Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 19;75(Pt 8):1209–1214. doi: 10.1107/S2056989019009964

Crystal structures of an imidazo[1,5-a]pyridinium-based ligand and its (C13H12N3)2[CdI4] hybrid salt

Olga Yu Vassilyeva a,*, Elena A Buvaylo a, Vladimir N Kokozay a, Brian W Skelton b, Alexandre N Sobolev b
PMCID: PMC6690455  PMID: 31417794

An organic–inorganic hybrid salt with two [L]2[CdI4] mol­ecules in the asymmetric unit related by pseudosymmetry exhibits a layered structure. In the mixed chloride/nitrate salt, the one-dimensional hydrogen-bonding polymer built of anions and water mol­ecules runs parallel to a column of stacked L + cations.

Keywords: organic–inorganic hybrid, tetra­halometallate, crystal structure, hydrogen-bonding inter­actions, π–π stacking

Abstract

The monocation product of the oxidative condensation–cyclization between two mol­ecules of pyridine-2-carbaldehyde and one mol­ecule of CH3NH2·HCl in methanol, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was isolated in the presence of metal ions as bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­iodo­cadmate, (C13H12N3)2[CdI4], (I), and the mixed chloride/nitrate salt, bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chlor­ide 0.5-nitrate trihydrate, 2C13H12N3 +·1.5Cl·0.5NO3 ·3H2O, (II). Hybrid salt (I) crystallizes in the space group P21/n with two [L]2[CdI4] mol­ecules in the asymmetric unit related by pseudosymmetry. In the crystal of (I), layers of organic cations and of tetra­halometallate anions are stacked parallel to the ab plane. Anti­parallel L + cations disposed in a herring-bone pattern form π-bonded chains through aromatic stacking. In the inorganic layer, adjacent tetra­hedral CdI4 units have no connectivity but demonstrate close packing of iodide anions. In the crystal lattice of (II), the cations are arranged in stacks propagating along the a axis; the one-dimensional hydrogen-bonded polymer built of chloride ions and water mol­ecules runs parallel to a column of stacked cations.

Chemical context  

Organic–inorganic hybrid salts have maintained steady research inter­est in materials science (Díaz & Corma, 2018). By combining cation and anion networks in one continuous lattice, useful properties of organic and inorganic components are expected to translate into new multifunctional materials. Monovalent organic cations can form hybrid halometallates with halide anions and divalent metal ions with organic–inorganic Pb and Sn perovskites being the most investigated family because of their efficiency in solar cells (Brenner et al., 2016). The exploration of hybrid compounds based on other polyhedra and connectivity through control of their chemical composition and structural dimensionality may bring applications in new areas of science and technology. Hybrid tetra­halometallates are a promising variety that can demonstrate properties of multiferroics (β-K2SeO4 analogues) and ionic liquids, show luminescence and a series of solid-phase transitions (García-Saiz et al., 2014; Piecha-Bisiorek et al., 2016; Jiang et al., 2017).

The serendipitous discovery of the formation of 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, L +, in the oxidative condensation–cyclization of 2-pyridine­carbaldehyde (2-PCA) and CH3NH2·HCl in methanol and the following preparation of the fluorescent [L]2[ZnCl4] hybrid salt in the presence of Zn2+ ions prompted our research on organic–inorganic halometalates with substituted imidazo[1,5-a]pyridinium cations (Buvaylo et al., 2015; Vassilyeva et al., 2019). The use of methyl­amine hydro­chloride instead of its conventional aqueous solution appeared to promote the cyclo­condensation with the formation of L + instead of the expected neutral Schiff base. Heterocycles with the imidazo[1,5-a]pyridine skeleton show prominent photophysical properties (Hutt et al., 2012) and have the potential to be used in optoelectronic technology. Their incorporation in the halometallate structure may improve the mechanical properties, chemical resistance, thermal stability, etc. of organic materials.graphic file with name e-75-01209-scheme1.jpg

In the present work, we aimed to study the effect of the halide variation on the resulting hybrid salt structure. The new organic–inorganic hybrid [L]2[CdI4] (I) involving the in situ-formed L + cation has been prepared in the reaction system:

2-PCA – CH3NH2·HCl – CdI2 – KI – CH3OH

The use of Pb(NO3)2 in an attempt to synthesize a hybrid salt with an L + cation was not successful but led to the isolation of 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium as a mixed chloride/nitrate salt, [L]2[Cl]1.5[NO3]0.5·3H2O (II) in the system:

2-PCA – CH3NH2·HCl – Pb(NO3)2 – CH3OH

The identities of the title compounds were confirmed by elemental analysis, IR and NMR spectroscopy, and single-crystal diffraction studies.

Structural commentary  

The hybrid salt (I) is built of discrete L + cations and CdI4 2– anions (Fig. 1). There are two symmetry-independent sets of (2L + + CdI4 2−) ions related by pseudosymmetry in the asymmetric unit; L + cations in every set are crystallographically non-equivalent. They possess very similar structural configurations that are strictly comparable to those of the L + cations in ortho­rhom­bic [L]2[ZnCl4] and monoclinic [L]2[CoCl4] reported by us previously (Buvaylo et al., 2015; Vassilyeva et al., 2019). The replacement of chloride with iodide anions did not influence the stoichiometry of the resulting tetra­halometallate and the overall structure of the hybrid salt remained roughly the same.

Figure 1.

Figure 1

Mol­ecular structure and labelling of (I) with ellipsoids at the 50% probability level.

The bond lengths of the pyridinium entities in the imidazo[1,5-a]pyridinium cores are as expected for such rings, the bond distances in the imidazolium rings fall in the range 1.350 (3)–1.409 (4) Å. The N12 and N13A, N22 and N23A, N32 and N33A, N42 and N43A atoms are planar with the sum of three angles being 360°. The fused cores of all four L + cations are virtually coplanar: the dihedral angles between the five- and six-membered rings vary from 1.22 to 2.26°. The pendant pyridyl rings are twisted by approximately 25.60–38.52° with respect to the imidazo[1,5-a]pyridinium cores. The 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium units are mono-cationic and aromatic with the positive charge being delocalized on atoms N12 and N13A, N22 and N23A, N32 and N33A, N42 and N43A.

The tetra­hedral CdI4 2– anions are moderately distorted: the Cd—I distances lie in the range 2.7573 (3)–2.8023 (3) Å while the I—Cd—I angles vary from 102.186 (8) to 117.300 (9)° (Table 1). The average Cd—I distance of 2.78 Å is comparable to those found in the CSD (version 5.40 of November 2018; Groom et al., 2016) for other CdII salts containing isolated CdI4 2– tetra­hedral anions (an average of 2.777 (3) Å for Cd—I with a range of 2.684–2.827 Å).

Table 1. Selected geometric parameters (Å, °) for (I) .

Cd1—I14 2.7573 (3) Cd2—I24 2.7575 (3)
Cd1—I11 2.7764 (3) Cd2—I21 2.7610 (3)
Cd1—I13 2.7949 (3) Cd2—I22 2.7943 (3)
Cd1—I12 2.8023 (3) Cd2—I23 2.7958 (3)
       
I14—Cd1—I11 107.058 (9) I24—Cd2—I21 105.915 (9)
I14—Cd1—I13 115.503 (10) I24—Cd2—I22 105.260 (8)
I11—Cd1—I13 103.726 (9) I21—Cd2—I22 116.026 (10)
I14—Cd1—I12 102.186 (8) I24—Cd2—I23 112.854 (9)
I11—Cd1—I12 117.300 (9) I21—Cd2—I23 108.090 (9)
I13—Cd1—I12 111.499 (9) I22—Cd2—I23 108.791 (9)

[L]2[Cl]1.5[NO3]0.5·3H2O (II) crystallizes in the triclinic space group and is isomorphous with [L][Cl]·1.5H2O (CSD refcode HUMCUP; Buvaylo et al., 2015). There are two crystallographically non-equivalent L + cations, L1 (N12, N13A) and L2 (N22, N23A), 1.5 chloride and 0.5 nitrate anions, and three water mol­ecules of crystallization in the asymmetric unit (Fig. 2). The bond lengths and angles of two independent L + cations with planar fused cores (dihedral angles for L1 and L2 are about 0.88 and 1.45°, respectively) are very similar to those in (I). The twist of the pendant pyridyl rings with respect to the planes of the remainder of the cations is, however, more pronounced in (II): approximately 43.21 and 40.92° for L1 and L2, respectively.

Figure 2.

Figure 2

Mol­ecular structure and labelling of (II) with ellipsoids at the 50% probability level.

Supra­molecular features  

Compound (I) exhibits a pseudo-layered structure with layers of organic cations and of tetra­iodo­cadmate anions stacked parallel to the ab plane (Fig. 3). In a layer, L + cations disposed in an anti­parallel fashion adopt a herring-bone pattern and form π-bonded chains through three types of stacking contacts (Fig. 4). Those involve the six-membered rings of neighbouring mol­ecules, pendant pyridyl rings, and π–π inter­actions between the former and the latter. The π-stacking is offset by about half a ring diameter with centroid–centroid distances in the range 3.465 (2)–4.070 (2) Å.

Figure 3.

Figure 3

Crystal packing of (I) viewed along the b axis, showing the alternation of cation and anion layers. Symmetry-independent L + cations and CdI4 2– anions are drawn with different colours; H atoms are not shown.

Figure 4.

Figure 4

Organic layer in (I) viewed along the c axis, showing π-bonded chains of anti­parallel L + cations disposed in a herringbone pattern.

In the inorganic layer, the adjacent CdI4 units have no connectivity with the minimum Cd⋯Cd distance being 8.943 Å. The halide anions, however, demonstrate close packing: the shortest distance between I atoms on adjacent anions of 4.192 Å is smaller than double the iodide Shannon (1976) ionic radius [2 × r(I) = 4.40 Å]. The separation between two consecutive inorganic planes corresponds to half the cell length of the c axis (11.220 Å).

Classical hydrogen-bonding inter­actions are absent in (I). Numerous C—H⋯I—Cd contacts between the organic and inorganic counterparts with H⋯I distances in the range 2.93–3.22 Å are too weak and mostly result from van der Waals close packing. Such a structural feature is commonly observed in organic–inorganic hybrid iodo­metallates (Chen et al., 2010; Li et al., 2018).

In the crystal lattice of (II), the alternating L1 and L2 cations are arranged in stacks aligned along the a-axis direction (Fig. 5) with almost coplanar fused cores of adjacent mol­ecules (dihedral angle about 4.87°). The pendant pyridyl rings on neighbouring cations are twisted by approximately 16° with respect to each other and display aromatic stacking with ring-centroid distances of 3.675 (2) and 3.798 (2) Å. The chloride ions and water mol­ecules are involved in hydrogen bonding, forming a one-dimensional hydrogen-bonded polymer that runs parallel to a column of stacked cations (Fig. 5, Table 2).

Figure 5.

Figure 5

The unit-cell contents of (II) projected along the a axis, showing the stacking of L + cations and the formation of a hydrogen-bonded polymer via O—H⋯Cl and O—H⋯O inter­actions. The C-bound H atoms are not shown.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1AO⋯Cl2i 0.836 (18) 2.339 (18) 3.174 (2) 176 (3)
O1—H1BO⋯Cl2ii 0.832 (18) 2.41 (2) 3.229 (2) 171 (4)
O2—H2AO⋯O1 0.832 (17) 1.925 (18) 2.755 (3) 175 (4)
O2—H2BO⋯Cl2 0.832 (18) 2.352 (18) 3.178 (2) 172 (4)
O3—H3AO⋯Cl1 0.802 (19) 2.95 (5) 3.398 (4) 118 (4)
O3—H3BO⋯Cl2 0.848 (18) 2.33 (2) 3.166 (3) 168 (5)
O3—H3AO⋯O12 0.802 (19) 2.10 (5) 2.363 (7) 99 (4)
C11—H11⋯Cl2iii 0.95 2.71 3.640 (3) 166
C12—H12A⋯Cl1iv 0.98 2.79 3.638 (4) 146
C14—H14⋯N132 0.95 2.53 3.024 (4) 112
C14—H14⋯O3i 0.95 2.47 3.330 (4) 151
C15—H15⋯Cl2i 0.95 2.75 3.671 (3) 165
C17—H17⋯O2iii 0.95 2.57 3.244 (3) 128
C24—H24⋯N232 0.95 2.51 3.019 (4) 114
C27—H27⋯O2ii 0.95 2.48 3.255 (3) 139
C236—H236⋯O3 0.95 2.35 3.160 (5) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Database survey  

Apart from [L][Cl]·1.5H2O and four chloro­metallates [L]2[MCl4], [MLCl3] (M = CoII and ZnII) published by our research group, there are no compounds containing the L + cation in the CSD (version 5.40 of November 2018; Groom et al., 2016). The structures in which the imidazo[1,5-a]pyridinium core is comparable with the title compounds are limited to a handful of organic salts with varying substituents in the imidazolium ring. The most similar to (II) are 2-[2-(1H-imidazol-3-ium-5-yl)eth­yl]-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium diperchlorate (CSD refcode UREYIA; Türkyilmaz et al., 2011) and 2-(2-pyrid­yl)-N 3-(4-chloro­phen­yl)imidazo[1,5-a]pyridinium perchlorate (YIHFEB; Mitra et al., 2007) having ethyl­imidazolium and chloro­phenyl substit­uents, respectively, instead of the methyl group in L +. The neutral mol­ecule of L lacking the methyl group was also reported (PRIMPY; Shibahara et al., 2006). It crystallizes in the ortho­rhom­bic space group P212121 and is able to act as a κ2(N,N) chelate ligand forming an MnII complex (Álvarez et al., 2012). Inter­estingly, 3-(pyridin-2-yl)imidazo[1,5-a]pyridine could be easily separated from the metal by boiling the complex suspension in water.

Synthesis and crystallization  

Synthesis of [L]2[CdI4] (I) : 2-PCA (0.38 ml, 4 mmol) was stirred with CH3NH2·HCl (0.27 g, 4 mmol) in 20 ml of methanol in a 50 ml conical flask at room temperature (r.t.) for half an hour. The resultant yellow solution was left in the open air overnight and turned olive. Dry CdI2 (0.37 g, 1 mmol) and KI (0.33 g, 2 mmol) were added to the ligand solution and the mixture was heated slightly and stirred magnetically for half an hour to ensure salt dissolution. The resulting brownish solution was filtered and left to evaporate at r.t. Pale-brown prisms of (I) suitable for X-ray crystallography formed within two days. The crystals were filtered off, washed with diethyl ether and finally dried in air. More product was obtained upon slow evaporation in air of the mother liquor. Yield: 65% (based on cadmium). Analysis calculated for C26H24I4N6Cd (1040.51): C, 30.01; H 2.32; N 8.08%. Found: C 30.36; H 2.04; N 8.24%. FT–IR (ν, cm−1): 3436br, 3138, 3116, 3056, 2994, 2924, 1652, 1582, 1518, 1464, 1446, 1424, 1366, 1334, 1286, 1250, 1180, 1154, 1104, 1054, 1038, 990, 942, 778, 742, 658, 610, 568, 556, 430, 404. 1H NMR (400 MHz, DMSO-d 6): δ (ppm) 8.92 (d, 1H, J = 4.4 Hz, H14), 8.70 (d, 1H, J = 7.3 Hz, H5), 8.60 (s, 1H, H1), 8.25–8.17 (m, 2H, H11+H12) , 8.02 (d, 1H, J = 9.3 Hz, H8), 7.76–7.73 (m, 1H, H13), 7.37 (t, 1H, J = 8.1 Hz, H7), 7.23 (t, 1H, J = 6.6 Hz, H6), 4.30 (s, 3H, CH3).

Synthesis of [L]2[Cl]1.5[NO3]0.5·3H2O (II) : 2-PCA (0.38 ml, 4 mmol) was stirred with CH3NH2·HCl (0.27 g, 4 mmol) in 20 ml methanol in a 50 ml conical flask at r.t. for half an hour. Dry Pb(NO3)2 (0.33 g, 1 mmol) was added to this solution and the mixture was stirred magnetically for another hour under mild heating to ensure salt dissolution. The yellow solution that became turbid was filtered and left to evaporate. Light-brown needles of (II) formed next day. They were filtered off, washed with diethyl ether and dried in air. Yield 51% (based on 2-PCA). Analysis calculated for C26H30Cl1.5N6.5O4.5 (558.74): C 55.89; H 5.41; N 16.29%. Found: C 54.75; H 5.66; N 15.67%. FT–IR (ν, cm−1): 3450br, 3142, 3094, 3062, 3040, 1652, 1604, 1586, 1520, 1470, 1388(NO3), 1364, 1334, 1302, 1250, 1180, 1160, 1100, 1054, 1040, 992, 944, 800, 780, 748, 666, 622, 610, 568, 558, 434, 408. 1H NMR (400 MHz, DMSO-d 6/CCl4): δ (ppm) 8.94 (d, 1H, J = 4.9 Hz, H14), 8.72 (d, 1H, J = 6.8 Hz, H5), 8.59 (s, 1H, H1), 8.25–8.18 (m, 2H, H11+H12), 8.03 (d, 1H, J = 9.3 Hz, H8), 7.76 (t, 1H, J = 5.6 Hz, H13), 7.39 (t, 1H, J = 7.8 Hz, H7), 7.25 (t, 1H, J = 6.8 Hz, H6), 4.31 (s, 3H, CH3).

The compounds are soluble in water, alcohols, dmf and dmso. The hybrid salt (I) is stable in air for months, while (II) appears moisture sensitive. Medium intensity peaks above 3000 cm−1 and medium or strong peaks in the range 1650–1450 cm−1 in the IR spectra of (I) and (II) indicate the presence of aromatic rings. The presence of alkyl groups is confirmed by the medium-strength bands in the range 3000–2800 cm−1. A very strong band at 1388 cm−1 in the spectrum of (II) originates from vibration of the NO3 ion. The 1H NMR spectra in DMSO-d 6 at room temperature showed the correct pyrid­yl/alkyl proton ratios of L + cation for (I) and (II).

Refinement  

Crystal data, data collection and structure refinement details for both structures are summarized in Table 3. Compound (I) crystallizes with two [L]2[CdI4] mol­ecules in the asymmetric unit. The checkCIF implementation of PLATON ADDSYM detects an additional (pseudo) symmetry element, c/2, with a 91% fit and suggests that the length of the c axis should be halved. This is pseudosymmetry as seen in projections down the a and b axes and also by noting that the number of reflections with significant intensity being much greater than half the total number (23740 out of 31421). For (II), the cell setting used is that of the isomorphous chloride HUMCUP. One anion site in (II) was modelled as being disordered between a Cl and a NO3 ion with site occupancies constrained to 0.5 after trial refinement. The water mol­ecule hydrogen atoms in (II) were located and refined with geometries restrained to ideal values. All remaining hydrogen atoms in (I) and (II) were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, U iso(H) = 1.2U eqC for CH, C—H = 0.98 Å, U iso(H) = 1.5U eqC for CH3).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula (C13H12N3)2[CdI4] 2C13H12N3 +·1.5Cl·0.5NO3 ·3H2O
M r 1040.51 558.74
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 100 100
a, b, c (Å) 17.2718 (2), 16.6530 (1), 22.4402 (2) 7.3959 (5), 10.2889 (8), 18.5155 (10)
α, β, γ (°) 90, 108.922 (1), 90 88.208 (5), 95.033 (5), 108.916 (5)
V3) 6105.62 (10) 1327.71 (16)
Z 8 2
Radiation type Mo Kα Cu Kα
μ (mm−1) 4.79 2.14
Crystal size (mm) 0.45 × 0.27 × 0.25 0.23 × 0.05 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Gemini Oxford Diffraction Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2016) Analytical (CrysAlis PRO; Rigaku OD, 2016)
T min, T max 0.248, 0.433 0.777, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 207318, 31421, 23740 11325, 4693, 3366
R int 0.048 0.050
(sin θ/λ)max−1) 0.859 0.598
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.096, 1.01 0.047, 0.121, 1.02
No. of reflections 31421 4693
No. of parameters 671 385
No. of restraints 0 9
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.66, −2.53 0.26, −0.26

Computer programs: CrysAlis PRO (Rigaku OD, 2016), SIR92 (Altomare et al., 1994), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019009964/lh5912sup1.cif

e-75-01209-sup1.cif (6.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009964/lh5912Isup2.hkl

e-75-01209-Isup2.hkl (2.4MB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019009964/lh5912IIsup3.hkl

e-75-01209-IIsup3.hkl (373.6KB, hkl)

IR spectrum of (I). DOI: 10.1107/S2056989019009964/lh5912sup4.pdf

e-75-01209-sup4.pdf (39.9KB, pdf)

IR spectrum of (II). DOI: 10.1107/S2056989019009964/lh5912sup5.pdf

e-75-01209-sup5.pdf (40.1KB, pdf)

CCDC references: 1940074, 1940074, 1940075

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the facilities, scientific and technical assistance of the Centre for Microscopy, Characterization and Analysis (CMCA) at the University of Western Australia.

supplementary crystallographic information

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Crystal data

(C13H12N3)2[CdI4] F(000) = 3856
Mr = 1040.51 Dx = 2.264 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 17.2718 (2) Å Cell parameters from 65440 reflections
b = 16.6530 (1) Å θ = 2.3–37.2°
c = 22.4402 (2) Å µ = 4.79 mm1
β = 108.922 (1)° T = 100 K
V = 6105.62 (10) Å3 Prism, pale brown
Z = 8 0.45 × 0.27 × 0.25 mm

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Data collection

Oxford Diffraction Gemini diffractometer 31421 independent reflections
Radiation source: normal-focus sealed tube 23740 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 10.4738 pixels mm-1 θmax = 37.7°, θmin = 2.3°
ω scans h = −29→29
Absorption correction: analytical (CrysAlis Pro; Rigaku OD, 2016) k = −27→28
Tmin = 0.248, Tmax = 0.433 l = −38→38
207318 measured reflections

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.045P)2 + 12.P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.003
31421 reflections Δρmax = 2.66 e Å3
671 parameters Δρmin = −2.53 e Å3

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The largest peak is 0.57 Angstroms from I13; the deepest hole is 0.39 Angstroms from I14.

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.37091 (2) 0.23322 (2) 0.02990 (2) 0.01602 (4)
I11 0.27236 (2) 0.11998 (2) 0.06096 (2) 0.02197 (4)
I12 0.29968 (2) 0.38160 (2) −0.01581 (2) 0.01727 (3)
I13 0.50281 (2) 0.25114 (2) 0.14100 (2) 0.02218 (4)
I14 0.40935 (2) 0.17338 (2) −0.07161 (2) 0.02338 (4)
Cd2 0.64769 (2) 0.76930 (2) 0.47496 (2) 0.01661 (4)
I21 0.74129 (2) 0.87369 (2) 0.43129 (2) 0.02373 (4)
I22 0.72313 (2) 0.62525 (2) 0.52637 (2) 0.01842 (4)
I23 0.50554 (2) 0.73423 (2) 0.37519 (2) 0.02152 (4)
I24 0.61626 (2) 0.84767 (2) 0.57291 (2) 0.02040 (4)
C11 0.19207 (18) 0.32624 (17) 0.10784 (13) 0.0184 (5)
H11 0.2047 0.2987 0.0751 0.022*
N12 0.13723 (15) 0.38690 (14) 0.10047 (11) 0.0158 (4)
C12 0.0920 (2) 0.4207 (2) 0.03863 (14) 0.0230 (6)
H12A 0.0809 0.4777 0.0433 0.034*
H12B 0.0401 0.3919 0.0208 0.034*
H12C 0.1247 0.4152 0.0104 0.034*
C13 0.13355 (17) 0.41169 (16) 0.15683 (13) 0.0156 (4)
N13A 0.18897 (15) 0.36683 (14) 0.20083 (11) 0.0164 (4)
C14 0.2109 (2) 0.36855 (18) 0.26667 (13) 0.0199 (5)
H14 0.1853 0.4051 0.2869 0.024*
C15 0.2689 (2) 0.31740 (19) 0.30068 (14) 0.0220 (5)
H15 0.2838 0.3180 0.3453 0.026*
C16 0.3086 (2) 0.2622 (2) 0.27127 (15) 0.0245 (6)
H16 0.3498 0.2273 0.2964 0.029*
C17 0.2875 (2) 0.25948 (19) 0.20740 (14) 0.0209 (5)
H17 0.3138 0.2230 0.1876 0.025*
C17A 0.22563 (18) 0.31209 (16) 0.17076 (13) 0.0160 (4)
C131 0.07949 (18) 0.47317 (17) 0.16853 (14) 0.0179 (5)
N132 0.11393 (17) 0.51982 (15) 0.21937 (12) 0.0196 (4)
C133 0.0665 (2) 0.57605 (19) 0.23213 (16) 0.0242 (6)
H133 0.0893 0.6085 0.2684 0.029*
C134 −0.0138 (2) 0.58999 (19) 0.19568 (17) 0.0256 (6)
H134 −0.0443 0.6324 0.2057 0.031*
C135 −0.0492 (2) 0.54062 (19) 0.14400 (16) 0.0249 (6)
H135 −0.1045 0.5481 0.1184 0.030*
C136 −0.00187 (18) 0.47978 (18) 0.13040 (15) 0.0195 (5)
H136 −0.0245 0.4440 0.0962 0.023*
C21 0.34085 (19) 0.55077 (18) 0.31285 (14) 0.0202 (5)
H21 0.3088 0.5934 0.3207 0.024*
N22 0.39912 (16) 0.50795 (15) 0.35691 (11) 0.0183 (4)
C22 0.4268 (2) 0.5301 (2) 0.42410 (14) 0.0245 (6)
H22A 0.4855 0.5193 0.4425 0.037*
H22B 0.3967 0.4984 0.4462 0.037*
H22C 0.4165 0.5874 0.4283 0.037*
C23 0.43209 (17) 0.45102 (16) 0.32954 (13) 0.0167 (5)
N23A 0.39559 (15) 0.45990 (14) 0.26613 (11) 0.0166 (4)
C24 0.40995 (19) 0.41887 (18) 0.21672 (14) 0.0201 (5)
H24 0.4498 0.3774 0.2246 0.024*
C25 0.3656 (2) 0.4397 (2) 0.15704 (14) 0.0236 (6)
H25 0.3755 0.4127 0.1229 0.028*
C26 0.3049 (2) 0.5005 (2) 0.14408 (15) 0.0235 (6)
H26 0.2746 0.5134 0.1017 0.028*
C27 0.29006 (19) 0.54049 (19) 0.19192 (14) 0.0207 (5)
H27 0.2491 0.5809 0.1836 0.025*
C27A 0.33702 (17) 0.52055 (18) 0.25455 (14) 0.0182 (5)
C231 0.49081 (18) 0.38885 (17) 0.36104 (14) 0.0190 (5)
N232 0.53859 (17) 0.36191 (16) 0.32836 (14) 0.0231 (5)
C233 0.5925 (2) 0.3044 (2) 0.35546 (19) 0.0286 (7)
H233 0.6259 0.2838 0.3327 0.034*
C234 0.6028 (2) 0.2729 (2) 0.4147 (2) 0.0324 (8)
H234 0.6437 0.2337 0.4326 0.039*
C235 0.5522 (2) 0.2998 (2) 0.44706 (17) 0.0302 (7)
H235 0.5571 0.2789 0.4875 0.036*
C236 0.4941 (2) 0.35806 (19) 0.41939 (15) 0.0232 (6)
H236 0.4572 0.3765 0.4400 0.028*
C31 0.65090 (19) 0.43165 (19) 0.19254 (14) 0.0203 (5)
H31 0.6798 0.3900 0.1799 0.024*
N32 0.59055 (17) 0.47812 (16) 0.15388 (12) 0.0204 (5)
C32 0.5572 (2) 0.4634 (2) 0.08537 (14) 0.0274 (6)
H32A 0.5649 0.4068 0.0767 0.041*
H32B 0.5858 0.4974 0.0636 0.041*
H32C 0.4986 0.4763 0.0703 0.041*
C34 0.6009 (2) 0.55503 (19) 0.30350 (15) 0.0232 (6)
H34 0.5628 0.5971 0.3008 0.028*
N33A 0.60665 (15) 0.51811 (15) 0.24932 (12) 0.0176 (4)
C33 0.56372 (18) 0.53278 (17) 0.18755 (14) 0.0187 (5)
C35 0.6512 (2) 0.5294 (2) 0.36002 (15) 0.0269 (6)
H35 0.6474 0.5536 0.3973 0.032*
C36 0.7097 (2) 0.4673 (2) 0.36529 (15) 0.0268 (6)
H36 0.7447 0.4511 0.4056 0.032*
C37 0.71557 (19) 0.4317 (2) 0.31319 (14) 0.0228 (6)
H37 0.7548 0.3906 0.3163 0.027*
C37A 0.66222 (18) 0.45634 (18) 0.25344 (14) 0.0185 (5)
C331 0.50283 (19) 0.59623 (18) 0.16398 (16) 0.0238 (6)
N332 0.46510 (18) 0.62050 (16) 0.20472 (16) 0.0284 (6)
C333 0.4092 (2) 0.6785 (2) 0.1857 (2) 0.0381 (9)
H333 0.3830 0.6968 0.2144 0.046*
C334 0.3872 (3) 0.7132 (2) 0.1272 (3) 0.0465 (12)
H334 0.3454 0.7528 0.1152 0.056*
C335 0.4270 (3) 0.6896 (2) 0.0863 (2) 0.0445 (11)
H335 0.4136 0.7131 0.0456 0.053*
C336 0.4875 (3) 0.6304 (2) 0.10500 (19) 0.0347 (8)
H336 0.5173 0.6142 0.0781 0.042*
C41 0.80926 (18) 0.65616 (16) 0.38757 (13) 0.0167 (4)
H41 0.7995 0.6836 0.4216 0.020*
N42 0.86433 (15) 0.59627 (14) 0.39249 (10) 0.0154 (4)
C42 0.9130 (2) 0.5618 (2) 0.45322 (14) 0.0236 (6)
H42A 0.9235 0.5049 0.4476 0.035*
H42B 0.8829 0.5669 0.4833 0.035*
H42C 0.9652 0.5905 0.4693 0.035*
C43 0.86380 (17) 0.57178 (16) 0.33500 (12) 0.0153 (4)
N43A 0.80540 (15) 0.61581 (14) 0.29262 (11) 0.0154 (4)
C44 0.77946 (19) 0.61436 (18) 0.22676 (13) 0.0190 (5)
H44 0.8040 0.5788 0.2050 0.023*
C45 0.7187 (2) 0.6647 (2) 0.19465 (14) 0.0226 (6)
H45 0.7008 0.6644 0.1499 0.027*
C46 0.6809 (2) 0.7183 (2) 0.22663 (15) 0.0244 (6)
H46 0.6374 0.7520 0.2030 0.029*
C47A 0.77035 (18) 0.66993 (17) 0.32480 (13) 0.0168 (5)
C47 0.7067 (2) 0.72139 (19) 0.29039 (14) 0.0220 (5)
H47 0.6823 0.7577 0.3116 0.026*
C431 0.91603 (17) 0.51078 (16) 0.32062 (13) 0.0162 (4)
N432 0.87936 (16) 0.46557 (15) 0.26967 (12) 0.0182 (4)
C433 0.9247 (2) 0.40867 (18) 0.25464 (15) 0.0219 (5)
H433 0.9001 0.3769 0.2182 0.026*
C434 1.0058 (2) 0.39372 (19) 0.28947 (16) 0.0242 (6)
H434 1.0350 0.3512 0.2783 0.029*
C435 1.0435 (2) 0.4425 (2) 0.34129 (16) 0.0243 (6)
H435 1.0991 0.4341 0.3658 0.029*
C436 0.99816 (18) 0.50336 (18) 0.35640 (14) 0.0196 (5)
H436 1.0226 0.5390 0.3903 0.024*

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.01811 (9) 0.01385 (8) 0.01690 (8) 0.00019 (6) 0.00679 (7) 0.00022 (6)
I11 0.02464 (9) 0.01729 (8) 0.02594 (9) −0.00521 (6) 0.01090 (7) 0.00041 (6)
I12 0.02242 (9) 0.01406 (7) 0.01630 (7) 0.00214 (6) 0.00761 (6) 0.00116 (5)
I13 0.01875 (8) 0.01961 (8) 0.02435 (9) 0.00307 (6) 0.00169 (7) −0.00509 (6)
I14 0.03063 (11) 0.02327 (9) 0.01615 (8) 0.00862 (7) 0.00748 (7) 0.00058 (6)
Cd2 0.01928 (9) 0.01392 (8) 0.01732 (8) 0.00019 (6) 0.00691 (7) −0.00021 (6)
I21 0.02773 (10) 0.02007 (8) 0.02569 (9) −0.00627 (7) 0.01185 (8) 0.00100 (7)
I22 0.02594 (9) 0.01397 (7) 0.01642 (7) 0.00303 (6) 0.00836 (6) 0.00036 (5)
I23 0.01884 (9) 0.01971 (8) 0.02393 (9) 0.00086 (6) 0.00406 (7) −0.00565 (6)
I24 0.02381 (9) 0.01991 (8) 0.01579 (7) 0.00374 (6) 0.00408 (6) −0.00304 (6)
C11 0.0186 (13) 0.0197 (12) 0.0178 (11) 0.0006 (9) 0.0072 (10) −0.0014 (9)
N12 0.0141 (10) 0.0177 (10) 0.0150 (9) −0.0021 (8) 0.0041 (8) −0.0014 (7)
C12 0.0226 (14) 0.0301 (15) 0.0147 (11) 0.0048 (11) 0.0039 (10) 0.0010 (10)
C13 0.0142 (11) 0.0163 (10) 0.0168 (11) −0.0019 (8) 0.0058 (9) −0.0010 (8)
N13A 0.0165 (10) 0.0185 (10) 0.0157 (9) −0.0005 (8) 0.0072 (8) 0.0001 (7)
C14 0.0232 (14) 0.0230 (13) 0.0158 (11) −0.0031 (10) 0.0098 (10) −0.0013 (9)
C15 0.0266 (15) 0.0259 (14) 0.0140 (11) 0.0009 (11) 0.0072 (10) 0.0021 (10)
C16 0.0276 (16) 0.0253 (14) 0.0201 (13) 0.0067 (12) 0.0071 (11) 0.0064 (10)
C17 0.0217 (14) 0.0236 (13) 0.0185 (12) 0.0059 (10) 0.0079 (10) 0.0042 (10)
C17A 0.0168 (12) 0.0175 (11) 0.0151 (10) 0.0012 (9) 0.0069 (9) 0.0005 (8)
C131 0.0182 (12) 0.0163 (11) 0.0212 (12) −0.0008 (9) 0.0092 (10) 0.0007 (9)
N132 0.0220 (12) 0.0194 (10) 0.0207 (11) −0.0032 (9) 0.0116 (9) −0.0028 (8)
C133 0.0304 (16) 0.0190 (12) 0.0298 (15) −0.0021 (11) 0.0190 (13) −0.0019 (11)
C134 0.0296 (16) 0.0173 (12) 0.0365 (17) 0.0017 (11) 0.0201 (14) 0.0049 (11)
C135 0.0231 (15) 0.0233 (13) 0.0325 (16) 0.0067 (11) 0.0146 (13) 0.0077 (12)
C136 0.0160 (12) 0.0191 (12) 0.0249 (13) 0.0000 (9) 0.0086 (10) 0.0021 (10)
C21 0.0196 (13) 0.0215 (12) 0.0211 (12) 0.0063 (10) 0.0089 (10) 0.0027 (10)
N22 0.0188 (11) 0.0193 (10) 0.0178 (10) 0.0019 (8) 0.0073 (9) 0.0001 (8)
C22 0.0316 (17) 0.0259 (14) 0.0161 (12) 0.0036 (12) 0.0078 (11) −0.0004 (10)
C23 0.0154 (12) 0.0173 (11) 0.0177 (11) 0.0000 (9) 0.0057 (9) −0.0020 (9)
N23A 0.0141 (10) 0.0177 (10) 0.0180 (10) −0.0017 (8) 0.0053 (8) −0.0026 (8)
C24 0.0194 (13) 0.0213 (12) 0.0200 (12) −0.0013 (10) 0.0069 (10) −0.0046 (10)
C25 0.0246 (15) 0.0264 (14) 0.0192 (12) −0.0077 (11) 0.0064 (11) −0.0060 (10)
C26 0.0186 (13) 0.0294 (15) 0.0189 (12) −0.0072 (11) 0.0013 (10) 0.0004 (10)
C27 0.0154 (12) 0.0249 (13) 0.0197 (12) −0.0015 (10) 0.0029 (10) 0.0023 (10)
C27A 0.0132 (11) 0.0220 (12) 0.0202 (12) 0.0010 (9) 0.0068 (9) 0.0006 (9)
C231 0.0140 (12) 0.0176 (11) 0.0237 (13) −0.0009 (9) 0.0036 (10) −0.0003 (9)
N232 0.0184 (12) 0.0170 (10) 0.0341 (14) −0.0004 (9) 0.0090 (10) −0.0024 (9)
C233 0.0184 (14) 0.0199 (13) 0.047 (2) 0.0026 (11) 0.0096 (14) −0.0016 (13)
C234 0.0216 (15) 0.0194 (14) 0.049 (2) 0.0040 (11) 0.0014 (14) 0.0050 (13)
C235 0.0272 (17) 0.0252 (15) 0.0294 (16) 0.0014 (12) −0.0027 (13) 0.0074 (12)
C236 0.0206 (14) 0.0202 (12) 0.0249 (14) 0.0012 (10) 0.0020 (11) 0.0018 (10)
C31 0.0172 (13) 0.0238 (13) 0.0211 (12) 0.0010 (10) 0.0080 (10) 0.0000 (10)
N32 0.0192 (12) 0.0226 (11) 0.0187 (10) −0.0015 (9) 0.0050 (9) 0.0007 (8)
C32 0.0300 (17) 0.0339 (16) 0.0169 (12) −0.0080 (13) 0.0055 (12) −0.0022 (11)
C34 0.0227 (14) 0.0246 (13) 0.0234 (13) −0.0070 (11) 0.0091 (11) −0.0080 (11)
N33A 0.0134 (10) 0.0185 (10) 0.0197 (10) −0.0029 (8) 0.0038 (8) −0.0025 (8)
C33 0.0159 (12) 0.0188 (11) 0.0200 (12) −0.0024 (9) 0.0040 (10) 0.0009 (9)
C35 0.0275 (16) 0.0329 (16) 0.0203 (13) −0.0129 (13) 0.0077 (12) −0.0073 (11)
C36 0.0225 (15) 0.0346 (17) 0.0198 (13) −0.0109 (12) 0.0018 (11) 0.0032 (11)
C37 0.0142 (12) 0.0309 (15) 0.0214 (13) −0.0030 (11) 0.0030 (10) 0.0048 (11)
C37A 0.0129 (11) 0.0223 (12) 0.0201 (12) −0.0008 (9) 0.0050 (9) 0.0012 (9)
C331 0.0166 (13) 0.0177 (12) 0.0317 (15) −0.0025 (10) 0.0005 (11) 0.0018 (11)
N332 0.0189 (13) 0.0178 (11) 0.0460 (17) −0.0003 (9) 0.0070 (12) −0.0020 (11)
C333 0.0227 (17) 0.0189 (14) 0.067 (3) 0.0014 (12) 0.0069 (17) −0.0040 (16)
C334 0.028 (2) 0.0224 (16) 0.073 (3) 0.0022 (14) −0.006 (2) 0.0070 (18)
C335 0.038 (2) 0.0285 (18) 0.049 (2) −0.0054 (16) −0.0103 (19) 0.0149 (17)
C336 0.0292 (18) 0.0340 (18) 0.0308 (17) −0.0034 (14) −0.0043 (14) 0.0080 (14)
C41 0.0178 (12) 0.0167 (11) 0.0155 (10) −0.0004 (9) 0.0054 (9) −0.0003 (8)
N42 0.0146 (10) 0.0190 (10) 0.0121 (9) −0.0030 (8) 0.0035 (7) −0.0016 (7)
C42 0.0250 (15) 0.0262 (14) 0.0151 (11) 0.0037 (11) 0.0005 (10) 0.0007 (10)
C43 0.0139 (11) 0.0171 (11) 0.0149 (10) −0.0012 (8) 0.0048 (9) 0.0004 (8)
N43A 0.0139 (10) 0.0189 (10) 0.0140 (9) −0.0005 (8) 0.0052 (8) 0.0003 (7)
C44 0.0209 (13) 0.0224 (12) 0.0149 (11) 0.0006 (10) 0.0075 (10) 0.0006 (9)
C45 0.0237 (14) 0.0289 (14) 0.0140 (11) 0.0027 (11) 0.0046 (10) 0.0028 (10)
C46 0.0267 (16) 0.0265 (14) 0.0188 (12) 0.0082 (12) 0.0055 (11) 0.0036 (10)
C47A 0.0184 (12) 0.0176 (11) 0.0150 (10) 0.0004 (9) 0.0063 (9) −0.0018 (8)
C47 0.0222 (14) 0.0243 (13) 0.0180 (12) 0.0059 (11) 0.0046 (10) 0.0032 (10)
C431 0.0147 (11) 0.0158 (10) 0.0186 (11) −0.0008 (8) 0.0064 (9) 0.0021 (8)
N432 0.0180 (11) 0.0177 (10) 0.0212 (11) −0.0027 (8) 0.0095 (9) −0.0013 (8)
C433 0.0256 (15) 0.0195 (12) 0.0251 (13) −0.0032 (10) 0.0144 (12) −0.0022 (10)
C434 0.0262 (15) 0.0191 (12) 0.0324 (15) 0.0045 (11) 0.0166 (13) 0.0055 (11)
C435 0.0193 (14) 0.0256 (14) 0.0300 (15) 0.0045 (11) 0.0107 (12) 0.0078 (11)
C436 0.0145 (12) 0.0219 (12) 0.0232 (13) 0.0003 (9) 0.0071 (10) 0.0027 (10)

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Geometric parameters (Å, º)

Cd1—I14 2.7573 (3) C234—H234 0.9500
Cd1—I11 2.7764 (3) C235—C236 1.390 (5)
Cd1—I13 2.7949 (3) C235—H235 0.9500
Cd1—I12 2.8023 (3) C236—H236 0.9500
Cd2—I24 2.7575 (3) C31—N32 1.361 (4)
Cd2—I21 2.7610 (3) C31—C37A 1.379 (4)
Cd2—I22 2.7943 (3) C31—H31 0.9500
Cd2—I23 2.7958 (3) N32—C33 1.357 (4)
C11—N12 1.358 (4) N32—C32 1.477 (4)
C11—C17A 1.362 (4) C32—H32A 0.9800
C11—H11 0.9500 C32—H32B 0.9800
N12—C13 1.351 (3) C32—H32C 0.9800
N12—C12 1.466 (4) C34—C35 1.353 (5)
C12—H12A 0.9800 C34—N33A 1.394 (4)
C12—H12B 0.9800 C34—H34 0.9500
C12—H12C 0.9800 N33A—C33 1.365 (4)
C13—N13A 1.355 (4) N33A—C37A 1.389 (4)
C13—C131 1.466 (4) C33—C331 1.463 (4)
N13A—C17A 1.401 (4) C35—C36 1.424 (5)
N13A—C14 1.402 (4) C35—H35 0.9500
C14—C15 1.348 (4) C36—C37 1.344 (5)
C14—H14 0.9500 C36—H36 0.9500
C15—C16 1.430 (4) C37—C37A 1.419 (4)
C15—H15 0.9500 C37—H37 0.9500
C16—C17 1.360 (4) C331—N332 1.345 (5)
C16—H16 0.9500 C331—C336 1.386 (5)
C17—C17A 1.420 (4) N332—C333 1.334 (5)
C17—H17 0.9500 C333—C334 1.371 (7)
C131—N132 1.349 (4) C333—H333 0.9500
C131—C136 1.393 (4) C334—C335 1.371 (8)
N132—C133 1.335 (4) C334—H334 0.9500
C133—C134 1.383 (5) C335—C336 1.397 (6)
C133—H133 0.9500 C335—H335 0.9500
C134—C135 1.391 (5) C336—H336 0.9500
C134—H134 0.9500 C41—N42 1.358 (4)
C135—C136 1.396 (4) C41—C47A 1.369 (4)
C135—H135 0.9500 C41—H41 0.9500
C136—H136 0.9500 N42—C43 1.350 (3)
C21—N22 1.362 (4) N42—C42 1.466 (4)
C21—C27A 1.383 (4) C42—H42A 0.9800
C21—H21 0.9500 C42—H42B 0.9800
N22—C23 1.352 (4) C42—H42C 0.9800
N22—C22 1.473 (4) C43—N43A 1.355 (4)
C22—H22A 0.9800 C43—C431 1.462 (4)
C22—H22B 0.9800 N43A—C44 1.399 (4)
C22—H22C 0.9800 N43A—C47A 1.409 (4)
C23—N23A 1.365 (4) C44—C45 1.354 (4)
C23—C231 1.461 (4) C44—H44 0.9500
N23A—C24 1.392 (4) C45—C46 1.429 (4)
N23A—C27A 1.393 (4) C45—H45 0.9500
C24—C25 1.354 (4) C46—C47 1.354 (4)
C24—H24 0.9500 C46—H46 0.9500
C25—C26 1.419 (5) C47A—C47 1.410 (4)
C25—H25 0.9500 C47—H47 0.9500
C26—C27 1.357 (5) C431—N432 1.344 (4)
C26—H26 0.9500 C431—C436 1.391 (4)
C27—C27A 1.416 (4) N432—C433 1.340 (4)
C27—H27 0.9500 C433—C434 1.387 (5)
C231—N232 1.346 (4) C433—H433 0.9500
C231—C236 1.390 (4) C434—C435 1.394 (5)
N232—C233 1.338 (4) C434—H434 0.9500
C233—C234 1.386 (6) C435—C436 1.389 (4)
C233—H233 0.9500 C435—H435 0.9500
C234—C235 1.379 (6) C436—H436 0.9500
I14—Cd1—I11 107.058 (9) C234—C235—C236 118.8 (3)
I14—Cd1—I13 115.503 (10) C234—C235—H235 120.6
I11—Cd1—I13 103.726 (9) C236—C235—H235 120.6
I14—Cd1—I12 102.186 (8) C235—C236—C231 118.7 (3)
I11—Cd1—I12 117.300 (9) C235—C236—H236 120.6
I13—Cd1—I12 111.499 (9) C231—C236—H236 120.6
I24—Cd2—I21 105.915 (9) N32—C31—C37A 107.2 (3)
I24—Cd2—I22 105.260 (8) N32—C31—H31 126.4
I21—Cd2—I22 116.026 (10) C37A—C31—H31 126.4
I24—Cd2—I23 112.854 (9) C33—N32—C31 110.8 (3)
I21—Cd2—I23 108.090 (9) C33—N32—C32 127.0 (3)
I22—Cd2—I23 108.791 (9) C31—N32—C32 122.0 (3)
N12—C11—C17A 107.5 (2) N32—C32—H32A 109.5
N12—C11—H11 126.3 N32—C32—H32B 109.5
C17A—C11—H11 126.3 H32A—C32—H32B 109.5
C13—N12—C11 110.9 (2) N32—C32—H32C 109.5
C13—N12—C12 126.6 (2) H32A—C32—H32C 109.5
C11—N12—C12 122.5 (2) H32B—C32—H32C 109.5
N12—C12—H12A 109.5 C35—C34—N33A 118.2 (3)
N12—C12—H12B 109.5 C35—C34—H34 120.9
H12A—C12—H12B 109.5 N33A—C34—H34 120.9
N12—C12—H12C 109.5 C33—N33A—C37A 109.6 (2)
H12A—C12—H12C 109.5 C33—N33A—C34 129.6 (3)
H12B—C12—H12C 109.5 C37A—N33A—C34 120.7 (3)
N12—C13—N13A 106.1 (2) N32—C33—N33A 105.9 (3)
N12—C13—C131 127.4 (3) N32—C33—C331 128.2 (3)
N13A—C13—C131 126.5 (2) N33A—C33—C331 125.9 (3)
C13—N13A—C17A 109.3 (2) C34—C35—C36 122.0 (3)
C13—N13A—C14 129.9 (2) C34—C35—H35 119.0
C17A—N13A—C14 120.7 (2) C36—C35—H35 119.0
C15—C14—N13A 118.7 (3) C37—C36—C35 120.0 (3)
C15—C14—H14 120.6 C37—C36—H36 120.0
N13A—C14—H14 120.6 C35—C36—H36 120.0
C14—C15—C16 121.7 (3) C36—C37—C37A 119.0 (3)
C14—C15—H15 119.2 C36—C37—H37 120.5
C16—C15—H15 119.2 C37A—C37—H37 120.5
C17—C16—C15 120.2 (3) C31—C37A—N33A 106.4 (3)
C17—C16—H16 119.9 C31—C37A—C37 133.6 (3)
C15—C16—H16 119.9 N33A—C37A—C37 120.0 (3)
C16—C17—C17A 118.9 (3) N332—C331—C336 122.8 (3)
C16—C17—H17 120.5 N332—C331—C33 114.9 (3)
C17A—C17—H17 120.5 C336—C331—C33 122.3 (3)
C11—C17A—N13A 106.2 (2) C333—N332—C331 117.4 (4)
C11—C17A—C17 134.0 (3) N332—C333—C334 124.0 (4)
N13A—C17A—C17 119.7 (2) N332—C333—H333 118.0
N132—C131—C136 123.7 (3) C334—C333—H333 118.0
N132—C131—C13 115.0 (3) C333—C334—C335 118.5 (4)
C136—C131—C13 121.3 (3) C333—C334—H334 120.8
C133—N132—C131 116.9 (3) C335—C334—H334 120.8
N132—C133—C134 124.0 (3) C334—C335—C336 119.3 (4)
N132—C133—H133 118.0 C334—C335—H335 120.3
C134—C133—H133 118.0 C336—C335—H335 120.3
C133—C134—C135 118.6 (3) C331—C336—C335 118.0 (4)
C133—C134—H134 120.7 C331—C336—H336 121.0
C135—C134—H134 120.7 C335—C336—H336 121.0
C134—C135—C136 118.8 (3) N42—C41—C47A 107.7 (2)
C134—C135—H135 120.6 N42—C41—H41 126.1
C136—C135—H135 120.6 C47A—C41—H41 126.1
C131—C136—C135 118.0 (3) C43—N42—C41 110.9 (2)
C131—C136—H136 121.0 C43—N42—C42 126.4 (2)
C135—C136—H136 121.0 C41—N42—C42 122.6 (2)
N22—C21—C27A 107.1 (2) N42—C42—H42A 109.5
N22—C21—H21 126.5 N42—C42—H42B 109.5
C27A—C21—H21 126.5 H42A—C42—H42B 109.5
C23—N22—C21 111.0 (2) N42—C42—H42C 109.5
C23—N22—C22 126.6 (3) H42A—C42—H42C 109.5
C21—N22—C22 122.0 (3) H42B—C42—H42C 109.5
N22—C22—H22A 109.5 N42—C43—N43A 106.3 (2)
N22—C22—H22B 109.5 N42—C43—C431 127.4 (3)
H22A—C22—H22B 109.5 N43A—C43—C431 126.4 (2)
N22—C22—H22C 109.5 C43—N43A—C44 130.0 (2)
H22A—C22—H22C 109.5 C43—N43A—C47A 109.4 (2)
H22B—C22—H22C 109.5 C44—N43A—C47A 120.6 (2)
N22—C23—N23A 106.1 (2) C45—C44—N43A 118.6 (3)
N22—C23—C231 127.3 (3) C45—C44—H44 120.7
N23A—C23—C231 126.5 (2) N43A—C44—H44 120.7
C23—N23A—C24 129.5 (3) C44—C45—C46 121.4 (3)
C23—N23A—C27A 109.6 (2) C44—C45—H45 119.3
C24—N23A—C27A 120.9 (3) C46—C45—H45 119.3
C25—C24—N23A 118.2 (3) C47—C46—C45 120.4 (3)
C25—C24—H24 120.9 C47—C46—H46 119.8
N23A—C24—H24 120.9 C45—C46—H46 119.8
C24—C25—C26 121.9 (3) C41—C47A—N43A 105.7 (2)
C24—C25—H25 119.1 C41—C47A—C47 134.5 (3)
C26—C25—H25 119.1 N43A—C47A—C47 119.7 (2)
C27—C26—C25 120.4 (3) C46—C47—C47A 119.1 (3)
C27—C26—H26 119.8 C46—C47—H47 120.4
C25—C26—H26 119.8 C47A—C47—H47 120.4
C26—C27—C27A 118.4 (3) N432—C431—C436 123.5 (3)
C26—C27—H27 120.8 N432—C431—C43 115.0 (2)
C27A—C27—H27 120.8 C436—C431—C43 121.4 (3)
C21—C27A—N23A 106.2 (2) C433—N432—C431 117.2 (3)
C21—C27A—C27 133.6 (3) N432—C433—C434 123.4 (3)
N23A—C27A—C27 120.2 (3) N432—C433—H433 118.3
N232—C231—C236 123.0 (3) C434—C433—H433 118.3
N232—C231—C23 115.1 (3) C433—C434—C435 118.6 (3)
C236—C231—C23 121.8 (3) C433—C434—H434 120.7
C233—N232—C231 116.8 (3) C435—C434—H434 120.7
N232—C233—C234 124.1 (3) C436—C435—C434 118.8 (3)
N232—C233—H233 118.0 C436—C435—H435 120.6
C234—C233—H233 118.0 C434—C435—H435 120.6
C235—C234—C233 118.4 (3) C435—C436—C431 118.3 (3)
C235—C234—H234 120.8 C435—C436—H436 120.8
C233—C234—H234 120.8 C431—C436—H436 120.8
C17A—C11—N12—C13 −0.8 (3) C37A—C31—N32—C33 1.1 (3)
C17A—C11—N12—C12 177.1 (3) C37A—C31—N32—C32 −174.4 (3)
C11—N12—C13—N13A 1.5 (3) C35—C34—N33A—C33 −179.8 (3)
C12—N12—C13—N13A −176.3 (3) C35—C34—N33A—C37A 0.4 (4)
C11—N12—C13—C131 −177.1 (3) C31—N32—C33—N33A −2.1 (3)
C12—N12—C13—C131 5.1 (5) C32—N32—C33—N33A 173.1 (3)
N12—C13—N13A—C17A −1.6 (3) C31—N32—C33—C331 176.6 (3)
C131—C13—N13A—C17A 177.1 (3) C32—N32—C33—C331 −8.1 (5)
N12—C13—N13A—C14 179.0 (3) C37A—N33A—C33—N32 2.3 (3)
C131—C13—N13A—C14 −2.3 (5) C34—N33A—C33—N32 −177.6 (3)
C13—N13A—C14—C15 −179.7 (3) C37A—N33A—C33—C331 −176.5 (3)
C17A—N13A—C14—C15 1.1 (4) C34—N33A—C33—C331 3.6 (5)
N13A—C14—C15—C16 0.4 (5) N33A—C34—C35—C36 0.9 (5)
C14—C15—C16—C17 −0.9 (5) C34—C35—C36—C37 −0.8 (5)
C15—C16—C17—C17A −0.1 (5) C35—C36—C37—C37A −0.6 (5)
N12—C11—C17A—N13A −0.2 (3) N32—C31—C37A—N33A 0.3 (3)
N12—C11—C17A—C17 −177.1 (3) N32—C31—C37A—C37 −179.7 (3)
C13—N13A—C17A—C11 1.2 (3) C33—N33A—C37A—C31 −1.6 (3)
C14—N13A—C17A—C11 −179.4 (3) C34—N33A—C37A—C31 178.2 (3)
C13—N13A—C17A—C17 178.6 (3) C33—N33A—C37A—C37 178.4 (3)
C14—N13A—C17A—C17 −2.0 (4) C34—N33A—C37A—C37 −1.8 (4)
C16—C17—C17A—C11 178.0 (3) C36—C37—C37A—C31 −178.1 (3)
C16—C17—C17A—N13A 1.5 (5) C36—C37—C37A—N33A 1.9 (4)
N12—C13—C131—N132 −142.3 (3) N32—C33—C331—N332 155.3 (3)
N13A—C13—C131—N132 39.3 (4) N33A—C33—C331—N332 −26.2 (4)
N12—C13—C131—C136 39.7 (4) N32—C33—C331—C336 −26.9 (5)
N13A—C13—C131—C136 −138.7 (3) N33A—C33—C331—C336 151.7 (3)
C136—C131—N132—C133 −1.3 (4) C336—C331—N332—C333 1.9 (5)
C13—C131—N132—C133 −179.3 (3) C33—C331—N332—C333 179.8 (3)
C131—N132—C133—C134 −1.7 (4) C331—N332—C333—C334 1.3 (5)
N132—C133—C134—C135 2.9 (5) N332—C333—C334—C335 −2.7 (6)
C133—C134—C135—C136 −1.0 (4) C333—C334—C335—C336 0.9 (6)
N132—C131—C136—C135 3.1 (4) N332—C331—C336—C335 −3.6 (5)
C13—C131—C136—C135 −179.1 (3) C33—C331—C336—C335 178.8 (3)
C134—C135—C136—C131 −1.8 (4) C334—C335—C336—C331 2.0 (6)
C27A—C21—N22—C23 −0.8 (3) C47A—C41—N42—C43 1.3 (3)
C27A—C21—N22—C22 172.5 (3) C47A—C41—N42—C42 −175.5 (3)
C21—N22—C23—N23A 2.1 (3) C41—N42—C43—N43A −1.6 (3)
C22—N22—C23—N23A −170.8 (3) C42—N42—C43—N43A 175.0 (3)
C21—N22—C23—C231 −174.1 (3) C41—N42—C43—C431 177.7 (3)
C22—N22—C23—C231 13.0 (5) C42—N42—C43—C431 −5.6 (5)
N22—C23—N23A—C24 176.9 (3) N42—C43—N43A—C44 −179.7 (3)
C231—C23—N23A—C24 −6.8 (5) C431—C43—N43A—C44 1.0 (5)
N22—C23—N23A—C27A −2.7 (3) N42—C43—N43A—C47A 1.3 (3)
C231—C23—N23A—C27A 173.6 (3) C431—C43—N43A—C47A −178.1 (3)
C23—N23A—C24—C25 −179.3 (3) C43—N43A—C44—C45 179.6 (3)
C27A—N23A—C24—C25 0.2 (4) C47A—N43A—C44—C45 −1.5 (4)
N23A—C24—C25—C26 −1.0 (5) N43A—C44—C45—C46 −0.3 (5)
C24—C25—C26—C27 0.6 (5) C44—C45—C46—C47 1.7 (5)
C25—C26—C27—C27A 0.7 (5) N42—C41—C47A—N43A −0.5 (3)
N22—C21—C27A—N23A −0.9 (3) N42—C41—C47A—C47 177.5 (3)
N22—C21—C27A—C27 −179.0 (3) C43—N43A—C47A—C41 −0.5 (3)
C23—N23A—C27A—C21 2.2 (3) C44—N43A—C47A—C41 −179.6 (3)
C24—N23A—C27A—C21 −177.4 (3) C43—N43A—C47A—C47 −178.9 (3)
C23—N23A—C27A—C27 −179.3 (3) C44—N43A—C47A—C47 2.0 (4)
C24—N23A—C27A—C27 1.0 (4) C45—C46—C47—C47A −1.2 (5)
C26—C27—C27A—C21 176.4 (3) C41—C47A—C47—C46 −178.4 (3)
C26—C27—C27A—N23A −1.5 (4) N43A—C47A—C47—C46 −0.6 (5)
N22—C23—C231—N232 −153.9 (3) N42—C43—C431—N432 143.8 (3)
N23A—C23—C231—N232 30.6 (4) N43A—C43—C431—N432 −37.0 (4)
N22—C23—C231—C236 28.6 (5) N42—C43—C431—C436 −38.5 (4)
N23A—C23—C231—C236 −146.9 (3) N43A—C43—C431—C436 140.7 (3)
C236—C231—N232—C233 −1.9 (5) C436—C431—N432—C433 2.4 (4)
C23—C231—N232—C233 −179.3 (3) C43—C431—N432—C433 −179.9 (2)
C231—N232—C233—C234 −1.4 (5) C431—N432—C433—C434 1.3 (4)
N232—C233—C234—C235 2.8 (6) N432—C433—C434—C435 −2.9 (5)
C233—C234—C235—C236 −0.9 (5) C433—C434—C435—C436 0.7 (4)
C234—C235—C236—C231 −2.1 (5) C434—C435—C436—C431 2.7 (4)
N232—C231—C236—C235 3.6 (5) N432—C431—C436—C435 −4.5 (4)
C23—C231—C236—C235 −179.1 (3) C43—C431—C436—C435 178.0 (3)

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···I11 0.95 3.25 3.972 (3) 134
C11—H11···I12 0.95 3.31 3.918 (3) 124
C12—H12A···I24i 0.98 3.00 3.929 (3) 158
C12—H12B···I24ii 0.98 2.93 3.853 (3) 158
C12—H12C···I12 0.98 3.31 4.198 (3) 152
C14—H14···N132 0.95 2.50 3.020 (4) 114
C15—H15···I22iii 0.95 3.07 3.956 (3) 156
C17—H17···I11 0.95 3.20 3.963 (3) 139
C22—H22B···I22iii 0.98 3.12 4.062 (4) 162
C24—H24···I13 0.95 3.15 3.877 (3) 135
C24—H24···N232 0.95 2.35 2.916 (4) 118
C25—H25···I12 0.95 3.00 3.796 (3) 142
C27—H27···I24i 0.95 3.03 3.796 (3) 139
C234—H234···I12iv 0.95 3.20 4.144 (3) 171
C31—H31···I21v 0.95 3.22 3.934 (3) 134
C32—H32A···I13 0.98 3.31 3.962 (4) 126
C32—H32B···I12vi 0.98 3.24 4.209 (3) 170
C34—H34···I23 0.95 3.17 3.991 (3) 146
C34—H34···N332 0.95 2.30 2.870 (5) 118
C35—H35···I22 0.95 3.01 3.875 (3) 152
C37—H37···I14iv 0.95 3.20 3.916 (3) 134
C334—H334···I22i 0.95 3.14 4.028 (4) 157
C41—H41···I22 0.95 3.20 3.897 (3) 132
C42—H42A···I14iv 0.98 3.00 3.953 (3) 165
C42—H42C···I14vii 0.98 2.94 3.826 (3) 151
C44—H44···N432 0.95 2.48 2.994 (4) 114
C45—H45···I12vi 0.95 3.10 3.997 (3) 158
C47—H47···I21 0.95 3.19 3.945 (3) 137

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+3/2, y+1/2, −z+1/2.

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Crystal data

2C13H12N3+·1.5Cl·0.5NO3·3H2O Z = 2
Mr = 558.74 F(000) = 586
Triclinic, P1 Dx = 1.398 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 7.3959 (5) Å Cell parameters from 2491 reflections
b = 10.2889 (8) Å θ = 2.4–66.6°
c = 18.5155 (10) Å µ = 2.14 mm1
α = 88.208 (5)° T = 100 K
β = 95.033 (5)° Needle, light brown
γ = 108.916 (5)° 0.23 × 0.05 × 0.03 mm
V = 1327.71 (16) Å3

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Data collection

Oxford Diffraction Gemini diffractometer 4693 independent reflections
Radiation source: sealed X-ray tube 3366 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.050
Detector resolution: 10.4738 pixels mm-1 θmax = 67.3°, θmin = 2.4°
ω scans h = −8→8
Absorption correction: analytical (CrysAlis Pro; Rigaku OD, 2016) k = −11→12
Tmin = 0.777, Tmax = 0.942 l = −18→22
11325 measured reflections

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Refinement

Refinement on F2 9 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.4628P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.045
4693 reflections Δρmax = 0.26 e Å3
385 parameters Δρmin = −0.26 e Å3

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. One anions site was modelled as being disordered between a Cl- and a NO3- ion with site occupancies constrained to 0.5 after trial refinement. Water molecule hydrogen geometries were restrained to ideal values.

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C11 0.5212 (4) −0.0797 (3) 0.20815 (15) 0.0450 (6)
H11 0.4386 −0.1648 0.1888 0.054*
N12 0.5524 (3) −0.0437 (2) 0.27913 (12) 0.0448 (5)
C12 0.4527 (4) −0.1317 (3) 0.33735 (16) 0.0557 (8)
H12A 0.5304 −0.1868 0.3583 0.084*
H12B 0.3281 −0.1928 0.3174 0.084*
H12C 0.4333 −0.074 0.3751 0.084*
C13 0.6785 (4) 0.0847 (3) 0.28750 (15) 0.0436 (6)
N13A 0.7256 (3) 0.1306 (2) 0.22022 (11) 0.0392 (5)
C14 0.8549 (4) 0.2565 (3) 0.19923 (15) 0.0419 (6)
H14 0.9218 0.3248 0.2341 0.05*
C15 0.8809 (4) 0.2772 (3) 0.12871 (16) 0.0464 (7)
H15 0.9685 0.3617 0.1138 0.056*
C16 0.7814 (4) 0.1768 (3) 0.07516 (16) 0.0512 (7)
H16 0.801 0.1958 0.0254 0.061*
C17 0.6587 (4) 0.0544 (3) 0.09528 (16) 0.0484 (7)
H17 0.593 −0.0131 0.0599 0.058*
C17A 0.6293 (4) 0.0281 (3) 0.16953 (15) 0.0420 (6)
C131 0.7484 (4) 0.1624 (3) 0.35480 (15) 0.0470 (7)
N132 0.7557 (3) 0.2948 (2) 0.35039 (12) 0.0470 (6)
C133 0.8101 (4) 0.3688 (3) 0.41137 (16) 0.0548 (8)
H133 0.8169 0.4626 0.4095 0.066*
C134 0.8572 (5) 0.3143 (4) 0.47729 (17) 0.0650 (9)
H134 0.8908 0.3694 0.5197 0.078*
C135 0.8545 (5) 0.1806 (4) 0.48040 (17) 0.0683 (10)
H135 0.8885 0.1423 0.5248 0.082*
C136 0.8011 (4) 0.1009 (3) 0.41742 (16) 0.0589 (9)
H136 0.8009 0.0085 0.4174 0.071*
C21 0.3963 (4) 0.2931 (3) 0.13167 (14) 0.0391 (6)
H21 0.4506 0.339 0.0895 0.047*
N22 0.4269 (3) 0.3465 (2) 0.19957 (11) 0.0401 (5)
C22 0.5590 (4) 0.4855 (3) 0.21763 (15) 0.0478 (7)
H22A 0.4865 0.5502 0.2163 0.072*
H22B 0.6557 0.5138 0.1823 0.072*
H22C 0.6224 0.4847 0.2663 0.072*
C23 0.3290 (4) 0.2537 (3) 0.24656 (14) 0.0386 (6)
N23A 0.2338 (3) 0.1378 (2) 0.20761 (11) 0.0374 (5)
C24 0.1083 (4) 0.0130 (3) 0.23010 (14) 0.0402 (6)
H24 0.0817 −0.0021 0.2795 0.048*
C25 0.0260 (4) −0.0853 (3) 0.18033 (15) 0.0431 (6)
H25 −0.0607 −0.1705 0.1948 0.052*
C26 0.0666 (4) −0.0642 (3) 0.10589 (15) 0.0441 (6)
H26 0.0076 −0.1358 0.0719 0.053*
C27 0.1869 (4) 0.0557 (3) 0.08345 (14) 0.0421 (6)
H27 0.2134 0.0692 0.034 0.051*
C27A 0.2738 (4) 0.1618 (3) 0.13487 (13) 0.0372 (6)
C231 0.3247 (4) 0.2691 (3) 0.32528 (14) 0.0446 (7)
N232 0.3284 (3) 0.1595 (3) 0.36524 (12) 0.0492 (6)
C233 0.3338 (5) 0.1723 (4) 0.43704 (16) 0.0624 (9)
H233 0.3361 0.0952 0.4663 0.075*
C234 0.3363 (5) 0.2894 (4) 0.47135 (18) 0.0710 (10)
H234 0.3448 0.2942 0.5228 0.085*
C235 0.3262 (5) 0.3989 (4) 0.42941 (18) 0.0675 (10)
H235 0.3236 0.4804 0.4514 0.081*
C236 0.3198 (4) 0.3902 (3) 0.35404 (16) 0.0565 (8)
H236 0.3123 0.4648 0.3237 0.068*
Cl1 −0.13460 (14) 0.74736 (10) 0.35172 (5) 0.0385 (2) 0.5
N1 −0.13460 (14) 0.74736 (10) 0.35172 (5) 0.0385 (2) 0.5
O11 −0.1116 (7) 0.8679 (5) 0.3658 (3) 0.0704 (13) 0.5
O12 −0.0043 (8) 0.7052 (6) 0.3432 (3) 0.0879 (16) 0.5
O13 −0.2989 (7) 0.6577 (5) 0.3587 (3) 0.0818 (15) 0.5
Cl2 0.19972 (10) 0.62995 (7) 0.10394 (4) 0.0532 (2)
O1 0.7669 (3) 0.5341 (2) 0.03747 (13) 0.0547 (5)
O2 0.6162 (3) 0.7445 (2) 0.04753 (13) 0.0558 (5)
O3 0.0954 (4) 0.5668 (4) 0.26639 (16) 0.0982 (11)
H1AO 0.881 (3) 0.563 (3) 0.0552 (16) 0.067 (11)*
H1BO 0.767 (5) 0.496 (4) −0.0016 (14) 0.103 (16)*
H2AO 0.664 (4) 0.682 (3) 0.0471 (18) 0.069 (11)*
H2BO 0.513 (3) 0.715 (3) 0.0667 (19) 0.080 (13)*
H3AO −0.017 (3) 0.552 (5) 0.269 (2) 0.121*
H3BO 0.126 (6) 0.596 (5) 0.2244 (15) 0.121*

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0369 (15) 0.0351 (14) 0.0588 (17) 0.0093 (12) −0.0104 (12) −0.0033 (12)
N12 0.0332 (12) 0.0357 (12) 0.0563 (14) 0.0025 (10) −0.0089 (10) 0.0080 (10)
C12 0.0436 (17) 0.0422 (16) 0.0625 (18) −0.0073 (13) −0.0086 (13) 0.0131 (13)
C13 0.0305 (14) 0.0387 (15) 0.0528 (16) 0.0023 (11) −0.0054 (11) 0.0087 (12)
N13A 0.0293 (12) 0.0361 (12) 0.0497 (13) 0.0085 (9) −0.0014 (9) 0.0045 (9)
C14 0.0311 (14) 0.0365 (14) 0.0555 (17) 0.0082 (11) 0.0022 (11) 0.0064 (12)
C15 0.0408 (16) 0.0412 (15) 0.0607 (18) 0.0170 (13) 0.0112 (13) 0.0071 (13)
C16 0.0566 (19) 0.0489 (17) 0.0542 (17) 0.0237 (15) 0.0116 (14) 0.0021 (13)
C17 0.0490 (18) 0.0429 (16) 0.0565 (17) 0.0193 (14) 0.0015 (13) −0.0045 (13)
C17A 0.0355 (15) 0.0356 (14) 0.0553 (16) 0.0140 (12) −0.0034 (12) −0.0006 (12)
C131 0.0305 (14) 0.0436 (16) 0.0515 (16) −0.0066 (12) −0.0043 (11) 0.0076 (12)
N132 0.0339 (13) 0.0430 (13) 0.0502 (13) −0.0054 (10) −0.0002 (10) 0.0025 (10)
C133 0.0407 (17) 0.0513 (17) 0.0552 (18) −0.0082 (13) 0.0020 (13) 0.0007 (14)
C134 0.054 (2) 0.067 (2) 0.0474 (17) −0.0162 (16) −0.0027 (14) 0.0007 (15)
C135 0.055 (2) 0.064 (2) 0.0541 (18) −0.0188 (16) −0.0165 (15) 0.0160 (15)
C136 0.0449 (18) 0.0501 (18) 0.0590 (19) −0.0106 (14) −0.0117 (14) 0.0134 (14)
C21 0.0388 (15) 0.0398 (14) 0.0381 (14) 0.0136 (12) −0.0016 (11) 0.0028 (11)
N22 0.0364 (12) 0.0379 (12) 0.0426 (12) 0.0092 (10) −0.0026 (9) 0.0009 (9)
C22 0.0457 (17) 0.0372 (15) 0.0512 (16) 0.0025 (12) −0.0030 (12) 0.0011 (12)
C23 0.0288 (14) 0.0402 (14) 0.0438 (14) 0.0083 (11) −0.0015 (10) −0.0004 (11)
N23A 0.0298 (11) 0.0376 (12) 0.0435 (12) 0.0100 (9) −0.0004 (9) 0.0005 (9)
C24 0.0279 (13) 0.0434 (15) 0.0465 (15) 0.0084 (11) 0.0010 (11) 0.0037 (12)
C25 0.0307 (14) 0.0419 (15) 0.0520 (16) 0.0070 (12) −0.0039 (11) 0.0009 (12)
C26 0.0385 (16) 0.0403 (15) 0.0507 (16) 0.0114 (12) −0.0081 (12) −0.0052 (12)
C27 0.0407 (15) 0.0427 (15) 0.0433 (14) 0.0158 (12) −0.0044 (11) −0.0009 (11)
C27A 0.0345 (14) 0.0403 (14) 0.0373 (13) 0.0143 (11) −0.0015 (10) 0.0025 (11)
C231 0.0294 (14) 0.0518 (17) 0.0455 (15) 0.0024 (12) 0.0038 (11) −0.0070 (13)
N232 0.0371 (13) 0.0538 (15) 0.0419 (13) −0.0057 (11) 0.0050 (10) 0.0063 (11)
C233 0.0517 (19) 0.070 (2) 0.0449 (17) −0.0101 (16) 0.0090 (13) 0.0057 (15)
C234 0.067 (2) 0.077 (2) 0.0469 (18) −0.0102 (18) 0.0198 (16) −0.0031 (18)
C235 0.062 (2) 0.069 (2) 0.061 (2) 0.0015 (17) 0.0141 (16) −0.0214 (18)
C236 0.0487 (19) 0.0581 (19) 0.0564 (18) 0.0075 (15) 0.0081 (14) −0.0055 (15)
Cl1 0.0372 (6) 0.0403 (6) 0.0307 (5) 0.0024 (4) 0.0031 (4) −0.0018 (4)
N1 0.0372 (6) 0.0403 (6) 0.0307 (5) 0.0024 (4) 0.0031 (4) −0.0018 (4)
O11 0.069 (3) 0.053 (3) 0.079 (3) 0.004 (2) 0.013 (2) 0.003 (2)
O12 0.062 (3) 0.087 (4) 0.112 (4) 0.018 (3) 0.013 (3) −0.023 (3)
O13 0.069 (3) 0.067 (3) 0.094 (4) −0.002 (3) 0.014 (3) −0.018 (3)
Cl2 0.0423 (4) 0.0422 (4) 0.0674 (5) 0.0008 (3) 0.0099 (3) −0.0093 (3)
O1 0.0464 (14) 0.0543 (13) 0.0655 (14) 0.0190 (11) 0.0043 (10) −0.0054 (11)
O2 0.0440 (13) 0.0359 (11) 0.0848 (15) 0.0068 (10) 0.0161 (11) 0.0035 (10)
O3 0.0689 (18) 0.100 (2) 0.0867 (19) −0.0167 (17) −0.0188 (14) 0.0375 (16)

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Geometric parameters (Å, º)

C11—N12 1.356 (4) C22—H22A 0.98
C11—C17A 1.363 (4) C22—H22B 0.98
C11—H11 0.95 C22—H22C 0.98
N12—C13 1.352 (3) C23—N23A 1.363 (3)
N12—C12 1.473 (4) C23—C231 1.475 (4)
C12—H12A 0.98 N23A—C24 1.395 (3)
C12—H12B 0.98 N23A—C27A 1.401 (3)
C12—H12C 0.98 C24—C25 1.343 (4)
C13—N13A 1.353 (3) C24—H24 0.95
C13—C131 1.463 (4) C25—C26 1.431 (4)
N13A—C17A 1.399 (3) C25—H25 0.95
N13A—C14 1.404 (3) C26—C27 1.345 (4)
C14—C15 1.337 (4) C26—H26 0.95
C14—H14 0.95 C27—C27A 1.419 (4)
C15—C16 1.426 (4) C27—H27 0.95
C15—H15 0.95 C231—N232 1.335 (4)
C16—C17 1.356 (4) C231—C236 1.383 (4)
C16—H16 0.95 N232—C233 1.336 (4)
C17—C17A 1.415 (4) C233—C234 1.374 (5)
C17—H17 0.95 C233—H233 0.95
C131—N132 1.346 (4) C234—C235 1.366 (5)
C131—C136 1.390 (4) C234—H234 0.95
N132—C133 1.339 (4) C235—C236 1.397 (4)
C133—C134 1.391 (5) C235—H235 0.95
C133—H133 0.95 C236—H236 0.95
C134—C135 1.370 (5) Cl1—O12 1.201 (6)
C134—H134 0.95 Cl1—O11 1.229 (5)
C135—C136 1.399 (5) Cl1—O13 1.279 (5)
C135—H135 0.95 O1—H1AO 0.836 (18)
C136—H136 0.95 O1—H1BO 0.832 (18)
C21—N22 1.359 (3) O2—H2AO 0.832 (17)
C21—C27A 1.364 (4) O2—H2BO 0.832 (18)
C21—H21 0.95 O3—H3AO 0.802 (19)
N22—C23 1.343 (3) O3—H3BO 0.848 (18)
N22—C22 1.475 (3)
N12—C11—C17A 107.7 (2) C23—N22—C21 110.6 (2)
N12—C11—H11 126.1 C23—N22—C22 126.1 (2)
C17A—C11—H11 126.1 C21—N22—C22 123.1 (2)
C13—N12—C11 110.5 (2) N22—C22—H22A 109.5
C13—N12—C12 125.8 (2) N22—C22—H22B 109.5
C11—N12—C12 123.6 (2) H22A—C22—H22B 109.5
N12—C12—H12A 109.5 N22—C22—H22C 109.5
N12—C12—H12B 109.5 H22A—C22—H22C 109.5
H12A—C12—H12B 109.5 H22B—C22—H22C 109.5
N12—C12—H12C 109.5 N22—C23—N23A 106.5 (2)
H12A—C12—H12C 109.5 N22—C23—C231 128.1 (2)
H12B—C12—H12C 109.5 N23A—C23—C231 125.4 (2)
N12—C13—N13A 106.3 (2) C23—N23A—C24 129.7 (2)
N12—C13—C131 127.9 (2) C23—N23A—C27A 108.9 (2)
N13A—C13—C131 125.8 (2) C24—N23A—C27A 121.4 (2)
C13—N13A—C17A 109.4 (2) C25—C24—N23A 118.5 (2)
C13—N13A—C14 129.1 (2) C25—C24—H24 120.8
C17A—N13A—C14 121.5 (2) N23A—C24—H24 120.8
C15—C14—N13A 118.0 (3) C24—C25—C26 121.2 (3)
C15—C14—H14 121 C24—C25—H25 119.4
N13A—C14—H14 121 C26—C25—H25 119.4
C14—C15—C16 122.2 (3) C27—C26—C25 120.9 (2)
C14—C15—H15 118.9 C27—C26—H26 119.6
C16—C15—H15 118.9 C25—C26—H26 119.6
C17—C16—C15 120.0 (3) C26—C27—C27A 118.9 (2)
C17—C16—H16 120 C26—C27—H27 120.5
C15—C16—H16 120 C27A—C27—H27 120.5
C16—C17—C17A 119.4 (3) C21—C27A—N23A 106.1 (2)
C16—C17—H17 120.3 C21—C27A—C27 134.8 (2)
C17A—C17—H17 120.3 N23A—C27A—C27 119.1 (2)
C11—C17A—N13A 106.0 (2) N232—C231—C236 123.7 (3)
C11—C17A—C17 135.1 (3) N232—C231—C23 115.1 (2)
N13A—C17A—C17 118.9 (2) C236—C231—C23 121.1 (3)
N132—C131—C136 124.1 (3) C231—N232—C233 116.7 (3)
N132—C131—C13 114.7 (2) N232—C233—C234 124.3 (3)
C136—C131—C13 121.2 (3) N232—C233—H233 117.8
C133—N132—C131 117.1 (2) C234—C233—H233 117.8
N132—C133—C134 122.9 (3) C235—C234—C233 118.1 (3)
N132—C133—H133 118.6 C235—C234—H234 121
C134—C133—H133 118.6 C233—C234—H234 121
C135—C134—C133 119.3 (3) C234—C235—C236 119.6 (3)
C135—C134—H134 120.3 C234—C235—H235 120.2
C133—C134—H134 120.3 C236—C235—H235 120.2
C134—C135—C136 119.2 (3) C231—C236—C235 117.5 (3)
C134—C135—H135 120.4 C231—C236—H236 121.2
C136—C135—H135 120.4 C235—C236—H236 121.2
C131—C136—C135 117.3 (3) O12—Cl1—O11 123.2 (4)
C131—C136—H136 121.3 O12—Cl1—O13 117.1 (4)
C135—C136—H136 121.3 O11—Cl1—O13 118.6 (3)
N22—C21—C27A 107.8 (2) H1AO—O1—H1BO 107 (3)
N22—C21—H21 126.1 H2AO—O2—H2BO 109 (2)
C27A—C21—H21 126.1 H3AO—O3—H3BO 111 (3)

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1AO···Cl2i 0.836 (18) 2.339 (18) 3.174 (2) 176 (3)
O1—H1BO···Cl2ii 0.832 (18) 2.41 (2) 3.229 (2) 171 (4)
O2—H2AO···O1 0.832 (17) 1.925 (18) 2.755 (3) 175 (4)
O2—H2BO···Cl2 0.832 (18) 2.352 (18) 3.178 (2) 172 (4)
O3—H3AO···Cl1 0.802 (19) 2.95 (5) 3.398 (4) 118 (4)
O3—H3BO···Cl2 0.848 (18) 2.33 (2) 3.166 (3) 168 (5)
O3—H3AO···O12 0.802 (19) 2.10 (5) 2.363 (7) 99 (4)
C11—H11···Cl2iii 0.95 2.71 3.640 (3) 166
C12—H12A···Cl1iv 0.98 2.79 3.638 (4) 146
C14—H14···N132 0.95 2.53 3.024 (4) 112
C14—H14···O3i 0.95 2.47 3.330 (4) 151
C15—H15···Cl2i 0.95 2.75 3.671 (3) 165
C17—H17···O2iii 0.95 2.57 3.244 (3) 128
C24—H24···N232 0.95 2.51 3.019 (4) 114
C27—H27···O2ii 0.95 2.48 3.255 (3) 139
C236—H236···O3 0.95 2.35 3.160 (5) 143

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) x+1, y−1, z.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 19BF037-05.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Álvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041–7046. [DOI] [PubMed]
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. (2016). Nat. Rev. Mater. 1, 15007.
  5. Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744. [DOI] [PubMed]
  6. Chen, Y., Yang, Z., Guo, C. X., Ni, C. Y., Ren, Z. G., Li, H. X. & Lang, J. P. (2010). Eur. J. Inorg. Chem. pp. 5326–5333.
  7. Díaz, U. & Corma, A. (2018). Chem. Eur. J. 24, 3944–3958. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. García-Saiz, A., de Pedro, I., Migowski, P., Vallcorba, O., Junquera, J., Blanco, J. A., Fabelo, O., Sheptyakov, D., Waerenborgh, J. C., Fernández-Díaz, M. T., Rius, J., Dupont, J., Gonzalez, J. A. & Fernández, J. R. (2014). Inorg. Chem. 53, 8384–8396. [DOI] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hutt, J. T., Jo, J., Olasz, A., Chen, C.-H., Lee, D. & Aron, Z. D. (2012). Org. Lett. 14, 3162–3165. [DOI] [PubMed]
  12. Jiang, C., Zhong, N., Luo, C., Lin, H., Zhang, Y., Peng, H. & Duan, C. G. (2017). Chem. Commun. 53, 5954–5957. [DOI] [PubMed]
  13. Li, L., Zhao, D., Liu, Z., Zhang, D., Hu, Z., Li, K. & Yang, J. (2018). Acta Cryst. E74, 1878–1880. [DOI] [PMC free article] [PubMed]
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  15. Mitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567–571.
  16. Piecha-Bisiorek, A., Bieńko, A., Jakubas, R., Boča, R., Weselski, M., Kinzhybalo, V., Pietraszko, A., Wojciechowska, M., Medycki, W. & Kruk, D. (2016). J. Phys. Chem. A, 120, 2014–2021. [DOI] [PubMed]
  17. Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  18. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Shibahara, F., Kitagawa, A., Yamaguchi, E. & Murai, T. (2006). Org. Lett. 8, 5621–5624. [DOI] [PubMed]
  22. Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282. [DOI] [PMC free article] [PubMed]
  23. Vassilyeva, O. Yu., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. https://doi.org/10.1039/C9DT01642B [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989019009964/lh5912sup1.cif

e-75-01209-sup1.cif (6.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009964/lh5912Isup2.hkl

e-75-01209-Isup2.hkl (2.4MB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019009964/lh5912IIsup3.hkl

e-75-01209-IIsup3.hkl (373.6KB, hkl)

IR spectrum of (I). DOI: 10.1107/S2056989019009964/lh5912sup4.pdf

e-75-01209-sup4.pdf (39.9KB, pdf)

IR spectrum of (II). DOI: 10.1107/S2056989019009964/lh5912sup5.pdf

e-75-01209-sup5.pdf (40.1KB, pdf)

CCDC references: 1940074, 1940074, 1940075

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES