62A 109.5
C25—C24—C23 123.80 (18) C61—C62—H62B 109.5
C25—C24—H24 118.1 H62A—C62—H62B 109.5
C23—C24—H24 118.1 C61—C62—H62C 109.5
C24—C25—C26 116.97 (17) H62A—C62—H62C 109.5
C24—C25—C31 121.19 (18) H62B—C62—H62C 109.5
C26—C25—C31 121.79 (17) C61—C63—H63A 109.5
O2—C26—C21 119.66 (17) C61—C63—H63B 109.5
O2—C26—C25 119.30 (17) H63A—C63—H63B 109.5
C21—C26—C25 120.98 (17) C61—C63—H63C 109.5
C21—C26—H26 119.5 H63A—C63—H63C 109.5
C25—C26—H26 119.5 H63B—C63—H63C 109.5
C28—C27—C30 107.6 (2) C61—C64—H64A 109.5
C28—C27—C23 111.93 (18) C61—C64—H64B 109.5
C30—C27—C23 108.53 (17) H64A—C64—H64B 109.5
C28—C27—C29 110.0 (2) C61—C64—H64C 109.5
C30—C27—C29 108.28 (19) H64A—C64—H64C 109.5
C23—C27—C29 110.36 (18) H64B—C64—H64C 109.5
C27—C28—H28A 109.5 C59—C65—C67 109.51 (19)
C27—C28—H28B 109.5 C59—C65—C66 110.16 (18)
H28A—C28—H28B 109.5 C67—C65—C66 111.9 (2)
C27—C28—H28C 109.5 C59—C65—C68 112.03 (19)
H28A—C28—H28C 109.5 C67—C65—C68 106.3 (2)
H28B—C28—H28C 109.5 C66—C65—C68 106.9 (2)
C27—C29—H29A 109.5 C65—C66—H66A 109.5
C27—C29—H29B 109.5 C65—C66—H66B 109.5
H29A—C29—H29B 109.5 H66A—C66—H66B 109.5
C27—C29—H29C 109.5 C65—C66—H66C 109.5
H29A—C29—H29C 109.5 H66A—C66—H66C 109.5
H29B—C29—H29C 109.5 H66B—C66—H66C 109.5
C27—C30—H30A 109.5 C65—C67—H67A 109.5
C27—C30—H30B 109.5 C65—C67—H67B 109.5
H30A—C30—H30B 109.5 H67A—C67—H67B 109.5
C27—C30—H30C 109.5 C65—C67—H67C 109.5
H30A—C30—H30C 109.5 H67A—C67—H67C 109.5
H30B—C30—H30C 109.5 H67B—C67—H67C 109.5
C33—C31—C34 107.34 (18) C65—C68—H68A 109.5
C33—C31—C32 109.30 (18) C65—C68—H68B 109.5
C34—C31—C32 108.01 (17) H68A—C68—H68B 109.5
C33—C31—C25 111.72 (16) C65—C68—H68C 109.5
C34—C31—C25 112.10 (17) H68A—C68—H68C 109.5
C32—C31—C25 108.29 (16) H68B—C68—H68C 109.5
C31—C32—H32A 109.5 C69—O5—H5 109.5
C31—C32—H32B 109.5 O5—C69—H69A 109.5
H32A—C32—H32B 109.5 O5—C69—H69B 109.5
C31—C32—H32C 109.5 H69A—C69—H69B 109.5
H32A—C32—H32C 109.5 O5—C69—H69C 109.5
H32B—C32—H32C 109.5 H69A—C69—H69C 109.5
C31—C33—H33A 109.5 H69B—C69—H69C 109.5
C31—C33—H33B 109.5 H5C—O5B—H5D 107 (3)
H33A—C33—H33B 109.5 C70—O6—H6 109.5
C31—C33—H33C 109.5 O6—C70—H70A 109.5
H33A—C33—H33C 109.5 O6—C70—H70B 109.5
H33B—C33—H33C 109.5 H70A—C70—H70B 109.5
C31—C34—H34A 109.5 O6—C70—H70C 109.5
C31—C34—H34B 109.5 H70A—C70—H70C 109.5
H34A—C34—H34B 109.5 H70B—C70—H70C 109.5
C31—C34—H34C 109.5 C70B—O6B—H6B 109.5
