Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 12;75(Pt 8):1175–1179. doi: 10.1107/S2056989019009885

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

Gulnara Sh Duruskari a, Ali N Khalilov a,b, Mehmet Akkurt c, Gunay Z Mammadova a, Taras Chyrka d,*, Abel M Maharramov a
PMCID: PMC6690452  PMID: 31417787

In the crystal of the title salt, the cations and anions are linked via N—H⋯Br hydrogen bonds. In the 1H NMR spectra of this compound, the NH iminium protons are observed at δ = 10.46 p.p.m., which confirms the strong charge-assisted hydrogen bonding (CAHB) in the =HN+—HBr synthon.

Keywords: crystal structure, isotypic, charge-assisted hydrogen bonding, thia­zolidine ring, disorder, Hirshfeld surface analysis

Abstract

The title salt, C16H15ClN3S+·Br, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.

Chemical context  

The thia­zolidine ring system posses special importance in synthetic and medicinal chemistry. Substituted thia­zolidine derivatives are known to exhibit various biological activities such as anti­viral, anti­cancer, anti-tubercular, and anti­microbial etc. (Makwana & Malani 2017). Schiff bases have been widely used as versatile ligands in the synthesis, catalysis and design of materials (Akbari et al., 2017; Akkurt et al., 2018; Asadov et al., 2016; Gurbanov et al., 2018a ,b ; Ma et al., 2017a ,b ; Mamedov et al., 2018). Weak inter­actions, namely hydrogen bonding, π-inter­actions, etc. provided by N-containing ligands can also contribute to their structural organization, coordination abilities and catalytic activity, among other properties (Khalilov et al., 2019; Maharramov et al., 2009, 2010; Mahmoudi et al., 2018a ,b ; Mahmudov et al., 2014, 2019; Mamedov et al., 2015; Mitoraj et al., 2018; Shixaliyev et al., 2014; Zubkov et al., 2018). As part of our ongoing studies in this field, we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide.graphic file with name e-75-01175-scheme1.jpg

Structural commentary  

The major and minor components (S1/N2/C1/C2′/C3 and S1/N2/C1/C2/C3) of the thia­zolidine ring in the cation of the title salt (Fig. 1) both adopt a distorted envelope conformation, with puckering parameters Q(2) = 0.432 (3) Å, φ(2) = 33.5 (4)° for the major component and Q(2) = 0.414 (4) Å, φ(2) = 326.1 (5)° for the minor component. The mean planes of the major and minor components of the disordered thia­zolidine ring make dihedral angles of 14.99 (14), 88.45 (16), 84.3 (2)° and 22.82 (16), 86.85 (18), 83.9 (2)°, respectively, with the chloro­phenyl ring (C5–C10) and the major- and minor-disorder components (C11′–C16′ and C11–C16) of the phenyl ring. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-chloro­phenyl rings has a torsion angle of 176.4 (2)°.

Figure 1.

Figure 1

The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Only the major component of the disorder is shown for clarity.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts, into chains parallel to the a-axis direction (Table 1; Figs. 2 and 3). Furthermore, C—H⋯π inter­actions (Table 1) and π–π stacking inter­actions [Cg4 ⋯Cg4(2 − x, − y, 1 − z) = 3.897 (2) Å where Cg4 is the centroid of the major component of the disordered phenyl ring] contribute to the stabilization of the mol­ecular packing.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C5–C10 benzene ring of the chloro­phenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.56 3.390 (2) 154
N3—H3B⋯Br1ii 0.90 2.38 3.252 (2) 164
C10—H10A⋯Br1i 0.95 2.91 3.823 (3) 163
C7—H7ACg4iii 0.95 2.71 3.595 (3) 155
C7—H7ACg5iii 0.95 2.70 3.568 (3) 153
C13—H13ACg3iv 0.95 2.97 3.861 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Packing viewed along the a-axis direction showing the N—H⋯Br and C—H⋯Br inter­actions (dashed lines).

Figure 3.

Figure 3

A perspective view of the crystal structure of the title compound.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was used to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. CrystalExplorer3.1 (Wolff et al., 2012) was used to generate d norm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The Hirshfeld surface mapped over d norm using a standard surface resolution with a fixed colour scale of −0.4687 (red) to 1.2270 a.u. (blue) is shown in Fig. 4. The shape-index of the Hirshfeld surface is a tool to visualize π–π stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 5 clearly suggest that there are π–π inter­actions present in the title salt. Fig. 6 a shows the two-dimensional fingerprint for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1 and 2). The fingerprint plots delineated into H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions are shown in Fig. 6 bf, respectively. The most significant inter­molecular inter­actions are the H⋯H inter­actions (30.5%; ig. 6b). The various contributions to the Hirshfeld surface are listed in Table 3.

Figure 4.

Figure 4

Hirshfeld surface of the title salt mapped with dnorm.

Figure 5.

Figure 5

Hirshfeld surface of the title salt mapped with shape-index.

Figure 6.

Figure 6

Hirshfeld surface representations and the two-dimensional fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) S⋯H/H⋯S inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Summary of short inter­atomic contacts (Å) in the title salt.

Contact Distance Symmetry operation
Br1⋯H3A 2.56 −1 + x, y, −1 + z
Br1⋯H1B 2.56 x, y, −1 + z
Br1⋯H3B 2.38 2 − x, − y, 1 − z
Br1⋯H4A 2.98 1 − x, 1 − y, 1 − z
Br1⋯H16A 2.66 1 − x, −y, 1 − z

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 30.5
Br⋯H/H⋯Br 21.2
C⋯H/H⋯C 19.2
Cl⋯H/H⋯Cl 13.0
S⋯H/H⋯S 5.0
N⋯C/C⋯N 3.3
N⋯H/H⋯N 3.0
C⋯C 2.1
S⋯C/C⋯S 1.7
Br⋯S/S⋯Br 0.4
Cl⋯C/C⋯Cl 0.3
Br⋯C/C⋯Br 0.1
N⋯S/S⋯N 0.1

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for 2-thia­zolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019), UDELUN (Akkurt et al., 2018), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem’yanova et al., 1993a ), YITCAF (Martem’yanova et al., 1993b ) and YOPLUK (Marthi et al., 1995).

The structure of BOBWIB (Khalilov et al., 2019) is isotypic with that of the title salt. In BOBWIB, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)°, respectively, with the fluoro­phenyl ring and the major- and minor-disorder components of the phenyl ring. The central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor-disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the remaining structures, the 3-N atom carries a C-atom substituent instead of an N-atom substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(20-chloro-20-phenyl­eth­yl)-2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment of the mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem’yanova et al., 1993a ) is the product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocyclic N atom, while YITCAF (Martem’yanova et al., 1993b ) is the product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5- chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

Synthesis and crystallization  

To a 1 mmol solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide in 20 mL of ethanol was added 1 mmol of 4-chloro­benzaldehyde. The mixture was refluxed for 2 h and then cooled down. The reaction products, precipitated from the reaction mixture as colourless single crystals, were collected by filtration and washed with cold acetone.

( E )-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide: yield 78%, m.p. 531–532 K. Analysis calculated for C16H15BrClN3S (M r = 396.73): C 48.44, H 3.81, N 10.59. Found: C 48.40, H 3.78, N 10.55%. 1H NMR (300 MHz, DMSO-d 6): 4.56 (k, 1H, CH2, 3 J H–H = 6.9); 4.89 (t, 1H, CH2, 3 J H–H = 7.8); 5.61 (t, 1H, CH—Ar, 3 J H–H = 7.2); 7.36–8.04 (m, 9H, 9Ar—H); 8.47 (s, 1H, CH=); 10.46 (s, 2H, H2N+=). 13C NMR (75 MHz, DMSO-d 6): 45.40, 55.95, 125.13, 127.77, 128.85, 129.06, 130.49, 131.84, 132.15, 137.40, 149.94, 167.96. MS (ESI), m/z: 316.82 [C16H15ClN3S]+ and 79.88 Br.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All C-bound H atoms were placed at calculated positions using a riding model, with aromatic C—H = 0.95–1.00 Å, and with U iso(H) = 1.2U eq(C). Hydrogen atoms of the amino groups were located directly from difference-Fourier maps and were constrained with AFIX 3 instructions (N—H = 0.90 Å) in order to ensure a chemically reasonable environment for these groups. These hydrogen atoms were modelled with isotropic thermal displacement parameters fixed at 1.2U eq(N). One outlier (001) was omitted in the final cycles of refinement. The phenyl group and the carbon atom of the 1,3-thia­zolidine group attached to it were refined as positionally disordered over two sets of sites with refined occupancies of 0.570 (3) and 0.430 (3).

Table 4. Experimental details.

Crystal data
Chemical formula C16H15ClN3S+·Br
M r 396.73
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 150
a, b, c (Å) 8.3146 (5), 8.9424 (5), 12.2388 (6)
α, β, γ (°) 80.988 (2), 76.458 (2), 70.027 (2)
V3) 828.54 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.77
Crystal size (mm) 0.23 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.584, 0.721
No. of measured, independent and observed [I > 2σ(I)] reflections 13599, 3141, 2768
R int 0.030
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.075, 1.07
No. of reflections 3141
No. of parameters 167
No. of restraints 13
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.32

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160sup1.cif

e-75-01175-sup1.cif (415KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160Isup2.hkl

e-75-01175-Isup2.hkl (250.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009885/ff2160Isup3.cml

CCDC reference: 1837122

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H15ClN3S+·Br Z = 2
Mr = 396.73 F(000) = 400
Triclinic, P1 Dx = 1.590 Mg m3
a = 8.3146 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.9424 (5) Å Cell parameters from 5442 reflections
c = 12.2388 (6) Å θ = 2.7–25.6°
α = 80.988 (2)° µ = 2.77 mm1
β = 76.458 (2)° T = 150 K
γ = 70.027 (2)° Prism, colourless
V = 828.54 (8) Å3 0.23 × 0.15 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 2768 reflections with I > 2σ(I)
φ and ω scans Rint = 0.030
Absorption correction: multi-scan (SADABS; Bruker, 2003) θmax = 25.7°, θmin = 2.4°
Tmin = 0.584, Tmax = 0.721 h = −10→10
13599 measured reflections k = −10→10
3141 independent reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: mixed
wR(F2) = 0.075 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.6849P] where P = (Fo2 + 2Fc2)/3
3141 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.43 e Å3
13 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.43584 (3) 0.27419 (3) 0.08917 (3) 0.03616 (11)
S1 1.16201 (8) 0.01512 (8) 0.77241 (6) 0.02962 (17)
Cl1 0.71456 (9) 0.63476 (9) 1.50136 (6) 0.03926 (19)
N1 0.9880 (3) 0.2905 (3) 1.01551 (18) 0.0261 (5)
N2 1.0069 (3) 0.2228 (3) 0.91692 (18) 0.0295 (5)
N3 1.2932 (3) 0.0869 (3) 0.9296 (2) 0.0400 (6)
H3A 1.292718 0.144940 0.983551 0.048*
H3B 1.384318 −0.002770 0.916811 0.048*
C1 0.8687 (3) 0.2393 (3) 0.8545 (2) 0.0341 (7)
H1A 0.816300 0.353542 0.839939 0.041*
H1B 0.760230 0.250582 0.908539 0.041*
C2 0.9229 (7) 0.0699 (7) 0.8065 (4) 0.0235 (7) 0.430 (3)
H2A 0.885845 −0.008237 0.866227 0.028* 0.430 (3)
C2' 0.9748 (5) 0.1827 (5) 0.7375 (3) 0.0235 (7) 0.570 (3)
H2'A 1.017275 0.270076 0.692759 0.028* 0.570 (3)
C3 1.1593 (3) 0.1148 (3) 0.8835 (2) 0.0254 (6)
C4 0.8369 (3) 0.3820 (3) 1.0563 (2) 0.0241 (5)
H4A 0.743146 0.407061 1.017588 0.029*
C5 0.8106 (3) 0.4475 (3) 1.1638 (2) 0.0223 (5)
C6 0.6438 (3) 0.5335 (3) 1.2143 (2) 0.0325 (6)
H6A 0.549467 0.552836 1.177051 0.039*
C7 0.6126 (3) 0.5916 (3) 1.3182 (2) 0.0326 (6)
H7A 0.497686 0.649414 1.353033 0.039*
C8 0.7509 (3) 0.5642 (3) 1.3698 (2) 0.0263 (6)
C9 0.9184 (3) 0.4796 (3) 1.3208 (2) 0.0328 (6)
H9A 1.012263 0.461561 1.358178 0.039*
C10 0.9491 (3) 0.4214 (3) 1.2178 (2) 0.0291 (6)
H10A 1.064338 0.363690 1.183537 0.035*
C11 0.8465 (6) 0.0806 (7) 0.7014 (3) 0.0262 (4) 0.430 (3)
C12 0.8842 (5) 0.1707 (5) 0.6013 (5) 0.0262 (4) 0.430 (3)
H12A 0.959618 0.232164 0.595388 0.031* 0.430 (3)
C13 0.8115 (6) 0.1709 (5) 0.5099 (3) 0.0262 (4) 0.430 (3)
H13A 0.837260 0.232457 0.441512 0.031* 0.430 (3)
C14 0.7011 (6) 0.0810 (6) 0.5186 (3) 0.0262 (4) 0.430 (3)
H14A 0.651415 0.081077 0.456168 0.031* 0.430 (3)
C15 0.6634 (6) −0.0091 (5) 0.6188 (4) 0.0262 (4) 0.430 (3)
H15A 0.587926 −0.070596 0.624700 0.031* 0.430 (3)
C16 0.7361 (6) −0.0093 (5) 0.7102 (3) 0.0262 (4) 0.430 (3)
H16A 0.710282 −0.070891 0.778578 0.031* 0.430 (3)
C11' 0.8723 (4) 0.1315 (5) 0.6690 (3) 0.0262 (4) 0.570 (3)
C12' 0.8655 (4) 0.1978 (4) 0.5589 (3) 0.0262 (4) 0.570 (3)
H12B 0.922655 0.274751 0.527276 0.031* 0.570 (3)
C13' 0.7752 (5) 0.1515 (4) 0.49515 (18) 0.0262 (4) 0.570 (3)
H13B 0.770646 0.196839 0.419913 0.031* 0.570 (3)
C14' 0.6917 (4) 0.0390 (4) 0.5415 (3) 0.0262 (4) 0.570 (3)
H14B 0.629962 0.007328 0.497865 0.031* 0.570 (3)
C15' 0.6984 (5) −0.0273 (3) 0.6515 (3) 0.0262 (4) 0.570 (3)
H15B 0.641287 −0.104273 0.683180 0.031* 0.570 (3)
C16' 0.7887 (5) 0.0189 (4) 0.71531 (18) 0.0262 (4) 0.570 (3)
H16B 0.793296 −0.026363 0.790545 0.031* 0.570 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02235 (16) 0.03754 (17) 0.0473 (2) −0.00105 (11) −0.01050 (12) −0.01367 (13)
S1 0.0215 (3) 0.0316 (4) 0.0341 (4) 0.0013 (3) −0.0070 (3) −0.0180 (3)
Cl1 0.0365 (4) 0.0458 (4) 0.0323 (4) 0.0007 (3) −0.0103 (3) −0.0202 (3)
N1 0.0235 (11) 0.0293 (12) 0.0248 (11) −0.0027 (9) −0.0063 (9) −0.0111 (9)
N2 0.0204 (11) 0.0349 (13) 0.0309 (12) 0.0048 (9) −0.0100 (9) −0.0196 (10)
N3 0.0238 (12) 0.0452 (15) 0.0480 (15) 0.0093 (11) −0.0152 (11) −0.0292 (12)
C1 0.0207 (13) 0.0397 (16) 0.0382 (16) 0.0095 (12) −0.0123 (12) −0.0264 (13)
C2 0.0187 (17) 0.0239 (18) 0.0273 (19) −0.0033 (14) −0.0044 (15) −0.0087 (14)
C2' 0.0187 (17) 0.0239 (18) 0.0273 (19) −0.0033 (14) −0.0044 (15) −0.0087 (14)
C3 0.0220 (13) 0.0265 (13) 0.0274 (14) −0.0039 (11) −0.0055 (11) −0.0089 (11)
C4 0.0190 (13) 0.0218 (13) 0.0307 (14) −0.0007 (10) −0.0079 (11) −0.0083 (11)
C5 0.0201 (12) 0.0201 (12) 0.0260 (13) −0.0035 (10) −0.0052 (10) −0.0057 (10)
C6 0.0201 (13) 0.0372 (16) 0.0405 (16) 0.0008 (11) −0.0106 (12) −0.0200 (13)
C7 0.0202 (13) 0.0358 (15) 0.0401 (16) 0.0000 (11) −0.0053 (12) −0.0190 (13)
C8 0.0273 (14) 0.0260 (13) 0.0244 (13) −0.0033 (11) −0.0051 (11) −0.0103 (11)
C9 0.0225 (14) 0.0439 (17) 0.0311 (15) −0.0019 (12) −0.0125 (12) −0.0097 (13)
C10 0.0185 (13) 0.0348 (15) 0.0288 (14) 0.0001 (11) −0.0031 (11) −0.0100 (12)
C11 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C12 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C13 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C14 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C15 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C16 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C11' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C12' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C13' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C14' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C15' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)
C16' 0.0219 (8) 0.0310 (9) 0.0269 (9) −0.0047 (6) −0.0062 (6) −0.0127 (7)

Geometric parameters (Å, º)

S1—C3 1.731 (3) C8—C9 1.379 (4)
S1—C2' 1.835 (4) C9—C10 1.374 (4)
S1—C2 1.838 (5) C9—H9A 0.9500
Cl1—C8 1.744 (3) C10—H10A 0.9500
N1—C4 1.276 (3) C11—C12 1.3900
N1—N2 1.386 (3) C11—C16 1.3900
N2—C3 1.323 (3) C12—C13 1.3900
N2—C1 1.478 (3) C12—H12A 0.9500
N3—C3 1.296 (3) C13—C14 1.3900
N3—H3A 0.8999 C13—H13A 0.9500
N3—H3B 0.9000 C14—C15 1.3900
C1—C2' 1.554 (5) C14—H14A 0.9500
C1—C2 1.591 (6) C15—C16 1.3900
C1—H1A 0.9700 C15—H15A 0.9500
C1—H1B 0.9700 C16—H16A 0.9500
C2—C11 1.5386 (19) C11'—C12' 1.3900
C2—H2A 1.0000 C11'—C16' 1.3900
C2'—C11' 1.5363 (19) C12'—C13' 1.3900
C2'—H2'A 1.0000 C12'—H12B 0.9500
C4—C5 1.463 (3) C13'—C14' 1.3900
C4—H4A 0.9500 C13'—H13B 0.9500
C5—C6 1.383 (4) C14'—C15' 1.3900
C5—C10 1.394 (4) C14'—H14B 0.9500
C6—C7 1.384 (4) C15'—C16' 1.3900
C6—H6A 0.9500 C15'—H15B 0.9500
C7—C8 1.371 (4) C16'—H16B 0.9500
C7—H7A 0.9500
C3—S1—C2' 88.72 (12) C7—C8—C9 121.5 (2)
C3—S1—C2 90.61 (15) C7—C8—Cl1 119.5 (2)
C4—N1—N2 117.6 (2) C9—C8—Cl1 119.0 (2)
C3—N2—N1 116.3 (2) C10—C9—C8 119.8 (2)
C3—N2—C1 115.9 (2) C10—C9—H9A 120.1
N1—N2—C1 127.2 (2) C8—C9—H9A 120.1
C3—N3—H3A 122.6 C9—C10—C5 119.8 (2)
C3—N3—H3B 119.8 C9—C10—H10A 120.1
H3A—N3—H3B 116.8 C5—C10—H10A 120.1
N2—C1—C2' 102.7 (2) C12—C11—C16 120.0
N2—C1—C2 104.0 (2) C12—C11—C2 124.0 (5)
N2—C1—H1A 104.7 C16—C11—C2 116.0 (5)
C2'—C1—H1A 104.2 C13—C12—C11 120.0
C2—C1—H1A 145.2 C13—C12—H12A 120.0
N2—C1—H1B 108.2 C11—C12—H12A 120.0
C2'—C1—H1B 145.6 C12—C13—C14 120.0
C2—C1—H1B 106.5 C12—C13—H13A 120.0
H1A—C1—H1B 82.5 C14—C13—H13A 120.0
C11—C2—C1 112.0 (4) C15—C14—C13 120.0
C11—C2—S1 111.7 (3) C15—C14—H14A 120.0
C1—C2—S1 101.9 (3) C13—C14—H14A 120.0
C11—C2—H2A 110.3 C16—C15—C14 120.0
C1—C2—H2A 110.3 C16—C15—H15A 120.0
S1—C2—H2A 110.3 C14—C15—H15A 120.0
C11'—C2'—C1 114.0 (3) C15—C16—C11 120.0
C11'—C2'—S1 111.5 (3) C15—C16—H16A 120.0
C1—C2'—S1 103.5 (2) C11—C16—H16A 120.0
C11'—C2'—H2'A 109.2 C12'—C11'—C16' 120.0
C1—C2'—H2'A 109.2 C12'—C11'—C2' 119.2 (3)
S1—C2'—H2'A 109.2 C16'—C11'—C2' 120.8 (3)
N3—C3—N2 123.1 (2) C11'—C12'—C13' 120.0
N3—C3—S1 123.5 (2) C11'—C12'—H12B 120.0
N2—C3—S1 113.40 (18) C13'—C12'—H12B 120.0
N1—C4—C5 118.8 (2) C14'—C13'—C12' 120.0
N1—C4—H4A 120.6 C14'—C13'—H13B 120.0
C5—C4—H4A 120.6 C12'—C13'—H13B 120.0
C6—C5—C10 119.4 (2) C15'—C14'—C13' 120.0
C6—C5—C4 119.2 (2) C15'—C14'—H14B 120.0
C10—C5—C4 121.4 (2) C13'—C14'—H14B 120.0
C5—C6—C7 120.9 (2) C14'—C15'—C16' 120.0
C5—C6—H6A 119.5 C14'—C15'—H15B 120.0
C7—C6—H6A 119.5 C16'—C15'—H15B 120.0
C8—C7—C6 118.6 (2) C15'—C16'—C11' 120.0
C8—C7—H7A 120.7 C15'—C16'—H16B 120.0
C6—C7—H7A 120.7 C11'—C16'—H16B 120.0
C4—N1—N2—C3 −172.7 (2) C7—C8—C9—C10 0.2 (4)
C4—N1—N2—C1 −2.6 (4) Cl1—C8—C9—C10 179.2 (2)
C3—N2—C1—C2' −26.2 (3) C8—C9—C10—C5 −0.4 (4)
N1—N2—C1—C2' 163.7 (3) C6—C5—C10—C9 0.8 (4)
C3—N2—C1—C2 25.4 (4) C4—C5—C10—C9 −177.5 (3)
N1—N2—C1—C2 −144.8 (3) C1—C2—C11—C12 61.3 (5)
N2—C1—C2—C11 −155.9 (4) S1—C2—C11—C12 −52.3 (5)
N2—C1—C2—S1 −36.4 (3) C1—C2—C11—C16 −119.8 (4)
C3—S1—C2—C11 152.1 (4) S1—C2—C11—C16 126.5 (3)
C3—S1—C2—C1 32.4 (2) C16—C11—C12—C13 0.0
N2—C1—C2'—C11' 159.8 (3) C2—C11—C12—C13 178.8 (5)
N2—C1—C2'—S1 38.5 (3) C11—C12—C13—C14 0.0
C3—S1—C2'—C11' −157.6 (3) C12—C13—C14—C15 0.0
C3—S1—C2'—C1 −34.6 (2) C13—C14—C15—C16 0.0
N1—N2—C3—N3 −9.0 (4) C14—C15—C16—C11 0.0
C1—N2—C3—N3 179.8 (3) C12—C11—C16—C15 0.0
N1—N2—C3—S1 171.00 (18) C2—C11—C16—C15 −178.9 (4)
C1—N2—C3—S1 −0.2 (3) C1—C2'—C11'—C12' 127.7 (3)
C2'—S1—C3—N3 −158.3 (3) S1—C2'—C11'—C12' −115.5 (3)
C2—S1—C3—N3 159.2 (3) C1—C2'—C11'—C16' −53.1 (4)
C2'—S1—C3—N2 21.7 (2) S1—C2'—C11'—C16' 63.7 (3)
C2—S1—C3—N2 −20.8 (3) C16'—C11'—C12'—C13' 0.0
N2—N1—C4—C5 176.4 (2) C2'—C11'—C12'—C13' 179.2 (3)
N1—C4—C5—C6 −173.6 (3) C11'—C12'—C13'—C14' 0.0
N1—C4—C5—C10 4.7 (4) C12'—C13'—C14'—C15' 0.0
C10—C5—C6—C7 −1.0 (4) C13'—C14'—C15'—C16' 0.0
C4—C5—C6—C7 177.3 (3) C14'—C15'—C16'—C11' 0.0
C5—C6—C7—C8 0.8 (4) C12'—C11'—C16'—C15' 0.0
C6—C7—C8—C9 −0.5 (4) C2'—C11'—C16'—C15' −179.2 (3)
C6—C7—C8—Cl1 −179.4 (2)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C5–C10 benzene ring of the chlorophenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1i 0.90 2.56 3.390 (2) 154
N3—H3B···Br1ii 0.90 2.38 3.252 (2) 164
C10—H10A···Br1i 0.95 2.91 3.823 (3) 163
C7—H7A···Cg4iii 0.95 2.71 3.595 (3) 155
C7—H7A···Cg5iii 0.95 2.70 3.568 (3) 153
C13—H13A···Cg3iv 0.95 2.97 3.861 (4) 157

Symmetry codes: (i) x+1, y, z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1.

Funding Statement

This work was funded by Baku State University grant `50 + 50' individual grant to A. N. Khalikov.

References

  1. Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. [DOI] [PubMed]
  2. Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. [DOI] [PMC free article] [PubMed]
  3. Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg 19, 145–153.
  4. Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201.
  8. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194.
  9. Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. [DOI] [PMC free article] [PubMed]
  10. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  11. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.
  12. Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.
  13. Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.
  14. Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.
  15. Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.
  16. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
  17. Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.
  18. Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.
  19. Makwana, H. R. & Malani, A. H. (2017). IOSR J. A. Chem. 10, 76–84.
  20. Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527.
  21. Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314.
  22. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.
  23. Martem’yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.
  24. Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.
  25. Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  31. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  32. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.
  33. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160sup1.cif

e-75-01175-sup1.cif (415KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009885/ff2160Isup2.hkl

e-75-01175-Isup2.hkl (250.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009885/ff2160Isup3.cml

CCDC reference: 1837122

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES