In the crystal of the title salt, the cations and anions are linked via N—H⋯Br hydrogen bonds. In the 1H NMR spectra of this compound, the NH iminium protons are observed at δ = 10.46 p.p.m., which confirms the strong charge-assisted hydrogen bonding (CAHB) in the =HN+—H⋯Br− synthon.
Keywords: crystal structure, isotypic, charge-assisted hydrogen bonding, thiazolidine ring, disorder, Hirshfeld surface analysis
Abstract
The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019 ▸). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions.
Chemical context
The thiazolidine ring system posses special importance in synthetic and medicinal chemistry. Substituted thiazolidine derivatives are known to exhibit various biological activities such as antiviral, anticancer, anti-tubercular, and antimicrobial etc. (Makwana & Malani 2017 ▸). Schiff bases have been widely used as versatile ligands in the synthesis, catalysis and design of materials (Akbari et al., 2017 ▸; Akkurt et al., 2018 ▸; Asadov et al., 2016 ▸; Gurbanov et al., 2018a
▸,b
▸; Ma et al., 2017a
▸,b
▸; Mamedov et al., 2018 ▸). Weak interactions, namely hydrogen bonding, π-interactions, etc. provided by N-containing ligands can also contribute to their structural organization, coordination abilities and catalytic activity, among other properties (Khalilov et al., 2019 ▸; Maharramov et al., 2009 ▸, 2010 ▸; Mahmoudi et al., 2018a
▸,b
▸; Mahmudov et al., 2014 ▸, 2019 ▸; Mamedov et al., 2015 ▸; Mitoraj et al., 2018 ▸; Shixaliyev et al., 2014 ▸; Zubkov et al., 2018 ▸). As part of our ongoing studies in this field, we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide.
Structural commentary
The major and minor components (S1/N2/C1/C2′/C3 and S1/N2/C1/C2/C3) of the thiazolidine ring in the cation of the title salt (Fig. 1 ▸) both adopt a distorted envelope conformation, with puckering parameters Q(2) = 0.432 (3) Å, φ(2) = 33.5 (4)° for the major component and Q(2) = 0.414 (4) Å, φ(2) = 326.1 (5)° for the minor component. The mean planes of the major and minor components of the disordered thiazolidine ring make dihedral angles of 14.99 (14), 88.45 (16), 84.3 (2)° and 22.82 (16), 86.85 (18), 83.9 (2)°, respectively, with the chlorophenyl ring (C5–C10) and the major- and minor-disorder components (C11′–C16′ and C11–C16) of the phenyl ring. The N2—N1—C4—C5 bridge that links the thiazolidine and 4-chlorophenyl rings has a torsion angle of 176.4 (2)°.
Figure 1.
The molecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Only the major component of the disorder is shown for clarity.
Supramolecular features and Hirshfeld surface analysis
In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts, into chains parallel to the a-axis direction (Table 1 ▸; Figs. 2 ▸ and 3 ▸). Furthermore, C—H⋯π interactions (Table 1 ▸) and π–π stacking interactions [Cg4 ⋯Cg4(2 − x, − y, 1 − z) = 3.897 (2) Å where Cg4 is the centroid of the major component of the disordered phenyl ring] contribute to the stabilization of the molecular packing.
Table 1. Hydrogen-bond geometry (Å, °).
Cg3 is the centroid of the C5–C10 benzene ring of the chlorophenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N3—H3A⋯Br1i | 0.90 | 2.56 | 3.390 (2) | 154 |
| N3—H3B⋯Br1ii | 0.90 | 2.38 | 3.252 (2) | 164 |
| C10—H10A⋯Br1i | 0.95 | 2.91 | 3.823 (3) | 163 |
| C7—H7A⋯Cg4iii | 0.95 | 2.71 | 3.595 (3) | 155 |
| C7—H7A⋯Cg5iii | 0.95 | 2.70 | 3.568 (3) | 153 |
| C13—H13A⋯Cg3iv | 0.95 | 2.97 | 3.861 (4) | 157 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
Packing viewed along the a-axis direction showing the N—H⋯Br and C—H⋯Br interactions (dashed lines).
Figure 3.
A perspective view of the crystal structure of the title compound.
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) was used to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. CrystalExplorer3.1 (Wolff et al., 2012 ▸) was used to generate d norm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002 ▸). The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.4687 (red) to 1.2270 a.u. (blue) is shown in Fig. 4 ▸. The shape-index of the Hirshfeld surface is a tool to visualize π–π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 ▸ clearly suggest that there are π–π interactions present in the title salt. Fig. 6 ▸ a shows the two-dimensional fingerprint for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1 ▸ and 2 ▸). The fingerprint plots delineated into H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions are shown in Fig. 6 ▸ b–f, respectively. The most significant intermolecular interactions are the H⋯H interactions (30.5%; ig. 6b). The various contributions to the Hirshfeld surface are listed in Table 3 ▸.
Figure 4.
Hirshfeld surface of the title salt mapped with dnorm.
Figure 5.
Hirshfeld surface of the title salt mapped with shape-index.
Figure 6.
Hirshfeld surface representations and the two-dimensional fingerprint plots of the title salt, showing (a) all interactions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) S⋯H/H⋯S interactions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
Table 2. Summary of short interatomic contacts (Å) in the title salt.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Br1⋯H3A | 2.56 | −1 + x, y, −1 + z |
| Br1⋯H1B | 2.56 | x, y, −1 + z |
| Br1⋯H3B | 2.38 | 2 − x, − y, 1 − z |
| Br1⋯H4A | 2.98 | 1 − x, 1 − y, 1 − z |
| Br1⋯H16A | 2.66 | 1 − x, −y, 1 − z |
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 30.5 |
| Br⋯H/H⋯Br | 21.2 |
| C⋯H/H⋯C | 19.2 |
| Cl⋯H/H⋯Cl | 13.0 |
| S⋯H/H⋯S | 5.0 |
| N⋯C/C⋯N | 3.3 |
| N⋯H/H⋯N | 3.0 |
| C⋯C | 2.1 |
| S⋯C/C⋯S | 1.7 |
| Br⋯S/S⋯Br | 0.4 |
| Cl⋯C/C⋯Cl | 0.3 |
| Br⋯C/C⋯Br | 0.1 |
| N⋯S/S⋯N | 0.1 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016 ▸) for 2-thiazolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019 ▸), UDELUN (Akkurt et al., 2018 ▸), WILBIC (Marthi et al., 1994 ▸), WILBOI (Marthi et al., 1994 ▸), WILBOI01 (Marthi et al., 1994 ▸), YITCEJ (Martem’yanova et al., 1993a ▸), YITCAF (Martem’yanova et al., 1993b ▸) and YOPLUK (Marthi et al., 1995 ▸).
The structure of BOBWIB (Khalilov et al., 2019 ▸) is isotypic with that of the title salt. In BOBWIB, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thiazolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)°, respectively, with the fluorophenyl ring and the major- and minor-disorder components of the phenyl ring. The central thiazolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018 ▸), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor-disorder component of the ring, also contribute to the molecular packing. In addition, there are inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the remaining structures, the 3-N atom carries a C-atom substituent instead of an N-atom substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994 ▸) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994 ▸) of 3-(20-chloro-20-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of the molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ▸) is the product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocyclic N atom, while YITCAF (Martem’yanova et al., 1993b ▸) is the product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5- chloro- and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
Synthesis and crystallization
To a 1 mmol solution of 3-amino-5-phenylthiazolidin-2-iminium bromide in 20 mL of ethanol was added 1 mmol of 4-chlorobenzaldehyde. The mixture was refluxed for 2 h and then cooled down. The reaction products, precipitated from the reaction mixture as colourless single crystals, were collected by filtration and washed with cold acetone.
( E )-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide: yield 78%, m.p. 531–532 K. Analysis calculated for C16H15BrClN3S (M r = 396.73): C 48.44, H 3.81, N 10.59. Found: C 48.40, H 3.78, N 10.55%. 1H NMR (300 MHz, DMSO-d 6): 4.56 (k, 1H, CH2, 3 J H–H = 6.9); 4.89 (t, 1H, CH2, 3 J H–H = 7.8); 5.61 (t, 1H, CH—Ar, 3 J H–H = 7.2); 7.36–8.04 (m, 9H, 9Ar—H); 8.47 (s, 1H, CH=); 10.46 (s, 2H, H2N+=). 13C NMR (75 MHz, DMSO-d 6): 45.40, 55.95, 125.13, 127.77, 128.85, 129.06, 130.49, 131.84, 132.15, 137.40, 149.94, 167.96. MS (ESI), m/z: 316.82 [C16H15ClN3S]+ and 79.88 Br−.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. All C-bound H atoms were placed at calculated positions using a riding model, with aromatic C—H = 0.95–1.00 Å, and with U iso(H) = 1.2U eq(C). Hydrogen atoms of the amino groups were located directly from difference-Fourier maps and were constrained with AFIX 3 instructions (N—H = 0.90 Å) in order to ensure a chemically reasonable environment for these groups. These hydrogen atoms were modelled with isotropic thermal displacement parameters fixed at 1.2U eq(N). One outlier (001) was omitted in the final cycles of refinement. The phenyl group and the carbon atom of the 1,3-thiazolidine group attached to it were refined as positionally disordered over two sets of sites with refined occupancies of 0.570 (3) and 0.430 (3).
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C16H15ClN3S+·Br− |
| M r | 396.73 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 150 |
| a, b, c (Å) | 8.3146 (5), 8.9424 (5), 12.2388 (6) |
| α, β, γ (°) | 80.988 (2), 76.458 (2), 70.027 (2) |
| V (Å3) | 828.54 (8) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 2.77 |
| Crystal size (mm) | 0.23 × 0.15 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2003 ▸) |
| T min, T max | 0.584, 0.721 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13599, 3141, 2768 |
| R int | 0.030 |
| (sin θ/λ)max (Å−1) | 0.611 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.032, 0.075, 1.07 |
| No. of reflections | 3141 |
| No. of parameters | 167 |
| No. of restraints | 13 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.43, −0.32 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019009885/ff2160Isup3.cml
CCDC reference: 1837122
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C16H15ClN3S+·Br− | Z = 2 |
| Mr = 396.73 | F(000) = 400 |
| Triclinic, P1 | Dx = 1.590 Mg m−3 |
| a = 8.3146 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.9424 (5) Å | Cell parameters from 5442 reflections |
| c = 12.2388 (6) Å | θ = 2.7–25.6° |
| α = 80.988 (2)° | µ = 2.77 mm−1 |
| β = 76.458 (2)° | T = 150 K |
| γ = 70.027 (2)° | Prism, colourless |
| V = 828.54 (8) Å3 | 0.23 × 0.15 × 0.12 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2768 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.030 |
| Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 25.7°, θmin = 2.4° |
| Tmin = 0.584, Tmax = 0.721 | h = −10→10 |
| 13599 measured reflections | k = −10→10 |
| 3141 independent reflections | l = −14→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
| wR(F2) = 0.075 | H-atom parameters constrained |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0318P)2 + 0.6849P] where P = (Fo2 + 2Fc2)/3 |
| 3141 reflections | (Δ/σ)max < 0.001 |
| 167 parameters | Δρmax = 0.43 e Å−3 |
| 13 restraints | Δρmin = −0.32 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Br1 | 0.43584 (3) | 0.27419 (3) | 0.08917 (3) | 0.03616 (11) | |
| S1 | 1.16201 (8) | 0.01512 (8) | 0.77241 (6) | 0.02962 (17) | |
| Cl1 | 0.71456 (9) | 0.63476 (9) | 1.50136 (6) | 0.03926 (19) | |
| N1 | 0.9880 (3) | 0.2905 (3) | 1.01551 (18) | 0.0261 (5) | |
| N2 | 1.0069 (3) | 0.2228 (3) | 0.91692 (18) | 0.0295 (5) | |
| N3 | 1.2932 (3) | 0.0869 (3) | 0.9296 (2) | 0.0400 (6) | |
| H3A | 1.292718 | 0.144940 | 0.983551 | 0.048* | |
| H3B | 1.384318 | −0.002770 | 0.916811 | 0.048* | |
| C1 | 0.8687 (3) | 0.2393 (3) | 0.8545 (2) | 0.0341 (7) | |
| H1A | 0.816300 | 0.353542 | 0.839939 | 0.041* | |
| H1B | 0.760230 | 0.250582 | 0.908539 | 0.041* | |
| C2 | 0.9229 (7) | 0.0699 (7) | 0.8065 (4) | 0.0235 (7) | 0.430 (3) |
| H2A | 0.885845 | −0.008237 | 0.866227 | 0.028* | 0.430 (3) |
| C2' | 0.9748 (5) | 0.1827 (5) | 0.7375 (3) | 0.0235 (7) | 0.570 (3) |
| H2'A | 1.017275 | 0.270076 | 0.692759 | 0.028* | 0.570 (3) |
| C3 | 1.1593 (3) | 0.1148 (3) | 0.8835 (2) | 0.0254 (6) | |
| C4 | 0.8369 (3) | 0.3820 (3) | 1.0563 (2) | 0.0241 (5) | |
| H4A | 0.743146 | 0.407061 | 1.017588 | 0.029* | |
| C5 | 0.8106 (3) | 0.4475 (3) | 1.1638 (2) | 0.0223 (5) | |
| C6 | 0.6438 (3) | 0.5335 (3) | 1.2143 (2) | 0.0325 (6) | |
| H6A | 0.549467 | 0.552836 | 1.177051 | 0.039* | |
| C7 | 0.6126 (3) | 0.5916 (3) | 1.3182 (2) | 0.0326 (6) | |
| H7A | 0.497686 | 0.649414 | 1.353033 | 0.039* | |
| C8 | 0.7509 (3) | 0.5642 (3) | 1.3698 (2) | 0.0263 (6) | |
| C9 | 0.9184 (3) | 0.4796 (3) | 1.3208 (2) | 0.0328 (6) | |
| H9A | 1.012263 | 0.461561 | 1.358178 | 0.039* | |
| C10 | 0.9491 (3) | 0.4214 (3) | 1.2178 (2) | 0.0291 (6) | |
| H10A | 1.064338 | 0.363690 | 1.183537 | 0.035* | |
| C11 | 0.8465 (6) | 0.0806 (7) | 0.7014 (3) | 0.0262 (4) | 0.430 (3) |
| C12 | 0.8842 (5) | 0.1707 (5) | 0.6013 (5) | 0.0262 (4) | 0.430 (3) |
| H12A | 0.959618 | 0.232164 | 0.595388 | 0.031* | 0.430 (3) |
| C13 | 0.8115 (6) | 0.1709 (5) | 0.5099 (3) | 0.0262 (4) | 0.430 (3) |
| H13A | 0.837260 | 0.232457 | 0.441512 | 0.031* | 0.430 (3) |
| C14 | 0.7011 (6) | 0.0810 (6) | 0.5186 (3) | 0.0262 (4) | 0.430 (3) |
| H14A | 0.651415 | 0.081077 | 0.456168 | 0.031* | 0.430 (3) |
| C15 | 0.6634 (6) | −0.0091 (5) | 0.6188 (4) | 0.0262 (4) | 0.430 (3) |
| H15A | 0.587926 | −0.070596 | 0.624700 | 0.031* | 0.430 (3) |
| C16 | 0.7361 (6) | −0.0093 (5) | 0.7102 (3) | 0.0262 (4) | 0.430 (3) |
| H16A | 0.710282 | −0.070891 | 0.778578 | 0.031* | 0.430 (3) |
| C11' | 0.8723 (4) | 0.1315 (5) | 0.6690 (3) | 0.0262 (4) | 0.570 (3) |
| C12' | 0.8655 (4) | 0.1978 (4) | 0.5589 (3) | 0.0262 (4) | 0.570 (3) |
| H12B | 0.922655 | 0.274751 | 0.527276 | 0.031* | 0.570 (3) |
| C13' | 0.7752 (5) | 0.1515 (4) | 0.49515 (18) | 0.0262 (4) | 0.570 (3) |
| H13B | 0.770646 | 0.196839 | 0.419913 | 0.031* | 0.570 (3) |
| C14' | 0.6917 (4) | 0.0390 (4) | 0.5415 (3) | 0.0262 (4) | 0.570 (3) |
| H14B | 0.629962 | 0.007328 | 0.497865 | 0.031* | 0.570 (3) |
| C15' | 0.6984 (5) | −0.0273 (3) | 0.6515 (3) | 0.0262 (4) | 0.570 (3) |
| H15B | 0.641287 | −0.104273 | 0.683180 | 0.031* | 0.570 (3) |
| C16' | 0.7887 (5) | 0.0189 (4) | 0.71531 (18) | 0.0262 (4) | 0.570 (3) |
| H16B | 0.793296 | −0.026363 | 0.790545 | 0.031* | 0.570 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.02235 (16) | 0.03754 (17) | 0.0473 (2) | −0.00105 (11) | −0.01050 (12) | −0.01367 (13) |
| S1 | 0.0215 (3) | 0.0316 (4) | 0.0341 (4) | 0.0013 (3) | −0.0070 (3) | −0.0180 (3) |
| Cl1 | 0.0365 (4) | 0.0458 (4) | 0.0323 (4) | 0.0007 (3) | −0.0103 (3) | −0.0202 (3) |
| N1 | 0.0235 (11) | 0.0293 (12) | 0.0248 (11) | −0.0027 (9) | −0.0063 (9) | −0.0111 (9) |
| N2 | 0.0204 (11) | 0.0349 (13) | 0.0309 (12) | 0.0048 (9) | −0.0100 (9) | −0.0196 (10) |
| N3 | 0.0238 (12) | 0.0452 (15) | 0.0480 (15) | 0.0093 (11) | −0.0152 (11) | −0.0292 (12) |
| C1 | 0.0207 (13) | 0.0397 (16) | 0.0382 (16) | 0.0095 (12) | −0.0123 (12) | −0.0264 (13) |
| C2 | 0.0187 (17) | 0.0239 (18) | 0.0273 (19) | −0.0033 (14) | −0.0044 (15) | −0.0087 (14) |
| C2' | 0.0187 (17) | 0.0239 (18) | 0.0273 (19) | −0.0033 (14) | −0.0044 (15) | −0.0087 (14) |
| C3 | 0.0220 (13) | 0.0265 (13) | 0.0274 (14) | −0.0039 (11) | −0.0055 (11) | −0.0089 (11) |
| C4 | 0.0190 (13) | 0.0218 (13) | 0.0307 (14) | −0.0007 (10) | −0.0079 (11) | −0.0083 (11) |
| C5 | 0.0201 (12) | 0.0201 (12) | 0.0260 (13) | −0.0035 (10) | −0.0052 (10) | −0.0057 (10) |
| C6 | 0.0201 (13) | 0.0372 (16) | 0.0405 (16) | 0.0008 (11) | −0.0106 (12) | −0.0200 (13) |
| C7 | 0.0202 (13) | 0.0358 (15) | 0.0401 (16) | 0.0000 (11) | −0.0053 (12) | −0.0190 (13) |
| C8 | 0.0273 (14) | 0.0260 (13) | 0.0244 (13) | −0.0033 (11) | −0.0051 (11) | −0.0103 (11) |
| C9 | 0.0225 (14) | 0.0439 (17) | 0.0311 (15) | −0.0019 (12) | −0.0125 (12) | −0.0097 (13) |
| C10 | 0.0185 (13) | 0.0348 (15) | 0.0288 (14) | 0.0001 (11) | −0.0031 (11) | −0.0100 (12) |
| C11 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C12 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C13 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C14 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C15 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C16 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C11' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C12' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C13' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C14' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C15' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
| C16' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
Geometric parameters (Å, º)
| S1—C3 | 1.731 (3) | C8—C9 | 1.379 (4) |
| S1—C2' | 1.835 (4) | C9—C10 | 1.374 (4) |
| S1—C2 | 1.838 (5) | C9—H9A | 0.9500 |
| Cl1—C8 | 1.744 (3) | C10—H10A | 0.9500 |
| N1—C4 | 1.276 (3) | C11—C12 | 1.3900 |
| N1—N2 | 1.386 (3) | C11—C16 | 1.3900 |
| N2—C3 | 1.323 (3) | C12—C13 | 1.3900 |
| N2—C1 | 1.478 (3) | C12—H12A | 0.9500 |
| N3—C3 | 1.296 (3) | C13—C14 | 1.3900 |
| N3—H3A | 0.8999 | C13—H13A | 0.9500 |
| N3—H3B | 0.9000 | C14—C15 | 1.3900 |
| C1—C2' | 1.554 (5) | C14—H14A | 0.9500 |
| C1—C2 | 1.591 (6) | C15—C16 | 1.3900 |
| C1—H1A | 0.9700 | C15—H15A | 0.9500 |
| C1—H1B | 0.9700 | C16—H16A | 0.9500 |
| C2—C11 | 1.5386 (19) | C11'—C12' | 1.3900 |
| C2—H2A | 1.0000 | C11'—C16' | 1.3900 |
| C2'—C11' | 1.5363 (19) | C12'—C13' | 1.3900 |
| C2'—H2'A | 1.0000 | C12'—H12B | 0.9500 |
| C4—C5 | 1.463 (3) | C13'—C14' | 1.3900 |
| C4—H4A | 0.9500 | C13'—H13B | 0.9500 |
| C5—C6 | 1.383 (4) | C14'—C15' | 1.3900 |
| C5—C10 | 1.394 (4) | C14'—H14B | 0.9500 |
| C6—C7 | 1.384 (4) | C15'—C16' | 1.3900 |
| C6—H6A | 0.9500 | C15'—H15B | 0.9500 |
| C7—C8 | 1.371 (4) | C16'—H16B | 0.9500 |
| C7—H7A | 0.9500 | ||
| C3—S1—C2' | 88.72 (12) | C7—C8—C9 | 121.5 (2) |
| C3—S1—C2 | 90.61 (15) | C7—C8—Cl1 | 119.5 (2) |
| C4—N1—N2 | 117.6 (2) | C9—C8—Cl1 | 119.0 (2) |
| C3—N2—N1 | 116.3 (2) | C10—C9—C8 | 119.8 (2) |
| C3—N2—C1 | 115.9 (2) | C10—C9—H9A | 120.1 |
| N1—N2—C1 | 127.2 (2) | C8—C9—H9A | 120.1 |
| C3—N3—H3A | 122.6 | C9—C10—C5 | 119.8 (2) |
| C3—N3—H3B | 119.8 | C9—C10—H10A | 120.1 |
| H3A—N3—H3B | 116.8 | C5—C10—H10A | 120.1 |
| N2—C1—C2' | 102.7 (2) | C12—C11—C16 | 120.0 |
| N2—C1—C2 | 104.0 (2) | C12—C11—C2 | 124.0 (5) |
| N2—C1—H1A | 104.7 | C16—C11—C2 | 116.0 (5) |
| C2'—C1—H1A | 104.2 | C13—C12—C11 | 120.0 |
| C2—C1—H1A | 145.2 | C13—C12—H12A | 120.0 |
| N2—C1—H1B | 108.2 | C11—C12—H12A | 120.0 |
| C2'—C1—H1B | 145.6 | C12—C13—C14 | 120.0 |
| C2—C1—H1B | 106.5 | C12—C13—H13A | 120.0 |
| H1A—C1—H1B | 82.5 | C14—C13—H13A | 120.0 |
| C11—C2—C1 | 112.0 (4) | C15—C14—C13 | 120.0 |
| C11—C2—S1 | 111.7 (3) | C15—C14—H14A | 120.0 |
| C1—C2—S1 | 101.9 (3) | C13—C14—H14A | 120.0 |
| C11—C2—H2A | 110.3 | C16—C15—C14 | 120.0 |
| C1—C2—H2A | 110.3 | C16—C15—H15A | 120.0 |
| S1—C2—H2A | 110.3 | C14—C15—H15A | 120.0 |
| C11'—C2'—C1 | 114.0 (3) | C15—C16—C11 | 120.0 |
| C11'—C2'—S1 | 111.5 (3) | C15—C16—H16A | 120.0 |
| C1—C2'—S1 | 103.5 (2) | C11—C16—H16A | 120.0 |
| C11'—C2'—H2'A | 109.2 | C12'—C11'—C16' | 120.0 |
| C1—C2'—H2'A | 109.2 | C12'—C11'—C2' | 119.2 (3) |
| S1—C2'—H2'A | 109.2 | C16'—C11'—C2' | 120.8 (3) |
| N3—C3—N2 | 123.1 (2) | C11'—C12'—C13' | 120.0 |
| N3—C3—S1 | 123.5 (2) | C11'—C12'—H12B | 120.0 |
| N2—C3—S1 | 113.40 (18) | C13'—C12'—H12B | 120.0 |
| N1—C4—C5 | 118.8 (2) | C14'—C13'—C12' | 120.0 |
| N1—C4—H4A | 120.6 | C14'—C13'—H13B | 120.0 |
| C5—C4—H4A | 120.6 | C12'—C13'—H13B | 120.0 |
| C6—C5—C10 | 119.4 (2) | C15'—C14'—C13' | 120.0 |
| C6—C5—C4 | 119.2 (2) | C15'—C14'—H14B | 120.0 |
| C10—C5—C4 | 121.4 (2) | C13'—C14'—H14B | 120.0 |
| C5—C6—C7 | 120.9 (2) | C14'—C15'—C16' | 120.0 |
| C5—C6—H6A | 119.5 | C14'—C15'—H15B | 120.0 |
| C7—C6—H6A | 119.5 | C16'—C15'—H15B | 120.0 |
| C8—C7—C6 | 118.6 (2) | C15'—C16'—C11' | 120.0 |
| C8—C7—H7A | 120.7 | C15'—C16'—H16B | 120.0 |
| C6—C7—H7A | 120.7 | C11'—C16'—H16B | 120.0 |
| C4—N1—N2—C3 | −172.7 (2) | C7—C8—C9—C10 | 0.2 (4) |
| C4—N1—N2—C1 | −2.6 (4) | Cl1—C8—C9—C10 | 179.2 (2) |
| C3—N2—C1—C2' | −26.2 (3) | C8—C9—C10—C5 | −0.4 (4) |
| N1—N2—C1—C2' | 163.7 (3) | C6—C5—C10—C9 | 0.8 (4) |
| C3—N2—C1—C2 | 25.4 (4) | C4—C5—C10—C9 | −177.5 (3) |
| N1—N2—C1—C2 | −144.8 (3) | C1—C2—C11—C12 | 61.3 (5) |
| N2—C1—C2—C11 | −155.9 (4) | S1—C2—C11—C12 | −52.3 (5) |
| N2—C1—C2—S1 | −36.4 (3) | C1—C2—C11—C16 | −119.8 (4) |
| C3—S1—C2—C11 | 152.1 (4) | S1—C2—C11—C16 | 126.5 (3) |
| C3—S1—C2—C1 | 32.4 (2) | C16—C11—C12—C13 | 0.0 |
| N2—C1—C2'—C11' | 159.8 (3) | C2—C11—C12—C13 | 178.8 (5) |
| N2—C1—C2'—S1 | 38.5 (3) | C11—C12—C13—C14 | 0.0 |
| C3—S1—C2'—C11' | −157.6 (3) | C12—C13—C14—C15 | 0.0 |
| C3—S1—C2'—C1 | −34.6 (2) | C13—C14—C15—C16 | 0.0 |
| N1—N2—C3—N3 | −9.0 (4) | C14—C15—C16—C11 | 0.0 |
| C1—N2—C3—N3 | 179.8 (3) | C12—C11—C16—C15 | 0.0 |
| N1—N2—C3—S1 | 171.00 (18) | C2—C11—C16—C15 | −178.9 (4) |
| C1—N2—C3—S1 | −0.2 (3) | C1—C2'—C11'—C12' | 127.7 (3) |
| C2'—S1—C3—N3 | −158.3 (3) | S1—C2'—C11'—C12' | −115.5 (3) |
| C2—S1—C3—N3 | 159.2 (3) | C1—C2'—C11'—C16' | −53.1 (4) |
| C2'—S1—C3—N2 | 21.7 (2) | S1—C2'—C11'—C16' | 63.7 (3) |
| C2—S1—C3—N2 | −20.8 (3) | C16'—C11'—C12'—C13' | 0.0 |
| N2—N1—C4—C5 | 176.4 (2) | C2'—C11'—C12'—C13' | 179.2 (3) |
| N1—C4—C5—C6 | −173.6 (3) | C11'—C12'—C13'—C14' | 0.0 |
| N1—C4—C5—C10 | 4.7 (4) | C12'—C13'—C14'—C15' | 0.0 |
| C10—C5—C6—C7 | −1.0 (4) | C13'—C14'—C15'—C16' | 0.0 |
| C4—C5—C6—C7 | 177.3 (3) | C14'—C15'—C16'—C11' | 0.0 |
| C5—C6—C7—C8 | 0.8 (4) | C12'—C11'—C16'—C15' | 0.0 |
| C6—C7—C8—C9 | −0.5 (4) | C2'—C11'—C16'—C15' | −179.2 (3) |
| C6—C7—C8—Cl1 | −179.4 (2) |
Hydrogen-bond geometry (Å, º)
Cg3 is the centroid of the C5–C10 benzene ring of the chlorophenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| N3—H3A···Br1i | 0.90 | 2.56 | 3.390 (2) | 154 |
| N3—H3B···Br1ii | 0.90 | 2.38 | 3.252 (2) | 164 |
| C10—H10A···Br1i | 0.95 | 2.91 | 3.823 (3) | 163 |
| C7—H7A···Cg4iii | 0.95 | 2.71 | 3.595 (3) | 155 |
| C7—H7A···Cg5iii | 0.95 | 2.70 | 3.568 (3) | 153 |
| C13—H13A···Cg3iv | 0.95 | 2.97 | 3.861 (4) | 157 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1.
Funding Statement
This work was funded by Baku State University grant `50 + 50' individual grant to A. N. Khalikov.
References
- Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
- Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
- Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg 19, 145–153.
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194.
- Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. [DOI] [PMC free article] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.
- Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.
- Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.
- Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
- Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
- Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.
- Makwana, H. R. & Malani, A. H. (2017). IOSR J. A. Chem. 10, 76–84.
- Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527.
- Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314.
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
- Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
- Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
- Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.
- Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989019009885/ff2160Isup3.cml
CCDC reference: 1837122
Additional supporting information: crystallographic information; 3D view; checkCIF report