H34A—C34—H34C 109.5 O6B—C70B—H70D 109.5
H34B—C34—H34C 109.5 O6B—C70B—H70E 109.5
C36—C35—N3 109.55 (15) H70D—C70B—H70E 109.5
C36—C35—H35A 109.8 O6B—C70B—H70F 109.5
N3—C35—H35A 109.8 H70D—C70B—H70F 109.5
C36—C35—H35B 109.8 H70E—C70B—H70F 109.5
N3—C35—H35B 109.8 C3—N1—C1 110.84 (14)
H35A—C35—H35B 108.2 C3—N1—C5 110.38 (13)
N4—C36—C35 110.01 (14) C1—N1—C5 109.91 (13)
N4—C36—H36A 109.7 C3—N1—Pd1 111.59 (10)
C35—C36—H36A 109.7 C1—N1—Pd1 104.61 (10)
N4—C36—H36B 109.7 C5—N1—Pd1 109.36 (10)
C35—C36—H36B 109.7 C4—N2—C2 108.85 (14)
H36A—C36—H36B 108.2 C4—N2—C20 106.92 (14)
N3—C37—H37A 109.5 C2—N2—C20 111.12 (13)
N3—C37—H37B 109.5 C4—N2—Pd1 105.61 (11)
H37A—C37—H37B 109.5 C2—N2—Pd1 107.53 (10)
N3—C37—H37C 109.5 C20—N2—Pd1 116.48 (10)
H37A—C37—H37C 109.5 C37—N3—C35 110.58 (15)
H37B—C37—H37C 109.5 C37—N3—C39 107.41 (14)
N4—C38—H38A 109.5 C35—N3—C39 110.12 (14)
N4—C38—H38B 109.5 C37—N3—Pd2 106.95 (11)
H38A—C38—H38B 109.5 C35—N3—Pd2 106.93 (11)
N4—C38—H38C 109.5 C39—N3—Pd2 114.81 (11)
H38A—C38—H38C 109.5 C38—N4—C36 110.64 (15)
H38B—C38—H38C 109.5 C38—N4—C54 107.70 (14)
C40—C39—N3 112.59 (14) C36—N4—C54 110.40 (14)
C40—C39—H39A 109.1 C38—N4—Pd2 107.06 (11)
N3—C39—H39A 109.1 C36—N4—Pd2 106.65 (11)
C40—C39—H39B 109.1 C54—N4—Pd2 114.35 (11)
N3—C39—H39B 109.1 C11—O1—Pd1 121.65 (10)
H39A—C39—H39B 107.8 C26—O2—H2 109.5
C41—C40—C45 119.42 (18) C22—O2B—H2C 109.5
C41—C40—C39 119.16 (17) C60—O3—H3 109.5
C45—C40—C39 121.31 (18) C56—O3B—H3D 109.5
C42—C41—C40 121.61 (18) C45—O4—H4 109.5
C42—C41—O4B 110.6 (5) C41—O4B—H4D 109.5
C40—C41—O4B 127.5 (5) O1—Pd1—N1 93.18 (5)
C42—C41—H41 119.2 O1—Pd1—N2 170.29 (5)
C40—C41—H41 119.2 N1—Pd1—N2 85.84 (6)
C41—C42—C43 117.19 (18) O1—Pd1—Cl1 88.04 (4)
C41—C42—C46B 122.6 (7) N1—Pd1—Cl1 178.20 (4)
C43—C42—C46B 120.2 (7) N2—Pd1—Cl1 93.17 (4)
C41—C42—C46 120.0 (3) N3—Pd2—N4 85.44 (6)
C43—C42—C46 122.7 (3) N3—Pd2—Cl3 175.32 (5)
C44—C43—C42 123.79 (18) N4—Pd2—Cl3 91.99 (4)
C44—C43—H43 118.1 N3—Pd2—Cl2 93.02 (4)
C42—C43—H43 118.1 N4—Pd2—Cl2 175.77 (4)
C43—C44—C45 117.08 (18) Cl3—Pd2—Cl2 89.801 (19)
C43—C44—C50 121.56 (19)
N1—C1—C2—N2 53.29 (19) C41—C40—C45—C44 4.1 (3)
N1—C5—C6—C7 118.98 (18) C39—C40—C45—C44 −172.13 (17)
N1—C5—C6—C11 −58.7 (2) C43—C44—C45—O4 −179.38 (17)
C11—C6—C7—C8 0.1 (3) C50—C44—C45—O4 0.9 (3)
C5—C6—C7—C8 −177.60 (17) C43—C44—C45—C40 −2.1 (3)
C6—C7—C8—C9 0.1 (3) C50—C44—C45—C40 178.18 (17)
C6—C7—C8—C12 178.80 (18) C41—C42—C46—C47 −50.7 (6)
C7—C8—C9—C10 0.3 (3) C43—C42—C46—C47 132.9 (5)
C12—C8—C9—C10 −178.30 (18) C41—C42—C46—C48 −172.2 (3)
C8—C9—C10—C11 −0.9 (3) C43—C42—C46—C48 11.3 (6)
C8—C9—C10—C16 177.85 (17) C41—C42—C46—C49 69.0 (5)
C7—C6—C11—O1 178.73 (16) C43—C42—C46—C49 −107.5 (4)
C5—C6—C11—O1 −3.6 (2) C41—C42—C46B—C47B −14.7 (15)
C7—C6—C11—C10 −0.7 (3) C43—C42—C46B—C47B 165.7 (10)
C5—C6—C11—C10 176.96 (16) C41—C42—C46B—C49B 107.0 (11)
C9—C10—C11—O1 −178.33 (16) C43—C42—C46B—C49B −72.6 (12)
C16—C10—C11—O1 2.9 (3) C41—C42—C46B—C48B −131.9 (10)
C9—C10—C11—C6 1.1 (2) C43—C42—C46B—C48B 48.5 (13)
C16—C10—C11—C6 −177.67 (16) C43—C44—C50—C51 121.2 (2)
C9—C8—C12—C14 −118.9 (2) C45—C44—C50—C51 −59.1 (3)
C7—C8—C12—C14 62.5 (3) C43—C44—C50—C52 2.3 (3)
C9—C8—C12—C15 3.3 (3) C45—C44—C50—C52 −178.01 (18)
C7—C8—C12—C15 −175.29 (19) C43—C44—C50—C53 −116.9 (2)
C9—C8—C12—C13 121.8 (2) C45—C44—C50—C53 62.8 (3)
C7—C8—C12—C13 −56.8 (3) N4—C54—C55—C56 −76.3 (2)
C9—C10—C16—C19 −0.2 (2) N4—C54—C55—C60 100.40 (19)
C11—C10—C16—C19 178.51 (17) C60—C55—C56—O3B 172.4 (6)
C9—C10—C16—C18 120.36 (19) C54—C55—C56—O3B −10.7 (6)
C11—C10—C16—C18 −60.9 (2) C60—C55—C56—C57 −3.1 (3)
C9—C10—C16—C17 −118.92 (18) C54—C55—C56—C57 173.71 (17)
C11—C10—C16—C17 59.8 (2) O3B—C56—C57—C58 −174.5 (5)
N2—C20—C21—C22 78.3 (2) C55—C56—C57—C58 1.6 (3)
N2—C20—C21—C26 −102.40 (19) O3B—C56—C57—C61 6.2 (5)
C26—C21—C22—O2B −170.5 (8) C55—C56—C57—C61 −177.76 (17)
C20—C21—C22—O2B 8.8 (9) C56—C57—C58—C59 1.0 (3)
C26—C21—C22—C23 1.5 (3) C61—C57—C58—C59 −179.65 (18)
C20—C21—C22—C23 −179.18 (16) C57—C58—C59—C60 −1.9 (3)
O2B—C22—C23—C24 173.6 (7) C57—C58—C59—C65 178.98 (19)
C21—C22—C23—C24 0.3 (3) C56—C55—C60—O3 −179.92 (18)
O2B—C22—C23—C27 −8.7 (7) C54—C55—C60—O3 3.3 (3)
C21—C22—C23—C27 177.93 (17) C56—C55—C60—C59 2.1 (3)
C22—C23—C24—C25 −0.9 (3) C54—C55—C60—C59 −174.65 (17)
C27—C23—C24—C25 −178.51 (17) C58—C59—C60—O3 −177.80 (17)
C23—C24—C25—C26 −0.3 (3) C65—C59—C60—O3 1.3 (3)
C23—C24—C25—C31 177.28 (17) C58—C59—C60—C55 0.3 (3)
C22—C21—C26—O2 −179.78 (17) C65—C59—C60—C55 179.41 (18)
C20—C21—C26—O2 0.9 (3) C56—C57—C61—C62 −177.19 (17)
C22—C21—C26—C25 −2.7 (3) C58—C57—C61—C62 3.5 (3)
C20—C21—C26—C25 177.94 (16) C56—C57—C61—C64 63.5 (2)
C24—C25—C26—O2 179.19 (17) C58—C57—C61—C64 −115.8 (2)
C31—C25—C26—O2 1.6 (3) C56—C57—C61—C63 −56.4 (2)
C24—C25—C26—C21 2.1 (3) C58—C57—C61—C63 124.3 (2)
C31—C25—C26—C21 −175.45 (16) C58—C59—C65—C67 −118.5 (2)
C22—C23—C27—C28 164.4 (2) C60—C59—C65—C67 62.4 (3)
C24—C23—C27—C28 −18.1 (3) C58—C59—C65—C66 118.0 (2)
C22—C23—C27—C30 −77.0 (2) C60—C59—C65—C66 −61.0 (3)
C24—C23—C27—C30 100.6 (2) C58—C59—C65—C68 −0.8 (3)
C22—C23—C27—C29 41.6 (3) C60—C59—C65—C68 −179.8 (2)
C24—C23—C27—C29 −140.9 (2) C2—C1—N1—C3 72.40 (18)
C24—C25—C31—C33 122.7 (2) C2—C1—N1—C5 −165.31 (14)
C26—C25—C31—C33 −59.8 (2) C2—C1—N1—Pd1 −48.00 (16)
C24—C25—C31—C34 2.2 (3) C6—C5—N1—C3 −54.56 (18)
C26—C25—C31—C34 179.64 (18) C6—C5—N1—C1 −177.13 (14)
C24—C25—C31—C32 −116.9 (2) C6—C5—N1—Pd1 68.57 (15)
C26—C25—C31—C32 60.6 (2) C1—C2—N2—C4 83.83 (17)
N3—C35—C36—N4 −52.50 (19) C1—C2—N2—C20 −158.69 (14)
N3—C39—C40—C41 −78.3 (2) C1—C2—N2—Pd1 −30.14 (16)
N3—C39—C40—C45 98.0 (2) C21—C20—N2—C4 175.21 (15)
C45—C40—C41—C42 −3.4 (3) C21—C20—N2—C2 56.55 (19)
C39—C40—C41—C42 172.91 (17) C21—C20—N2—Pd1 −67.03 (17)
C45—C40—C41—O4B 169.6 (7) C36—C35—N3—C37 −77.92 (18)
C39—C40—C41—O4B −14.1 (8) C36—C35—N3—C39 163.52 (15)
C40—C41—C42—C43 0.7 (3) C36—C35—N3—Pd2 38.17 (16)
O4B—C41—C42—C43 −173.4 (6) C40—C39—N3—C37 −173.44 (16)
C40—C41—C42—C46B −178.9 (7) C40—C39—N3—C35 −53.0 (2)
O4B—C41—C42—C46B 7.0 (10) C40—C39—N3—Pd2 67.78 (18)
C40—C41—C42—C46 −176.0 (3) C35—C36—N4—C38 −77.38 (18)
C41—C42—C43—C44 1.4 (3) C35—C36—N4—C54 163.50 (15)
C46B—C42—C43—C44 −178.9 (7) C35—C36—N4—Pd2 38.72 (17)
C46—C42—C43—C44 178.0 (3) C55—C54—N4—C38 −168.30 (15)
C42—C43—C44—C45 −0.8 (3) C55—C54—N4—C36 −47.40 (19)
C42—C43—C44—C50 178.99 (17) C55—C54—N4—Pd2 72.86 (16)
C41—C40—C45—O4 −178.74 (18) C6—C11—O1—Pd1 44.6 (2)
C39—C40—C45—O4 5.0 (3) C10—C11—O1—Pd1 −135.99 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5···O1 0.84 1.95 2.787 (3) 171
C69—H69A···Cl1 0.98 2.90 3.642 (4) 134
C69—H69C···O3 0.98 2.57 3.267 (4) 128
O5B—H5C···O1 0.84 (2) 1.95 (3) 2.772 (6) 168 (12)
O6—H6···Cl2 0.84 2.90 3.592 (2) 141
O6—H6···Cl3 0.84 2.41 3.129 (2) 144
O6B—H6B···Cl2 0.84 2.45 3.242 (13) 157
O2—H2···O5i 0.84 1.88 2.715 (3) 170
O2B—H2C···Cl1 0.84 2.06 2.858 (13) 157
O3—H3···Cl1 0.84 2.46 3.1764 (17) 144
O3B—H3D···Cl3 0.84 2.12 2.886 (10) 152
O4—H4···O6ii 0.84 1.95 2.750 (3) 160
O4B—H4D···Cl2 0.84 2.05 2.726 (12) 137

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2.

Funding Statement

This work was funded by American Chemical Society Petroleum Research Fund grant 56549-UR3. National Science Foundation grant CHE 1625543.

References

  1. Allan, L. E. N., MacDonald, J. P., Nichol, G. S. & Shaver, M. P. (2014). Macromolecules, 47, 1249–1257.
  2. Andrea, K. A., Brown, T. R., Murphy, J. N., Jagota, D., McKearney, D., Kozak, C. M. & Kerton, F. M. (2018). Inorg. Chem. 57, 13494–13504. [DOI] [PubMed]
  3. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Carpentier, J.-F. (2015). Organometallics, 34, 4175–4189.
  5. Chowdhury, R. R., Crane, A. K., Fowler, C., Kwong, P. & Kozak, C. M. (2008). Chem. Commun. pp. 94–96. [DOI] [PubMed]
  6. Ding, L., Chu, Z., Chen, L., Lü, X., Yan, B., Song, J., Fan, D. & Bao, F. (2011). Inorg. Chem. Commun. 14, 573–577.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185–196.
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Karimpour, T., Safaei, E., Wojtczak, A., Jagličić, Z. & Kozakiewicz, A. (2013). Inorg. Chim. Acta, 395, 124–134.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Labourdette, G., Lee, D. J., Patrick, B. O., Ezhova, M. B. & Mehrkhodavandi, P. (2009). Organometallics, 28, 1309–1319.
  13. Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.
  14. Qian, X., Dawe, L. N. & Kozak, C. M. (2011). Dalton Trans. 40, 933–943. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Song, S., Zhang, X., Ma, H. & Yang, Y. (2012). Dalton Trans. 41, 3266–3277. [DOI] [PubMed]
  18. Strautmann, J. B. H., Freiherr von Richthofen, C.-G., Heinze-Brückner, G., DeBeer, S., Bothe, E., Bill, E., Weyhermüller, T., Stammler, A., Bögge, H. & Glaser, T. (2011). Inorg. Chem. 50, 155–171. [DOI] [PubMed]
  19. Tshuva, E. Y., Goldberg, I. & Kol, M. (2000). J. Am. Chem. Soc. 122, 10706–10707.
  20. Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Organometallics, 20, 3017–3028.
  21. Wang, L. & Ma, H. (2010). Dalton Trans. 39, 7897–7910. [DOI] [PubMed]
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. G. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350–11359. [DOI] [PubMed]
  24. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  25. Zhao, R., Liu, T., Wang, L. & Ma, H. (2014). Dalton Trans. 43, 12663–12677. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019010454/lh5914sup1.cif

e-75-01265-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019010454/lh5914Isup2.hkl

e-75-01265-Isup2.hkl (1.7MB, hkl)

CCDC reference: 1940199

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES