Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 26;75(Pt 8):1253–1260. doi: 10.1107/S2056989019010491

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Haruvegowda Kiran Kumar a, Hemmige S Yathirajan a,*, Belakavadi K Sagar b, Sabine Foro c, Christopher Glidewell d
PMCID: PMC6690458  PMID: 31417802

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have similar mol­ecular structures, but their supra­molecular assembly ranges from simple chains, via a chain of rings, to complex sheets.

Keywords: piperazines, crystal structure, isomorphism, disorder, hydrogen bonding, supra­molecular assembly

Abstract

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.

Chemical context  

Piperazines are found in a wide range of compounds which are active across a number of different therapeutic areas such as anti­bacterial, anti­depressant, anti­fungal, anti­malarial, anti­psychotic, and anti­tumour activity (Brockunier et al., 2004; Bogatcheva et al., 2006), and a number of these areas have recently been reviewed (Elliott, 2011; Kharb et al., 2012; Asif, 2015; Brito et al., 2019). 1-(4-Meth­oxy­phen­yl)piperazine has been found to inhibit the re-uptake and accelerate the release of mono­amine neurotransmitters such as dopamine and serotonin, with a mechanism of action similar to that of recreational drugs such as amphetamines, but with significantly lower abuse potential (Nagai et al., 2007). With these considerations in mind, we have now synthesized and characterized a series of closely related 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines, using a straightforward coupling reaction between N-(4-meth­oxy­phen­yl)piperazine and a benzoic acid, promoted by 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide as the dehydrating agent. Here we report the mol­ecular and supra­molecular structures of compounds (I)–(VI) (Figs. 1–6 ) which we compare with the structures of some related compounds. As well as these 2-substituted derivatives, we have also synthesized 1-(4-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine (VII), but to date we have been unable to obtain any crystalline material suitable for single crystal X-ray diffraction.graphic file with name e-75-01253-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of compound (III) showing the atom-labelling scheme, and the disorder of the 2-chloro­benzoyl unit. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The mol­ecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 5.

Figure 5

The mol­ecular structure of compound (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6.

Figure 6

The mol­ecular structure of compound (VI) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Structural commentary  

In the 2-chloro derivative (III), the benzoyl substituent is disordered over two sets of atomic sites having refined occupancies for the crystal selected for data collection of 0.942 (2) and 0.058 (2): in these two disorder forms, the chloro substituents occupy sites on opposite sides of the adjacent aryl ring (Fig. 3). Compounds (III), (IV) and (V) have similar unit-cell dimensions (Table 2) and, discounting the disorder in (III), each can be refined using the atomic coordinates of another as the starting point. However, these three structures exhibit several minor differences: firstly, the benzoyl group is disordered over two sets of atomic sites in (III), but not in (V); in (IV), the disorder was found to be very minor, ca 1.6%, such that attempted refinement of this small fraction was regarded as unrealistic and thus the ordered model was preferable. Secondly, there is a short inter­molecular I⋯O contact in (V), which has no Cl⋯O or Br⋯O analogue in (III) and (IV). Hence compounds (III)–(V) can be regarded as isomorphous, but not strictly isostructural (cf. Acosta et al., 2009).

Table 2. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C18H20N2O2 C18H19FN2O2 C18H19ClN2O2
M r 296.36 314.35 330.80
Crystal system, space group Monoclinic, C c Monoclinic, P21/c Orthorhombic, P b c a
Temperature (K) 293 293 293
a, b, c (Å) 29.403 (5), 7.9811 (14), 6.7898 (13) 6.998 (2), 7.938 (2), 28.415 (6) 13.0320 (11), 13.2470 (13), 19.258 (2)
α, β, γ (°) 90, 97.352 (12), 90 90, 92.20 (3), 90 90, 90, 90
V3) 1580.3 (5) 1577.3 (7) 3324.6 (6)
Z 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.10 0.24
Crystal size (mm) 0.48 × 0.48 × 0.28 0.48 × 0.36 × 0.32 0.50 × 0.40 × 0.38
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.951, 0.977 0.931, 0.970 0.862, 0.912
No. of measured, independent and observed [I > 2σ(I)] reflections 5476, 2137, 1766 6039, 3315, 1863 13862, 3642, 2407
R int 0.019 0.049 0.022
(sin θ/λ)max−1) 0.655 0.651 0.656
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.089, 1.08 0.070, 0.190, 1.08 0.048, 0.127, 1.03
No. of reflections 2137 3315 3642
No. of parameters 201 208 243
No. of restraints 2 0 26
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.13 0.21, −0.27 0.23, −0.45
  (IV) (V) (VI)
Crystal data
Chemical formula C18H19BrN2O2 C18H19IN2O2 C18H20N2O3
M r 375.26 422.25 312.36
Crystal system, space group Orthorhombic, P b c a Orthorhombic, P b c a Orthorhombic, P b c a
Temperature (K) 293 293 293
a, b, c (Å) 12.9119 (14), 13.3664 (16), 19.5019 (19) 12.7671 (13), 13.5429 (12), 20.2542 (16) 9.7265 (6), 12.9084 (9), 24.861 (1)
α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90
V3) 3365.7 (6) 3502.0 (5) 3121.4 (3)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.45 1.84 0.09
Crystal size (mm) 0.22 × 0.21 × 0.18 0.48 × 0.42 × 0.38 0.50 × 0.40 × 0.16
 
Data collection
Diffractometer Bruker D8 Quest Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015 Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.538, 0.643 0.408, 0.497 0.917, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 47663, 4262, 3135 14215, 3838, 3062 11981, 3474, 2492
R int 0.039 0.029 0.020
(sin θ/λ)max−1) 0.672 0.655 0.658
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.131, 1.02 0.068, 0.146, 1.18 0.041, 0.100, 1.04
No. of reflections 4262 3838 3474
No. of parameters 209 209 212
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.64 1.27, −2.19 0.16, −0.17

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2009).

In each of the compounds reported here, the piperazine ring adopts an almost perfect chair conformation with the 4-meth­oxy­phenyl substituent occupying an equatorial site: the geometry at atom N1 is effectively planar and only in compound (I) is there a very slight pyramidalization at this site. For each compound, the reference mol­ecule was selected as one having a ring-puckering angle θ (Cremer & Pople, 1975) for the atom sequence (N1,C2,C3,N4,C5,C6) which was close to zero, as opposed to values close to 180° for the corresponding enanti­omers. In all of the compounds, the meth­oxy carbon atom C441 is very close to being coplanar with the adjacent aryl ring: the maximum displacement of this atom from the ring plane is 0.216 (16) Å in compound (V). Associated with this observation, we note that the two exocyclic O—C—C angles at atom C44 always exhibit differences in the range 8–10°: this behaviour is entirely consistent with the that previously observed in planar or nearly planar alk­oxy­arenes (Seip & Seip, 1973; Ferguson et al., 1996). It is inter­esting to note that the meth­oxy group is oriented transoid to the carbonyl group in compounds (I) and (VI), but cisoid in compounds (II)–(V), suggesting that the methyl group may simply be acting in a space-filling role.

Supra­molecular features  

The supra­molecular assembly in compounds (I)–(V) is dominated by contacts of C—H⋯O and C—H⋯π(arene) types (Table 1) and it is thus appropriate to define explicitly the criteria against which these contacts have been regarded as structurally significant hydrogen bonds. For single-atom acceptors, we adopt the distance criteria recommended in PLATON (Spek, 2009), based on the well-established concept of van der Waals radii (Bondi, 1964; Nyburg & Faerman, 1985; Rowland & Taylor, 1996), which provide an upper limit for H⋯O contacts of 2.60 Å, combined with the recommended (Wood et al., 2009) lower limit of 140° for the D—H⋯A angle. For the C—H⋯π(arene) contacts in the isomorphous compounds (III)–(V), both the H⋯Cg distances and the C—H⋯Cg angles are entirely typical of C—H⋯π(arene) hydrogen bonds (Braga et al., 1998). On this basis the C—H⋯O contacts in (II) can be regarded as significant, while the nearly linear C—H⋯O contacts in (III)–(V), which appear in each case to act cooperatively with a C–H⋯π hydrogen bond should be regarded as of marginal significance in (III) and (V).

Table 1. Hydrogen bonds and short inter­molecular contacts (Å, °) in compounds (I)–(VI).

Cg1 and Cg2 are the centroids of the C11–C16 and C41–C46 rings, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(I) C12—H12⋯O17i 0.93 2.61 3.497 (4) 160
(II) C2—H2A⋯O17ii 0.97 2.50 3.387 (4) 152
  C16—H16⋯O17iii 0.93 2.43 3.340 (5) 167
(III) C3—H3A⋯O17iv 0.97 2.61 3.574 (3) 175
  C2—HA⋯Cg1iv 0.97 2.84 3.648 (3) 142
  C15—H15⋯Cg2v 0.93 2.72 3.610 (4) 162
(IV) C3—H3A⋯O17iv 0.97 2.56 3.524 (3) 171
  C2—HA⋯Cg1iv 0.97 2.82 3.630 (3) 142
  C15—H15⋯Cg2v 0.93 2.68 3.579 (4) 164
(V) C3—H3A⋯O17iv 0.97 2.60 3.542 (10) 164
  C2—HACg1iv 0.97 2.87 3.719 (11) 147
  C15—H15⋯Cg2v 0.93 2.73 3.656 (12) 172
(VI) O12—H12⋯O17vi 0.92 (2) 1.81 (2) 3.7327 (15) 175.4 (18)

Symmetry codes: (i) x, 1 − y, −Inline graphic + z; (ii) 1 − x, 1 − y, 1 − z; (iii) 2 − x, 1 − y, 1 − z; (iv) −Inline graphic + x, Inline graphic − y, 1 − z; (v) Inline graphic − x, −Inline graphic + y, z; (vi) −Inline graphic + x, y, Inline graphic − z.

The sole direction-specific short inter­molecular contact in (I) is between mol­ecules related by a glide plane. The mol­ecules of compound (II) are linked by two independent C—H⋯O hydrogen bonds (Table 1) to form a chain of centrosymmetric rings in which Inline graphic(10) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) rings involving atom C2 as the donor and centred at (n + Inline graphic, Inline graphic, Inline graphic) alternate with Inline graphic(10) rings involving atom C16 as the donor and centred at (n, Inline graphic, Inline graphic), where n represents an integer in each case (Fig. 7). Chains of this type are linked into sheets by an aromatic π–π stacking inter­action: the fluorinated rings in the mol­ecules at (x, y, z) and (2 − x, 2 − y, 1 − z) are parallel with an inter­planar spacing of 3.520 (2) Å; the ring-centroid separation is 3.774 (2) Å and the ring-centroid offset is 1.360 (2) Å. This inter­action links the hydrogen-bonded chains into a sheet lying parallel to (001) in the domain Inline graphic < z < Inline graphic: a second such sheet, related to the first by the translational symmetry operation, lies in the domain −Inline graphic < z < Inline graphic, but there are no direction-specific inter­actions between adjacent sheets.

Figure 7.

Figure 7

Part of the crystal structure of compound (II) showing the formation of a chain of rings running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

As noted previously (see Section 2), the 2-chloro­benzoyl unit in compound (III) is disordered over two sets of atomic sites: however, the occupancy of the minor disorder component is low, and thus only the major component need be considered here. The supra­molecular assembly in each of (III)–(V) is essentially the same. A combination of two C—H⋯π(arene) hydrogen bonds, weakly augmented by a C—H⋯O Inter­action, links the mol­ecules into sheets, whose formation is readily analysed in terms of two one-dimensional sub-structures (Ferguson et al., 1998a ,b ; Gregson et al., 2000). In the simpler of the two sub-structures, mol­ecules related by the b-glide at x = Inline graphic are linked by a C—H⋯π(arene) hydrogen bond to form a chain running parallel to the [010] direction (Fig. 8). In the second sub-structure, a C—H⋯π(arene) hydrogen bond links mol­ecules which are related by the 21 screw axis along (x, Inline graphic, Inline graphic) to form a chain running parallel to the [100] direction (Fig. 9). These two chain motifs combine to generate a sheet lying parallel to (001) in the domain Inline graphic < z < Inline graphic. A second sheet, related to the first by inversion, lies in the domain Inline graphic < z < Inline graphic, but there are no direction-specific inter­actions between adjacent sheets. However there is, in (V), a rather short inter­molecular I⋯O contact where I12⋯O17i = 3.362 (7) Å and C12—I12⋯O17i = 163.5 (2)° [symmetry code: (i) Inline graphic − x, Inline graphic + y, z], as compared with the sum of van der Waals radii of 3.56 Å (Rowland & Taylor, 1996). This contact lies within the chain along [010] and so does not affect the overall two-dimensional nature of the supra­molecular assembly. However, short contacts of this type are not present in the structures of (III) and (IV), where the corresponding Cl⋯O and Br⋯O distances are 3.707 (4) and 3.708 (3) Å, respectively, as compared with the sums of van der Waals radii of 3.30 Å and 3.41 Å respectively. Simple considerations of electronegativity (Allen, 1989) indicate that in carbon–halogen bonds of type (ar­yl)C—X, the halogen atom carries a residual positive charge when X = I, but a residual negative charge when X = Cl or Br. On this basis (ar­yl)C—X⋯O=C inter­actions are expected to be attractive when X = I, but repulsive when X = Cl or Br, so accounting for the much shorter I⋯O distance in (V) as compared with the corres­ponding distances in (III) and (IV).

Figure 8.

Figure 8

Part of the crystal structure of compound (III) showing the formation of a simple chain running parallel to the [010] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

Figure 9.

Figure 9

Part of the crystal structure of compound (III) showing the formation of a simple chain running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to those C atoms which are not involved in the motif shown have been omitted.

The supra­molecular assembly in compound (VI) takes the form of simple C(6) chains running parallel to the [100] direction, in which mol­ecules related by the a-glide plane at z = Inline graphic are linked by an O—H⋯O hydrogen bond (Table 1) (Fig. 10). A second chain of this type, related to the first by inversion, and two further chains related to the first pair by the c-glide planes, pass through each unit cell but there are no direction-specific inter­actions between adjacent chains.

Figure 10.

Figure 10

Part of the crystal structure of compound (VI) showing the formation of a C(6) chain running parallel to the [100] direction. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have all been omitted.

Thus in summary, the supra­molecular assembly takes the form of a simple chain in compound (VI), a chain of rings in compound (II), and sheets in compounds (III), (IV) and (V).

Database survey  

It is of inter­est briefly to compare the structures of compounds (I)–(VI) reported here with those of some closely related analogues. In 4-(4-meth­oxy­phen­yl)piperazin-1-ium chloride (Zia-ur-Rehman et al., 2009), the ions are linked by two independent N—H⋯Cl hydrogen bonds: although the structure was described in the original report as dimeric, the ions are in fact linked into Inline graphic(4) chains. The mol­ecules of 1-acetyl-4-(4-hy­droxy­phen­yl)piperazine (Kavitha et al., 2013) are linked by O—H⋯O hydrogen bonds to form simple C(12) chains, while those of 1-(2-iodo­benzo­yl)-4-(pyrimidin-2-yl)pip­erazine (Mahesha, Yathirajan et al., 2019) are linked by a combination of C—H⋯O and C—H⋯π(arene) hydrogen bonds to form a three-dimensional framework structure which is further strengthened by both aromatic π–π stacking inter­actions and I⋯N halogen bonds. Finally, we note the structures of three closely related 1-(1,3-benzodioxolol-5-yl)methyl-4-(halobenzo­yl) piperazines (Mahesha, Sagar et al., 2019), where the 3-fluoro­benzoyl derivative forms a three-dimensional framework structure built from C—H⋯O and C—H⋯π(arene) hydrogen bonds, whereas the structures of the 2,6-di­fluoro­benzoyl and 2,4-di­chloro­benzoyl analogues contain no hydrogen bonds of any sort. Examples of attractive iodo⋯carbonyl inter­actions, as found here in (V), have also been reported in a number of systems (Glidewell et al., 2005; Garden et al., 2006; Sirimulla et al., 2013).

Synthesis and crystallization  

For the synthesis of compounds (I)–(VII), 1-(3-di­methyl­amino­prop­yl)-3-ethyl­carbodimide (134 mg, 0.7 mmol), 1-hy­droxy­benzotriazole (68 mg, 0.5 mmol) and tri­ethyl­amine (0.5 ml, 1.5 mmol) were added to a solution of the appropriately substituted benzoic acid [benzoic acid for (I), 2-fluoro­benzoic acid for (II), 2-chloro­benzoic acid for (III), 2-bromo­benzoic acid for (IV), 2-iodo­benzoic acid for (V), salicylic acid for (VI) and 4-fluoro­benzoic acid for (VII)] (0.5 mmol) in N,N-di­methyl­formamide (5 ml) and the resulting mixtures were stirred for 20 min at 273 K. A solution of N-(4-meth­oxy­phen­yl)piperazine (100 mg, 0.5 mmol) in N,N-di­methyl­formamide (5 ml) was then added and stirring was continued overnight at ambient temperature. When the reactions were confirmed to be complete using thin-layer chromatography, each mixture was then quenched with water (10 ml) and extracted with ethyl acetate (20 ml). Each organic fraction was separated and washed successively with an aqueous hydro­chloric acid solution (1 mol dm−3), a saturated solution of sodium hydrogencarbonate and then with brine. The organic phases were dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate.

Compound (I). Yield 81%, m.p. 407–409 K. IR (KBr, cm−1) 1631 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 3.04 (t, 4H, piperazine), 3.56 (s, 2H, piperazine), 3.75 (s, 3H, O—CH3), 3.92 (s, 2H, piperazine), 6.83 (d, 2H, meth­oxy­phen­yl), 6.89 (d, 2H, meth­oxy­phen­yl), 7.42 (m, 5H, phen­yl): δ(13C) 47.76, 51.22, 55.48 (O—CH3), 114.46, 118.88, 127.04, 128.46, 129.72, 135.63, 145.19, 154.36, 170.30.

Compound (II). Yield 80%, m.p. 409–411 K. IR (KBr, cm−1) 1626 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 2.99 (s, 2H, piprazine), 3.13 (t, 2H, piperazine), 3.47 (s, 2H, piperazine) 3.75 (s, 3H, O—CH3), 3.95 (t, 2H, piperazine), 6.83 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 6.89 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 7.09 (m, 1H, 2-fluoro­phen­yl), 7.22 (m, 1H, 2-fluoro­phen­yl), 7.40 (m, 2H, 2-fluoro­phen­yl): δ(13C) 47.08, 51.29, 55.47 (O—CH3), 114.47, 118.96, 123.86, 124.60, 129.17, 131.34 145.17, 154.40, 156.82, 159.29, 165.10.

Compound (III). Yield 79%, m.p. 425–427 K. IR (KBr, cm−1) 1632 (C=O), 1240 (C—N). NMR (CDCl3) δ(1H) 2.94 (m, 1H, piperazine), 3.07 (m, 3H, piperazine), 3.34 (m, 1H, piperazine), 3.42 (m, 1H, piperazine) 3.75 (s, 3H, O—CH3), 3.95 (m, 2H, piperazine), 6.83 (d, 2H, J = 9.2Hz, meth­oxy­phen­yl), 6.88 (t, 2H, 2-chloro­phen­yl), 7.33 (m, 4H, meth­oxy­phenyl and 2-chloro­phen­yl): δ(13C) 46.76, 51.22, 55.48 (O—CH3), 114.47, 118.94, 127.16, 127.73, 129.63 130.19, 130.31, 135.65, 145.10, 154.41, 166.77.

Compound (IV) Yield 80%, m.p. 410–412 K. IR (KBr, cm−1) 1631 (C=O), 1242 (C—N). NMR (CDCl3) δ(1H) 2.99 (m, 1H, piperazine), 3.15 (m, 3H, piperazine), 3.38 (q, 1H, piperazine), 3.45 (m, 1H, piperazine), 3.79 (s, 3H, O—CH3), 3.99 (m, 2H, piperazine), 6.86 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 6.92 (d, 2H, J = 9.2 Hz, meth­oxy­phen­yl), 7.29 (m, 2H, 2-bromo­phen­yl), 7.39 (t, 1H, 2-bromo­phen­yl), 7.61 (d, 1H, J = 8 Hz, 2-bromo­phen­yl): δ(13C) 41.72, 46.86, 50.88, 51.23, 55.54 (O—CH3), 114.53, 119.00, 119.19, 127.75, 130.32, 132.85, 137.91, 145.20, 154.47.

Compound (V). Yield 79%, m.p. 423–425 K. IR (KBr, cm−1) 1630 (C=O), 1243 (C—N). NMR (CDCl3) δ(1H) 2.93 (m, 1H, piperazine), 3.16 (m, 3H, piperazine), 3.32 (m, 1H, piperazine), 3.42 (m, 1H, piperazine), 3.75 (s, 3H, O—CH3), 3.96 (m, 2H, piperazine), 6.83 (d, 2H, J = 8.8Hz, meth­oxy­phen­yl), 6.89 (d, 2H, J = 8.8Hz, meth­oxy­phen­yl), 7.08 (m, 1H, 2-iodo­phen­yl), 7.22 (m,1H, 2-iodo­phen­yl), 7.39 (m, 1H, 2-iodo­phen­yl), 7.83 (m, 1H, 2-iodo­phen­yl): δ(13C) 46.92, 51.12, 55.49 (O—CH3), 92.48, 114.46, 118.95, 127.02, 128.37, 130.24, 139.22, 142.03, 145.12, 154.39

Compound (VI). Yield 79%, m.p. 465–467 K. IR (KBr, cm−1) 1631 (C=O), 1228 (C—N). NMR (CDCl3) δ(1H) 3.10 (m, 4H, piperazine), 3.76 (s, 3H, O—CH3), 3.88 (m, 4H, piperazine), 6.85 (m, 5H, meth­oxy­phenyl and 2-hy­droxy­phen­yl), 7.01 (m, 1H, 2-hy­droxy­phen­yl), 7.26 (m,1H, 2-hy­droxy­phen­yl), 7.33 (m,1H, 2-hy­droxy­phen­yl): δ(13C) 45.84, 51.16, 55.48 (O—CH3), 114.51, 116.77, 118.10, 118.53, 118.89, 128.26, 132.69, 145.09, 154.47, 159.09, 170.83.

Compound (VII). Yield 78%, m.p. 401–403 K. IR (KBr, cm−1) 1625 (C=O), 1247 (C—N). NMR (CDCl3) δ(1H) 3.05 (s, 4H, piperazine), 3.62 (m, 2H, piperazine), 3.75 (s, 3H, O—CH3), 3.85 (m, 2H, piperazine), 6.86 (m, 4H, meth­oxy­phen­yl), 7.09 (m, 2H, 4-fluoro­phen­yl), 7.44 (m, 2H, 4-fluoro­phen­yl): δ(13C) 47.77, 51.15, 55.47 (O—CH3), 114.47, 115.44, 118.90, 129.43 131.59, 145.11, 154.41, 162.13, 169.39.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Two bad outlier reflections, (080) and (186), were omitted from the final refinements for compound (V). For the minor disorder component of compound (III), the bonded distances and the 1,3 non-bonded distances were restrained to be the same as those in the major disorder component, subject to s.u. values of 0.01 and 0.02 Å, respectively. The anisotropic displacement parameters for pairs of partial-occupancy atoms occupying essentially the same physical space were constrained to be the same: in addition it was found desirable to constrain the minor component of the chloroaryl ring to be planar, and to apply a rigid-bond restraint to the bond C32—Cl32 in the minor disorder component. Subject to these conditions, the occupancies of the two disorder components refined to 0.942 (2) and 0.058 (2), respectively. After refinement of (IV) as a fully ordered structure, the difference map contained indications of some slight disorder similar to that found for (III). However, when this structure was refined using a disorder model analogous to that used for (III), the preliminary values of the occupancies were 0.9837 (7) and 0.0163 (7), so that each C atom in the minor disorder component represented less than 0.1 electron: accordingly, it was regarded as unrealistic to pursue this disorder model and that the fully ordered model was preferable. The principal feature in the difference map for (V) is a minimum, −2.24 e Å−3, located 1.80 Å from atom I2 at (x, y, z) and 1.83 Å from atom O17 at (Inline graphic − x, Inline graphic + y, z), although not co-linear with these two atoms, which subtend an angle of 135° at the minimum. All H atoms apart from those in the minor disorder components of compound (III) were located in difference maps. The H atoms bonded to C atoms were all then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atom bonded to an O atom in compound (VI), the atomic coordinates were refined with U iso(H) = 1.5U eq(O), giving an O—H distance of 0.92 (2) Å. In the absence of significant resonant scattering in (I), it was not possible to determine the correct orientation of the structure of (I) relative to the polar axis directions: however, this has no chemical significance.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III, IV, V, VI. DOI: 10.1107/S2056989019010491/zl2757sup1.cif

e-75-01253-sup1.cif (3.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019010491/zl2757Isup2.hkl

e-75-01253-Isup2.hkl (171.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019010491/zl2757IIsup3.hkl

e-75-01253-IIsup3.hkl (264.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019010491/zl2757IIIsup4.hkl

e-75-01253-IIIsup4.hkl (290.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989019010491/zl2757IVsup5.hkl

e-75-01253-IVsup5.hkl (340KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989019010491/zl2757Vsup6.hkl

e-75-01253-Vsup6.hkl (306.4KB, hkl)

Structure factors: contains datablock(s) VI. DOI: 10.1107/S2056989019010491/zl2757VIsup7.hkl

e-75-01253-VIsup7.hkl (277.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757Isup8.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757IIsup9.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757IIIsup10.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757Vsup11.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757VIsup12.cml

CCDC references: 1942579, 1942578, 1942577, 1942576, 1942575, 1942574

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKK thanks the University of Mysore for research facilities, and the UGC–BSR for a stipend. HSY thanks Professor S. Kabilan and Dr Elancheran of Annamalai University for the data collection for compound (IV).

supplementary crystallographic information

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Crystal data

C18H20N2O2 F(000) = 632
Mr = 296.36 Dx = 1.246 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 29.403 (5) Å Cell parameters from 2137 reflections
b = 7.9811 (14) Å θ = 2.7–27.7°
c = 6.7898 (13) Å µ = 0.08 mm1
β = 97.352 (12)° T = 293 K
V = 1580.3 (5) Å3 Plate, colourless
Z = 4 0.48 × 0.48 × 0.28 mm

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 2137 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1766 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω scans θmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −37→37
Tmin = 0.951, Tmax = 0.977 k = −10→10
5476 measured reflections l = −4→8

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.3311P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.14 e Å3
2137 reflections Δρmin = −0.13 e Å3
201 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0041 (8)
Primary atom site location: difference Fourier map

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.46344 (7) 0.2520 (2) 0.4700 (3) 0.0433 (5)
C2 0.41820 (8) 0.2497 (3) 0.5365 (3) 0.0439 (6)
H2A 0.4189 0.3164 0.6563 0.053*
H2B 0.4105 0.1356 0.5686 0.053*
C3 0.38166 (9) 0.3177 (3) 0.3801 (3) 0.0440 (6)
H3A 0.3518 0.3068 0.4254 0.053*
H3B 0.3872 0.4358 0.3589 0.053*
N4 0.38189 (7) 0.2271 (2) 0.1945 (3) 0.0391 (5)
C5 0.42693 (8) 0.2452 (3) 0.1240 (3) 0.0437 (6)
H5A 0.4329 0.3627 0.1012 0.052*
H5B 0.4268 0.1862 −0.0009 0.052*
C6 0.46440 (9) 0.1755 (3) 0.2747 (4) 0.0453 (6)
H6A 0.4606 0.0552 0.2850 0.054*
H6B 0.4940 0.1963 0.2304 0.054*
C17 0.50023 (9) 0.2585 (3) 0.6128 (4) 0.0458 (6)
O17 0.49611 (7) 0.2708 (3) 0.7894 (3) 0.0697 (6)
C11 0.54739 (9) 0.2548 (3) 0.5486 (4) 0.0479 (6)
C12 0.56066 (10) 0.3679 (4) 0.4144 (5) 0.0638 (8)
H12 0.5399 0.4469 0.3558 0.077*
C13 0.60510 (11) 0.3637 (5) 0.3668 (6) 0.0780 (10)
H13 0.6143 0.4415 0.2778 0.094*
C14 0.63520 (11) 0.2479 (5) 0.4481 (5) 0.0754 (10)
H14 0.6646 0.2443 0.4120 0.091*
C15 0.62257 (11) 0.1350 (5) 0.5841 (5) 0.0776 (10)
H15 0.6435 0.0561 0.6411 0.093*
C16 0.57874 (10) 0.1391 (4) 0.6357 (4) 0.0626 (8)
H16 0.5702 0.0641 0.7292 0.075*
C41 0.34279 (8) 0.2454 (3) 0.0494 (3) 0.0382 (6)
C42 0.30660 (8) 0.3523 (3) 0.0761 (4) 0.0454 (6)
H42 0.3089 0.4215 0.1870 0.055*
C43 0.26735 (9) 0.3569 (3) −0.0600 (4) 0.0497 (7)
H43 0.2435 0.4282 −0.0379 0.060*
C44 0.26289 (8) 0.2581 (4) −0.2277 (4) 0.0474 (6)
C45 0.29861 (9) 0.1527 (3) −0.2590 (4) 0.0464 (6)
H45 0.2963 0.0857 −0.3719 0.056*
C46 0.33796 (9) 0.1470 (3) −0.1215 (4) 0.0444 (6)
H46 0.3617 0.0754 −0.1443 0.053*
O44 0.22252 (7) 0.2728 (3) −0.3541 (3) 0.0671 (6)
C441 0.21605 (15) 0.1672 (6) −0.5223 (6) 0.0907 (12)
H41A 0.1855 0.1811 −0.5889 0.136*
H41B 0.2206 0.0527 −0.4811 0.136*
H41C 0.2377 0.1961 −0.6112 0.136*

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0391 (11) 0.0513 (13) 0.0412 (11) −0.0030 (10) 0.0121 (9) −0.0049 (9)
C2 0.0445 (14) 0.0484 (14) 0.0410 (14) −0.0017 (12) 0.0139 (11) −0.0028 (11)
C3 0.0435 (13) 0.0484 (14) 0.0429 (14) 0.0032 (12) 0.0163 (11) −0.0018 (11)
N4 0.0364 (11) 0.0447 (11) 0.0384 (11) 0.0040 (10) 0.0136 (9) −0.0015 (9)
C5 0.0447 (14) 0.0510 (15) 0.0380 (13) 0.0017 (11) 0.0154 (11) 0.0001 (10)
C6 0.0413 (13) 0.0521 (14) 0.0442 (13) 0.0038 (12) 0.0124 (11) −0.0035 (11)
C17 0.0454 (15) 0.0482 (15) 0.0448 (15) −0.0057 (13) 0.0093 (12) −0.0004 (11)
O17 0.0558 (11) 0.1098 (18) 0.0448 (11) −0.0141 (12) 0.0117 (9) −0.0072 (11)
C11 0.0444 (14) 0.0553 (16) 0.0440 (14) −0.0069 (13) 0.0055 (11) −0.0037 (12)
C12 0.0483 (16) 0.074 (2) 0.0703 (19) −0.0011 (15) 0.0131 (14) 0.0196 (15)
C13 0.056 (2) 0.103 (3) 0.078 (2) −0.0136 (18) 0.0197 (17) 0.020 (2)
C14 0.0406 (17) 0.110 (3) 0.078 (2) −0.0040 (18) 0.0141 (16) −0.005 (2)
C15 0.0518 (19) 0.093 (3) 0.085 (2) 0.0120 (18) −0.0028 (16) 0.0019 (19)
C16 0.0510 (17) 0.074 (2) 0.0608 (18) −0.0008 (15) 0.0009 (14) 0.0100 (15)
C41 0.0386 (13) 0.0376 (13) 0.0407 (13) −0.0028 (11) 0.0144 (11) 0.0050 (10)
C42 0.0402 (14) 0.0471 (16) 0.0511 (15) 0.0014 (11) 0.0143 (11) −0.0046 (11)
C43 0.0396 (14) 0.0489 (16) 0.0633 (17) 0.0069 (13) 0.0165 (13) 0.0004 (13)
C44 0.0371 (14) 0.0555 (16) 0.0504 (15) −0.0032 (13) 0.0093 (11) 0.0081 (13)
C45 0.0504 (15) 0.0488 (16) 0.0413 (14) −0.0014 (13) 0.0117 (11) −0.0033 (11)
C46 0.0468 (14) 0.0449 (15) 0.0439 (14) 0.0085 (12) 0.0155 (11) 0.0000 (11)
O44 0.0461 (11) 0.0883 (16) 0.0651 (13) 0.0030 (11) 0.0007 (9) −0.0011 (12)
C441 0.076 (2) 0.110 (3) 0.078 (3) 0.001 (2) −0.0201 (18) −0.015 (2)

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Geometric parameters (Å, º)

N1—C17 1.358 (3) C13—C14 1.348 (5)
N1—C2 1.458 (3) C13—H13 0.9300
N1—C6 1.463 (3) C14—C15 1.375 (5)
C2—C3 1.511 (4) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.378 (4)
C2—H2B 0.9700 C15—H15 0.9300
C3—N4 1.454 (3) C16—H16 0.9300
C3—H3A 0.9700 C41—C46 1.393 (4)
C3—H3B 0.9700 C41—C42 1.394 (3)
N4—C41 1.422 (3) C42—C43 1.384 (4)
N4—C5 1.472 (3) C42—H42 0.9300
C5—C6 1.511 (4) C43—C44 1.378 (4)
C5—H5A 0.9700 C43—H43 0.9300
C5—H5B 0.9700 C44—O44 1.378 (3)
C6—H6A 0.9700 C44—C45 1.383 (4)
C6—H6B 0.9700 C45—C46 1.391 (4)
C17—O17 1.225 (3) C45—H45 0.9300
C17—C11 1.506 (3) C46—H46 0.9300
C11—C12 1.374 (4) O44—C441 1.412 (4)
C11—C16 1.383 (4) C441—H41A 0.9600
C12—C13 1.386 (4) C441—H41B 0.9600
C12—H12 0.9300 C441—H41C 0.9600
C17—N1—C2 117.04 (19) C13—C12—H12 120.2
C17—N1—C6 123.82 (19) C14—C13—C12 120.7 (3)
C2—N1—C6 113.5 (2) C14—C13—H13 119.7
N1—C2—C3 111.88 (19) C12—C13—H13 119.7
N1—C2—H2A 109.2 C13—C14—C15 120.3 (3)
C3—C2—H2A 109.2 C13—C14—H14 119.8
N1—C2—H2B 109.2 C15—C14—H14 119.8
C3—C2—H2B 109.2 C14—C15—C16 119.8 (3)
H2A—C2—H2B 107.9 C14—C15—H15 120.1
N4—C3—C2 110.4 (2) C16—C15—H15 120.1
N4—C3—H3A 109.6 C15—C16—C11 120.1 (3)
C2—C3—H3A 109.6 C15—C16—H16 120.0
N4—C3—H3B 109.6 C11—C16—H16 120.0
C2—C3—H3B 109.6 C46—C41—C42 117.1 (2)
H3A—C3—H3B 108.1 C46—C41—N4 120.4 (2)
C41—N4—C3 117.17 (18) C42—C41—N4 122.4 (2)
C41—N4—C5 116.48 (17) C43—C42—C41 121.0 (2)
C3—N4—C5 109.71 (19) C43—C42—H42 119.5
N4—C5—C6 110.63 (18) C41—C42—H42 119.5
N4—C5—H5A 109.5 C44—C43—C42 121.3 (2)
C6—C5—H5A 109.5 C44—C43—H43 119.3
N4—C5—H5B 109.5 C42—C43—H43 119.3
C6—C5—H5B 109.5 C43—C44—O44 116.7 (2)
H5A—C5—H5B 108.1 C43—C44—C45 118.8 (2)
N1—C6—C5 111.3 (2) O44—C44—C45 124.5 (3)
N1—C6—H6A 109.4 C44—C45—C46 120.0 (2)
C5—C6—H6A 109.4 C44—C45—H45 120.0
N1—C6—H6B 109.4 C46—C45—H45 120.0
C5—C6—H6B 109.4 C45—C46—C41 121.9 (2)
H6A—C6—H6B 108.0 C45—C46—H46 119.1
O17—C17—N1 122.2 (2) C41—C46—H46 119.1
O17—C17—C11 119.7 (2) C44—O44—C441 118.0 (3)
N1—C17—C11 118.1 (2) O44—C441—H41A 109.5
C12—C11—C16 119.5 (3) O44—C441—H41B 109.5
C12—C11—C17 122.0 (3) H41A—C441—H41B 109.5
C16—C11—C17 118.5 (2) O44—C441—H41C 109.5
C11—C12—C13 119.6 (3) H41A—C441—H41C 109.5
C11—C12—H12 120.2 H41B—C441—H41C 109.5
C17—N1—C2—C3 154.8 (2) C12—C13—C14—C15 −1.9 (6)
C6—N1—C2—C3 −50.5 (3) C13—C14—C15—C16 0.8 (6)
N1—C2—C3—N4 55.1 (3) C14—C15—C16—C11 1.0 (5)
C2—C3—N4—C41 164.3 (2) C12—C11—C16—C15 −1.6 (4)
C2—C3—N4—C5 −59.9 (3) C17—C11—C16—C15 −178.4 (3)
C41—N4—C5—C6 −163.8 (2) C3—N4—C41—C46 −172.1 (2)
C3—N4—C5—C6 60.1 (3) C5—N4—C41—C46 55.1 (3)
C17—N1—C6—C5 −157.0 (2) C3—N4—C41—C42 3.6 (3)
C2—N1—C6—C5 50.3 (3) C5—N4—C41—C42 −129.2 (2)
N4—C5—C6—N1 −54.7 (3) C46—C41—C42—C43 1.3 (4)
C2—N1—C17—O17 −3.7 (4) N4—C41—C42—C43 −174.5 (2)
C6—N1—C17—O17 −155.6 (3) C41—C42—C43—C44 −0.9 (4)
C2—N1—C17—C11 177.9 (2) C42—C43—C44—O44 −179.7 (2)
C6—N1—C17—C11 26.1 (3) C42—C43—C44—C45 0.0 (4)
O17—C17—C11—C12 −123.5 (3) C43—C44—C45—C46 0.5 (4)
N1—C17—C11—C12 54.9 (4) O44—C44—C45—C46 −179.8 (2)
O17—C17—C11—C16 53.2 (4) C44—C45—C46—C41 −0.1 (4)
N1—C17—C11—C16 −128.4 (3) C42—C41—C46—C45 −0.8 (4)
C16—C11—C12—C13 0.6 (5) N4—C41—C46—C45 175.1 (2)
C17—C11—C12—C13 177.2 (3) C43—C44—O44—C441 −177.0 (3)
C11—C12—C13—C14 1.2 (6) C45—C44—O44—C441 3.3 (4)

1-Benzoyl-4-(4-methoxyphenyl)piperazine (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O17i 0.93 2.61 3.497 (4) 160

Symmetry code: (i) x, −y+1, z−1/2.

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Crystal data

C18H19FN2O2 F(000) = 664
Mr = 314.35 Dx = 1.324 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.998 (2) Å Cell parameters from 3334 reflections
b = 7.938 (2) Å θ = 2.7–28.4°
c = 28.415 (6) Å µ = 0.10 mm1
β = 92.20 (3)° T = 293 K
V = 1577.3 (7) Å3 Block, colourless
Z = 4 0.48 × 0.36 × 0.32 mm

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 3315 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1863 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
ω scans θmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −8→5
Tmin = 0.931, Tmax = 0.970 k = −10→5
6039 measured reflections l = −36→28

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070 H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0566P)2 + 1.2906P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3315 reflections Δρmax = 0.21 e Å3
208 parameters Δρmin = −0.27 e Å3
0 restraints

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7575 (4) 0.5325 (4) 0.41972 (9) 0.0547 (8)
C2 0.5981 (5) 0.4154 (5) 0.42224 (11) 0.0560 (9)
H2A 0.5401 0.4256 0.4526 0.067*
H2B 0.6439 0.3008 0.4191 0.067*
C3 0.4517 (5) 0.4532 (5) 0.38354 (11) 0.0541 (9)
H3A 0.3490 0.3714 0.3845 0.065*
H3B 0.3976 0.5639 0.3887 0.065*
N4 0.5348 (3) 0.4485 (3) 0.33706 (9) 0.0475 (7)
C5 0.6957 (5) 0.5657 (5) 0.33544 (11) 0.0567 (9)
H5A 0.6492 0.6801 0.3386 0.068*
H5B 0.7543 0.5563 0.3052 0.068*
C6 0.8428 (5) 0.5301 (5) 0.37396 (11) 0.0623 (10)
H6A 0.8999 0.4207 0.3688 0.075*
H6B 0.9433 0.6142 0.3733 0.075*
C17 0.7990 (4) 0.6422 (4) 0.45441 (11) 0.0464 (8)
O17 0.7152 (3) 0.6409 (3) 0.49118 (8) 0.0632 (7)
C11 0.9578 (4) 0.7658 (4) 0.44823 (10) 0.0436 (8)
C12 0.9203 (4) 0.9299 (5) 0.43559 (11) 0.0516 (8)
F12 0.7371 (3) 0.9715 (3) 0.42311 (8) 0.0805 (7)
C13 1.0575 (5) 1.0534 (5) 0.43537 (12) 0.0628 (10)
H13 1.0261 1.1635 0.4270 0.075*
C14 1.2416 (5) 1.0101 (5) 0.44775 (12) 0.0630 (10)
H14 1.3371 1.0916 0.4479 0.076*
C15 1.2868 (5) 0.8473 (6) 0.45996 (12) 0.0623 (10)
H15 1.4129 0.8190 0.4678 0.075*
C16 1.1467 (5) 0.7253 (5) 0.46063 (11) 0.0542 (9)
H16 1.1785 0.6156 0.4694 0.065*
C41 0.4022 (4) 0.4532 (4) 0.29834 (11) 0.0466 (8)
C42 0.2375 (5) 0.3540 (4) 0.29751 (11) 0.0516 (8)
H42 0.2144 0.2861 0.3234 0.062*
C43 0.1076 (5) 0.3529 (5) 0.25972 (11) 0.0545 (9)
H43 −0.0010 0.2857 0.2606 0.065*
C44 0.1383 (5) 0.4511 (5) 0.22074 (11) 0.0529 (9)
C45 0.3014 (5) 0.5483 (5) 0.22029 (12) 0.0567 (9)
H45 0.3256 0.6126 0.1938 0.068*
C46 0.4291 (5) 0.5518 (4) 0.25840 (11) 0.0538 (9)
H46 0.5358 0.6214 0.2575 0.065*
O44 0.0183 (4) 0.4587 (4) 0.18145 (8) 0.0718 (8)
C441 −0.1580 (5) 0.3703 (6) 0.18248 (13) 0.0756 (12)
H41A −0.2281 0.3857 0.1531 0.113*
H41B −0.1334 0.2525 0.1874 0.113*
H41C −0.2317 0.4128 0.2077 0.113*

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0531 (16) 0.062 (2) 0.0495 (15) −0.0161 (15) 0.0145 (12) −0.0028 (14)
C2 0.059 (2) 0.054 (2) 0.0556 (19) −0.0119 (18) 0.0113 (16) 0.0044 (17)
C3 0.0531 (19) 0.058 (2) 0.0528 (19) −0.0110 (18) 0.0184 (15) 0.0043 (16)
N4 0.0481 (14) 0.0478 (18) 0.0474 (14) −0.0074 (13) 0.0150 (12) −0.0020 (13)
C5 0.0568 (19) 0.065 (2) 0.0496 (18) −0.0130 (19) 0.0224 (16) −0.0017 (17)
C6 0.0518 (19) 0.081 (3) 0.056 (2) −0.013 (2) 0.0173 (16) −0.0064 (19)
C17 0.0458 (17) 0.046 (2) 0.0478 (18) 0.0034 (16) 0.0095 (14) 0.0067 (16)
O17 0.0736 (16) 0.0618 (17) 0.0561 (13) −0.0101 (13) 0.0245 (12) −0.0006 (12)
C11 0.0442 (17) 0.048 (2) 0.0396 (15) 0.0010 (15) 0.0066 (12) 0.0047 (14)
C12 0.0423 (17) 0.055 (2) 0.058 (2) 0.0062 (17) 0.0018 (14) 0.0089 (17)
F12 0.0519 (12) 0.0683 (16) 0.1207 (19) 0.0103 (11) −0.0041 (11) 0.0252 (13)
C13 0.065 (2) 0.049 (2) 0.074 (2) −0.003 (2) 0.0074 (18) 0.0086 (19)
C14 0.060 (2) 0.069 (3) 0.061 (2) −0.017 (2) 0.0079 (17) −0.009 (2)
C15 0.0420 (18) 0.089 (3) 0.056 (2) −0.001 (2) 0.0027 (15) −0.001 (2)
C16 0.0522 (19) 0.058 (2) 0.0523 (19) 0.0106 (18) 0.0058 (15) 0.0086 (17)
C41 0.0496 (18) 0.0407 (19) 0.0511 (18) −0.0006 (16) 0.0218 (14) −0.0056 (15)
C42 0.061 (2) 0.047 (2) 0.0485 (18) −0.0089 (18) 0.0179 (15) −0.0018 (16)
C43 0.0552 (19) 0.051 (2) 0.058 (2) −0.0096 (18) 0.0163 (16) −0.0074 (18)
C44 0.0569 (19) 0.055 (2) 0.0479 (18) 0.0019 (18) 0.0114 (16) −0.0065 (17)
C45 0.064 (2) 0.053 (2) 0.054 (2) −0.0051 (19) 0.0201 (17) 0.0065 (17)
C46 0.0523 (18) 0.053 (2) 0.057 (2) −0.0109 (18) 0.0163 (16) 0.0021 (17)
O44 0.0685 (16) 0.087 (2) 0.0598 (15) −0.0122 (15) 0.0054 (12) 0.0035 (14)
C441 0.063 (2) 0.097 (3) 0.067 (2) −0.014 (2) 0.0057 (18) −0.009 (2)

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Geometric parameters (Å, º)

N1—C17 1.338 (4) C13—C14 1.367 (5)
N1—C6 1.452 (4) C13—H13 0.9300
N1—C2 1.456 (4) C14—C15 1.371 (5)
C2—C3 1.504 (4) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.379 (5)
C2—H2B 0.9700 C15—H15 0.9300
C3—N4 1.464 (4) C16—H16 0.9300
C3—H3A 0.9700 C41—C42 1.396 (4)
C3—H3B 0.9700 C41—C46 1.397 (4)
N4—C41 1.412 (4) C42—C43 1.380 (4)
N4—C5 1.462 (4) C42—H42 0.9300
C5—C6 1.500 (5) C43—C44 1.378 (4)
C5—H5A 0.9700 C43—H43 0.9300
C5—H5B 0.9700 C44—O44 1.373 (4)
C6—H6A 0.9700 C44—C45 1.378 (5)
C6—H6B 0.9700 C45—C46 1.378 (5)
C17—O17 1.218 (3) C45—H45 0.9300
C17—C11 1.498 (4) C46—H46 0.9300
C11—C12 1.374 (5) O44—C441 1.421 (4)
C11—C16 1.393 (4) C441—H41A 0.9600
C12—F12 1.358 (4) C441—H41B 0.9600
C12—C13 1.372 (5) C441—H41C 0.9600
C17—N1—C6 125.6 (3) C13—C12—C11 123.5 (3)
C17—N1—C2 121.6 (3) C14—C13—C12 118.2 (4)
C6—N1—C2 112.2 (3) C14—C13—H13 120.9
N1—C2—C3 109.8 (3) C12—C13—H13 120.9
N1—C2—H2A 109.7 C13—C14—C15 120.5 (4)
C3—C2—H2A 109.7 C13—C14—H14 119.7
N1—C2—H2B 109.7 C15—C14—H14 119.7
C3—C2—H2B 109.7 C14—C15—C16 120.6 (3)
H2A—C2—H2B 108.2 C14—C15—H15 119.7
N4—C3—C2 111.8 (3) C16—C15—H15 119.7
N4—C3—H3A 109.2 C15—C16—C11 120.2 (3)
C2—C3—H3A 109.2 C15—C16—H16 119.9
N4—C3—H3B 109.2 C11—C16—H16 119.9
C2—C3—H3B 109.2 C42—C41—C46 116.1 (3)
H3A—C3—H3B 107.9 C42—C41—N4 121.0 (3)
C41—N4—C5 116.3 (2) C46—C41—N4 122.8 (3)
C41—N4—C3 115.5 (2) C43—C42—C41 122.4 (3)
C5—N4—C3 110.2 (2) C43—C42—H42 118.8
N4—C5—C6 111.4 (3) C41—C42—H42 118.8
N4—C5—H5A 109.3 C44—C43—C42 120.3 (3)
C6—C5—H5A 109.3 C44—C43—H43 119.9
N4—C5—H5B 109.3 C42—C43—H43 119.9
C6—C5—H5B 109.3 O44—C44—C45 116.7 (3)
H5A—C5—H5B 108.0 O44—C44—C43 124.7 (3)
N1—C6—C5 110.9 (3) C45—C44—C43 118.6 (3)
N1—C6—H6A 109.5 C46—C45—C44 121.1 (3)
C5—C6—H6A 109.5 C46—C45—H45 119.5
N1—C6—H6B 109.5 C44—C45—H45 119.5
C5—C6—H6B 109.5 C45—C46—C41 121.6 (3)
H6A—C6—H6B 108.0 C45—C46—H46 119.2
O17—C17—N1 121.9 (3) C41—C46—H46 119.2
O17—C17—C11 119.3 (3) C44—O44—C441 117.8 (3)
N1—C17—C11 118.7 (2) O44—C441—H41A 109.5
C12—C11—C16 117.0 (3) O44—C441—H41B 109.5
C12—C11—C17 121.1 (3) H41A—C441—H41B 109.5
C16—C11—C17 121.4 (3) O44—C441—H41C 109.5
F12—C12—C13 118.6 (3) H41A—C441—H41C 109.5
F12—C12—C11 117.9 (3) H41B—C441—H41C 109.5
C17—N1—C2—C3 116.2 (3) C11—C12—C13—C14 1.0 (5)
C6—N1—C2—C3 −55.9 (4) C12—C13—C14—C15 0.1 (5)
N1—C2—C3—N4 56.2 (4) C13—C14—C15—C16 −1.0 (5)
C2—C3—N4—C41 169.4 (3) C14—C15—C16—C11 0.9 (5)
C2—C3—N4—C5 −56.4 (4) C12—C11—C16—C15 0.1 (4)
C41—N4—C5—C6 −170.6 (3) C17—C11—C16—C15 −172.2 (3)
C3—N4—C5—C6 55.5 (4) C5—N4—C41—C42 −176.2 (3)
C17—N1—C6—C5 −115.8 (4) C3—N4—C41—C42 −44.8 (4)
C2—N1—C6—C5 55.9 (4) C5—N4—C41—C46 5.7 (4)
N4—C5—C6—N1 −55.4 (4) C3—N4—C41—C46 137.2 (3)
C6—N1—C17—O17 176.7 (3) C46—C41—C42—C43 −0.3 (5)
C2—N1—C17—O17 5.7 (5) N4—C41—C42—C43 −178.4 (3)
C6—N1—C17—C11 −5.5 (5) C41—C42—C43—C44 0.5 (5)
C2—N1—C17—C11 −176.4 (3) C42—C43—C44—O44 179.9 (3)
O17—C17—C11—C12 −81.2 (4) C42—C43—C44—C45 0.6 (5)
N1—C17—C11—C12 100.9 (4) O44—C44—C45—C46 178.8 (3)
O17—C17—C11—C16 90.8 (4) C43—C44—C45—C46 −1.8 (5)
N1—C17—C11—C16 −87.2 (4) C44—C45—C46—C41 2.1 (5)
C16—C11—C12—F12 179.6 (3) C42—C41—C46—C45 −1.0 (5)
C17—C11—C12—F12 −8.1 (4) N4—C41—C46—C45 177.1 (3)
C16—C11—C12—C13 −1.0 (5) C45—C44—O44—C441 −175.1 (3)
C17—C11—C12—C13 171.2 (3) C43—C44—O44—C441 5.5 (5)
F12—C12—C13—C14 −179.7 (3)

1-(2-Fluorobenzoyl)-4-(4-methoxyphenyl)piperazine (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O17i 0.97 2.50 3.387 (4) 152
C16—H16···O17ii 0.93 2.43 3.340 (5) 167

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Crystal data

C18H19ClN2O2 Dx = 1.322 Mg m3
Mr = 330.80 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3642 reflections
a = 13.0320 (11) Å θ = 2.6–27.8°
b = 13.2470 (13) Å µ = 0.24 mm1
c = 19.258 (2) Å T = 293 K
V = 3324.6 (6) Å3 Block, yellow
Z = 8 0.50 × 0.40 × 0.38 mm
F(000) = 1392

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 3642 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2407 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω scans θmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −16→17
Tmin = 0.862, Tmax = 0.912 k = −16→17
13862 measured reflections l = −12→25

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Refinement

Refinement on F2 26 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.4776P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3642 reflections Δρmax = 0.23 e Å3
243 parameters Δρmin = −0.45 e Å3

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.68382 (12) 0.28146 (13) 0.41176 (9) 0.0526 (4)
C2 0.58246 (16) 0.25886 (18) 0.43972 (13) 0.0642 (6)
H2A 0.5883 0.2424 0.4886 0.077*
H2B 0.5542 0.2006 0.4160 0.077*
C3 0.51117 (15) 0.34757 (17) 0.43087 (11) 0.0560 (6)
H3A 0.4428 0.3292 0.4463 0.067*
H3B 0.5349 0.4035 0.4592 0.067*
N4 0.50753 (11) 0.37844 (12) 0.35839 (8) 0.0447 (4)
C5 0.60999 (14) 0.40544 (16) 0.33358 (10) 0.0488 (5)
H5A 0.6361 0.4619 0.3604 0.059*
H5B 0.6061 0.4261 0.2853 0.059*
C6 0.68172 (15) 0.31756 (17) 0.34028 (11) 0.0539 (5)
H6A 0.6595 0.2635 0.3098 0.065*
H6B 0.7502 0.3378 0.3263 0.065*
C17 0.76756 (19) 0.26749 (18) 0.45027 (14) 0.0534 (6) 0.942 (2)
O17 0.76535 (19) 0.2354 (2) 0.50989 (12) 0.0936 (9) 0.942 (2)
C11 0.86962 (18) 0.29271 (17) 0.41824 (14) 0.0470 (5) 0.942 (2)
C12 0.9128 (2) 0.38720 (18) 0.42449 (16) 0.0535 (6) 0.942 (2)
Cl12 0.84046 (7) 0.48603 (5) 0.46012 (3) 0.0799 (3) 0.942 (2)
C13 1.0112 (3) 0.4066 (3) 0.4020 (2) 0.0726 (8) 0.942 (2)
H13 1.0393 0.4707 0.4073 0.087* 0.942 (2)
C14 1.0670 (3) 0.3318 (4) 0.3718 (3) 0.0882 (11) 0.942 (2)
H14 1.1339 0.3446 0.3573 0.106* 0.942 (2)
C15 1.0253 (3) 0.2376 (3) 0.36267 (19) 0.0843 (11) 0.942 (2)
H15 1.0628 0.1871 0.3407 0.101* 0.942 (2)
C16 0.9270 (2) 0.2185 (2) 0.38639 (15) 0.0670 (7) 0.942 (2)
H16 0.8991 0.1544 0.3808 0.080* 0.942 (2)
C37 0.773 (2) 0.2975 (19) 0.454 (2) 0.0534 (6) 0.058 (2)
O37 0.777 (3) 0.285 (4) 0.517 (2) 0.0936 (9) 0.058 (2)
C31 0.871 (3) 0.3261 (14) 0.418 (2) 0.0470 (5) 0.058 (2)
C32 0.935 (2) 0.2481 (15) 0.3977 (18) 0.0670 (7) 0.058 (2)
Cl32 0.8826 (19) 0.1267 (11) 0.4022 (13) 0.162 (10) 0.058 (2)
C33 1.035 (3) 0.264 (3) 0.379 (3) 0.0843 (11) 0.058 (2)
H33 1.0769 0.2102 0.3661 0.101* 0.058 (2)
C34 1.073 (3) 0.360 (3) 0.381 (5) 0.0882 (11) 0.058 (2)
H34 1.1407 0.3717 0.3675 0.106* 0.058 (2)
C35 1.013 (4) 0.439 (3) 0.403 (4) 0.0726 (8) 0.058 (2)
H35 1.0396 0.5039 0.4036 0.087* 0.058 (2)
C36 0.913 (3) 0.4206 (16) 0.424 (3) 0.0535 (6) 0.058 (2)
H36 0.8746 0.4729 0.4429 0.064* 0.058 (2)
C41 0.42740 (14) 0.44424 (14) 0.33779 (10) 0.0415 (4)
C42 0.35531 (15) 0.48382 (16) 0.38335 (11) 0.0523 (5)
H42 0.3599 0.4687 0.4304 0.063*
C43 0.27626 (15) 0.54574 (17) 0.35992 (11) 0.0547 (5)
H43 0.2290 0.5716 0.3914 0.066*
C44 0.26749 (14) 0.56901 (15) 0.29086 (10) 0.0469 (5)
C45 0.33768 (16) 0.52910 (16) 0.24458 (11) 0.0527 (5)
H45 0.3323 0.5440 0.1975 0.063*
C46 0.41523 (16) 0.46762 (16) 0.26773 (10) 0.0519 (5)
H46 0.4611 0.4407 0.2357 0.062*
O44 0.19396 (11) 0.62997 (12) 0.26191 (8) 0.0676 (5)
C441 0.1267 (2) 0.6808 (2) 0.30737 (15) 0.0838 (8)
H41A 0.0850 0.7271 0.2814 0.126*
H41B 0.1658 0.7173 0.3413 0.126*
H41C 0.0834 0.6325 0.3303 0.126*

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0402 (9) 0.0602 (11) 0.0574 (10) 0.0018 (8) −0.0043 (8) 0.0178 (9)
C2 0.0463 (12) 0.0702 (15) 0.0760 (15) −0.0061 (11) −0.0039 (11) 0.0334 (12)
C3 0.0438 (11) 0.0697 (14) 0.0546 (12) −0.0020 (10) 0.0042 (9) 0.0198 (11)
N4 0.0396 (8) 0.0489 (9) 0.0455 (9) 0.0011 (7) 0.0009 (7) 0.0096 (7)
C5 0.0410 (10) 0.0582 (12) 0.0472 (11) 0.0023 (10) 0.0022 (8) 0.0129 (9)
C6 0.0442 (11) 0.0664 (14) 0.0510 (12) 0.0062 (10) −0.0026 (9) 0.0051 (10)
C17 0.0481 (12) 0.0511 (14) 0.0610 (14) 0.0011 (12) −0.0065 (10) 0.0135 (12)
O17 0.0598 (12) 0.147 (2) 0.0735 (12) −0.0024 (16) −0.0080 (9) 0.0564 (16)
C11 0.0435 (11) 0.0495 (13) 0.0482 (11) 0.0035 (12) −0.0107 (9) 0.0073 (12)
C12 0.0615 (13) 0.0566 (15) 0.0424 (11) −0.0085 (15) −0.0129 (10) 0.0079 (13)
Cl12 0.1176 (7) 0.0594 (4) 0.0626 (4) −0.0059 (4) −0.0025 (4) −0.0119 (3)
C13 0.0680 (16) 0.092 (2) 0.0575 (14) −0.0303 (18) −0.0207 (12) 0.024 (2)
C14 0.0466 (14) 0.143 (3) 0.075 (3) 0.000 (2) −0.0060 (14) 0.041 (2)
C15 0.0634 (17) 0.113 (3) 0.076 (3) 0.0371 (19) 0.0043 (16) 0.0098 (19)
C16 0.0605 (15) 0.0611 (17) 0.0794 (18) 0.0121 (14) −0.0092 (13) −0.0010 (14)
C37 0.0481 (12) 0.0511 (14) 0.0610 (14) 0.0011 (12) −0.0065 (10) 0.0135 (12)
O37 0.0598 (12) 0.147 (2) 0.0735 (12) −0.0024 (16) −0.0080 (9) 0.0564 (16)
C31 0.0435 (11) 0.0495 (13) 0.0482 (11) 0.0035 (12) −0.0107 (9) 0.0073 (12)
C32 0.0605 (15) 0.0611 (17) 0.0794 (18) 0.0121 (14) −0.0092 (13) −0.0010 (14)
Cl32 0.22 (2) 0.072 (9) 0.19 (2) 0.000 (11) −0.011 (17) −0.030 (11)
C33 0.0634 (17) 0.113 (3) 0.076 (3) 0.0371 (19) 0.0043 (16) 0.0098 (19)
C34 0.0466 (14) 0.143 (3) 0.075 (3) 0.000 (2) −0.0060 (14) 0.041 (2)
C35 0.0680 (16) 0.092 (2) 0.0575 (14) −0.0303 (18) −0.0207 (12) 0.024 (2)
C36 0.0615 (13) 0.0566 (15) 0.0424 (11) −0.0085 (15) −0.0129 (10) 0.0079 (13)
C41 0.0383 (9) 0.0408 (10) 0.0454 (10) −0.0011 (8) 0.0000 (8) 0.0008 (8)
C42 0.0483 (11) 0.0649 (13) 0.0436 (11) 0.0045 (10) 0.0057 (9) 0.0076 (10)
C43 0.0422 (11) 0.0633 (14) 0.0586 (13) 0.0070 (10) 0.0122 (9) 0.0011 (10)
C44 0.0411 (10) 0.0433 (11) 0.0563 (12) 0.0035 (9) −0.0017 (9) −0.0012 (9)
C45 0.0588 (12) 0.0577 (12) 0.0417 (10) 0.0126 (11) −0.0039 (9) −0.0020 (9)
C46 0.0523 (12) 0.0603 (13) 0.0431 (11) 0.0163 (10) 0.0025 (9) −0.0064 (9)
O44 0.0592 (9) 0.0722 (10) 0.0715 (10) 0.0277 (8) −0.0029 (8) 0.0013 (8)
C441 0.0720 (16) 0.0823 (18) 0.097 (2) 0.0365 (15) 0.0069 (15) 0.0016 (16)

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Geometric parameters (Å, º)

N1—C17 1.332 (3) C16—H16 0.9300
N1—C37 1.43 (4) C37—O37 1.222 (10)
N1—C2 1.458 (3) C37—C31 1.508 (9)
N1—C6 1.458 (3) C31—C36 1.372 (10)
C2—C3 1.508 (3) C31—C32 1.381 (9)
C2—H2A 0.9700 C32—C33 1.371 (10)
C2—H2B 0.9700 C32—Cl32 1.749 (10)
C3—N4 1.455 (2) C33—C34 1.362 (10)
C3—H3A 0.9700 C33—H33 0.9300
C3—H3B 0.9700 C34—C35 1.372 (11)
N4—C41 1.417 (2) C34—H34 0.9300
N4—C5 1.463 (2) C35—C36 1.385 (10)
C5—C6 1.499 (3) C35—H35 0.9300
C5—H5A 0.9700 C36—H36 0.9300
C5—H5B 0.9700 C41—C42 1.388 (3)
C6—H6A 0.9700 C41—C46 1.393 (3)
C6—H6B 0.9700 C42—C43 1.392 (3)
C17—O17 1.225 (3) C42—H42 0.9300
C17—C11 1.504 (3) C43—C44 1.370 (3)
C11—C12 1.378 (3) C43—H43 0.9300
C11—C16 1.379 (3) C44—O44 1.372 (2)
C12—C13 1.378 (4) C44—C45 1.382 (3)
C12—Cl12 1.753 (3) C45—C46 1.372 (3)
C13—C14 1.359 (4) C45—H45 0.9300
C13—H13 0.9300 C46—H46 0.9300
C14—C15 1.373 (5) O44—C441 1.410 (3)
C14—H14 0.9300 C441—H41A 0.9600
C15—C16 1.384 (4) C441—H41B 0.9600
C15—H15 0.9300 C441—H41C 0.9600
C17—N1—C2 120.55 (18) C11—C16—C15 121.2 (3)
C37—N1—C2 123.8 (13) C11—C16—H16 119.4
C17—N1—C6 125.92 (18) C15—C16—H16 119.4
C37—N1—C6 120.1 (13) O37—C37—N1 125 (3)
C2—N1—C6 113.53 (16) O37—C37—C31 116.5 (17)
N1—C2—C3 110.89 (17) N1—C37—C31 118 (3)
N1—C2—H2A 109.5 C36—C31—C32 117.9 (11)
C3—C2—H2A 109.5 C36—C31—C37 122.0 (14)
N1—C2—H2B 109.5 C32—C31—C37 116.9 (12)
C3—C2—H2B 109.5 C33—C32—C31 122.1 (11)
H2A—C2—H2B 108.0 C33—C32—Cl32 121.7 (12)
N4—C3—C2 110.33 (18) C31—C32—Cl32 116.1 (11)
N4—C3—H3A 109.6 C34—C33—C32 118.9 (13)
C2—C3—H3A 109.6 C34—C33—H33 120.6
N4—C3—H3B 109.6 C32—C33—H33 120.6
C2—C3—H3B 109.6 C33—C34—C35 120.7 (13)
H3A—C3—H3B 108.1 C33—C34—H34 119.7
C41—N4—C3 117.74 (15) C35—C34—H34 119.7
C41—N4—C5 115.52 (14) C34—C35—C36 119.6 (13)
C3—N4—C5 110.63 (15) C34—C35—H35 120.2
N4—C5—C6 110.57 (17) C36—C35—H35 120.2
N4—C5—H5A 109.5 C31—C36—C35 120.5 (13)
C6—C5—H5A 109.5 C31—C36—H36 119.8
N4—C5—H5B 109.5 C35—C36—H36 119.8
C6—C5—H5B 109.5 C42—C41—C46 116.81 (17)
H5A—C5—H5B 108.1 C42—C41—N4 123.64 (17)
N1—C6—C5 110.36 (17) C46—C41—N4 119.46 (16)
N1—C6—H6A 109.6 C41—C42—C43 121.23 (19)
C5—C6—H6A 109.6 C41—C42—H42 119.4
N1—C6—H6B 109.6 C43—C42—H42 119.4
C5—C6—H6B 109.6 C44—C43—C42 120.60 (18)
H6A—C6—H6B 108.1 C44—C43—H43 119.7
O17—C17—N1 123.4 (2) C42—C43—H43 119.7
O17—C17—C11 118.9 (2) C43—C44—O44 125.84 (18)
N1—C17—C11 117.7 (2) C43—C44—C45 118.99 (18)
C12—C11—C16 117.7 (2) O44—C44—C45 115.18 (18)
C12—C11—C17 121.8 (2) C46—C45—C44 120.32 (19)
C16—C11—C17 120.2 (2) C46—C45—H45 119.8
C13—C12—C11 121.5 (3) C44—C45—H45 119.8
C13—C12—Cl12 119.0 (2) C45—C46—C41 122.02 (18)
C11—C12—Cl12 119.53 (19) C45—C46—H46 119.0
C14—C13—C12 119.8 (3) C41—C46—H46 119.0
C14—C13—H13 120.1 C44—O44—C441 117.58 (18)
C12—C13—H13 120.1 O44—C441—H41A 109.5
C13—C14—C15 120.4 (3) O44—C441—H41B 109.5
C13—C14—H14 119.8 H41A—C441—H41B 109.5
C15—C14—H14 119.8 O44—C441—H41C 109.5
C14—C15—C16 119.4 (3) H41A—C441—H41C 109.5
C14—C15—H15 120.3 H41B—C441—H41C 109.5
C16—C15—H15 120.3
C17—N1—C2—C3 127.9 (2) C6—N1—C37—O37 168 (2)
C37—N1—C2—C3 108.7 (12) C17—N1—C37—C31 99 (5)
C6—N1—C2—C3 −52.9 (3) C2—N1—C37—C31 −176.6 (10)
N1—C2—C3—N4 54.7 (3) C6—N1—C37—C31 −16 (2)
C2—C3—N4—C41 165.51 (16) O37—C37—C31—C36 −73 (4)
C2—C3—N4—C5 −58.6 (2) N1—C37—C31—C36 110 (3)
C41—N4—C5—C6 −163.56 (16) O37—C37—C31—C32 86 (3)
C3—N4—C5—C6 59.5 (2) N1—C37—C31—C32 −90 (3)
C17—N1—C6—C5 −127.5 (2) C36—C31—C32—C33 −5 (2)
C37—N1—C6—C5 −109.0 (12) C37—C31—C32—C33 −165 (3)
C2—N1—C6—C5 53.4 (2) C36—C31—C32—Cl32 171 (3)
N4—C5—C6—N1 −55.8 (2) C37—C31—C32—Cl32 11 (4)
C37—N1—C17—O17 107 (5) C31—C32—C33—C34 0 (3)
C2—N1—C17—O17 0.2 (4) Cl32—C32—C33—C34 −176 (4)
C6—N1—C17—O17 −178.8 (2) C32—C33—C34—C35 2 (6)
C37—N1—C17—C11 −73 (5) C33—C34—C35—C36 1 (8)
C2—N1—C17—C11 −179.8 (2) C32—C31—C36—C35 8 (5)
C6—N1—C17—C11 1.2 (3) C37—C31—C36—C35 167 (5)
O17—C17—C11—C12 −89.1 (3) C34—C35—C36—C31 −6 (8)
N1—C17—C11—C12 90.9 (3) C3—N4—C41—C42 2.8 (3)
O17—C17—C11—C16 85.4 (3) C5—N4—C41—C42 −131.0 (2)
N1—C17—C11—C16 −94.6 (3) C3—N4—C41—C46 −173.72 (19)
C16—C11—C12—C13 −2.1 (4) C5—N4—C41—C46 52.5 (2)
C17—C11—C12—C13 172.5 (3) C46—C41—C42—C43 −1.4 (3)
C16—C11—C12—Cl12 176.4 (2) N4—C41—C42—C43 −178.03 (18)
C17—C11—C12—Cl12 −8.9 (3) C41—C42—C43—C44 0.2 (3)
C11—C12—C13—C14 1.0 (5) C42—C43—C44—O44 −179.13 (19)
Cl12—C12—C13—C14 −177.5 (3) C42—C43—C44—C45 0.7 (3)
C12—C13—C14—C15 1.1 (5) C43—C44—C45—C46 −0.4 (3)
C13—C14—C15—C16 −2.1 (5) O44—C44—C45—C46 179.50 (19)
C12—C11—C16—C15 1.2 (4) C44—C45—C46—C41 −0.9 (3)
C17—C11—C16—C15 −173.6 (3) C42—C41—C46—C45 1.8 (3)
C14—C15—C16—C11 0.9 (4) N4—C41—C46—C45 178.55 (19)
C17—N1—C37—O37 −76 (5) C43—C44—O44—C441 6.1 (3)
C2—N1—C37—O37 7 (3) C45—C44—O44—C441 −173.8 (2)

1-(2-Chlorobenzoyl)-4-(4-methoxyphenyl)piperazine (III). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O17i 0.97 2.61 3.574 (3) 175
C2—H2A···Cg1i 0.97 2.84 3.648 (3) 142
C15—H15···Cg2ii 0.93 2.72 3.610 (4) 161

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, z.

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Crystal data

C18H19BrN2O2 Dx = 1.481 Mg m3
Mr = 375.26 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 10112 reflections
a = 12.9119 (14) Å θ = 2.2–30.6°
b = 13.3664 (16) Å µ = 2.45 mm1
c = 19.5019 (19) Å T = 293 K
V = 3365.7 (6) Å3 Block, colourless
Z = 8 0.22 × 0.21 × 0.18 mm
F(000) = 1536

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Data collection

Bruker D8 Quest diffractometer 4262 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3135 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 28.6°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2015 h = −17→17
Tmin = 0.538, Tmax = 0.643 k = −17→17
47663 measured reflections l = −25→26

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0626P)2 + 2.0275P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4262 reflections Δρmax = 0.54 e Å3
209 parameters Δρmin = −0.64 e Å3
0 restraints

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.68078 (15) 0.28092 (16) 0.41388 (11) 0.0487 (5)
C2 0.57868 (19) 0.2622 (2) 0.44328 (15) 0.0590 (7)
H2A 0.5856 0.2493 0.4920 0.071*
H2B 0.5487 0.2032 0.4221 0.071*
C3 0.50766 (18) 0.3504 (2) 0.43240 (12) 0.0519 (6)
H3A 0.4388 0.3340 0.4487 0.062*
H3B 0.5328 0.4072 0.4584 0.062*
N4 0.50316 (13) 0.37615 (15) 0.35983 (9) 0.0419 (4)
C5 0.60654 (17) 0.4002 (2) 0.33390 (12) 0.0473 (5)
H5A 0.6341 0.4572 0.3587 0.057*
H5B 0.6021 0.4180 0.2858 0.057*
C6 0.67798 (19) 0.3122 (2) 0.34234 (12) 0.0521 (6)
H6A 0.6541 0.2572 0.3140 0.062*
H6B 0.7471 0.3304 0.3274 0.062*
C17 0.76628 (19) 0.2666 (2) 0.45102 (13) 0.0512 (6)
O17 0.76512 (15) 0.2365 (2) 0.50994 (12) 0.0946 (9)
C11 0.86917 (17) 0.28780 (19) 0.41712 (12) 0.0454 (5)
C12 0.91561 (19) 0.3799 (2) 0.42084 (11) 0.0497 (6)
Br12 0.84357 (3) 0.49042 (2) 0.45966 (2) 0.07101 (15)
C13 1.0151 (2) 0.3952 (3) 0.39598 (13) 0.0650 (8)
H13 1.0461 0.4579 0.3993 0.078*
C14 1.0668 (2) 0.3174 (4) 0.36663 (16) 0.0789 (11)
H14 1.1339 0.3267 0.3504 0.095*
C15 1.0212 (3) 0.2262 (3) 0.36096 (17) 0.0798 (10)
H15 1.0563 0.1741 0.3396 0.096*
C16 0.9229 (2) 0.2107 (2) 0.38671 (15) 0.0650 (7)
H16 0.8928 0.1477 0.3835 0.078*
C41 0.42268 (16) 0.44128 (16) 0.33883 (11) 0.0390 (5)
C42 0.35098 (18) 0.4829 (2) 0.38304 (13) 0.0491 (6)
H42 0.3559 0.4695 0.4297 0.059*
C43 0.27162 (18) 0.5446 (2) 0.35948 (13) 0.0527 (6)
H43 0.2243 0.5715 0.3903 0.063*
C44 0.26318 (17) 0.56563 (19) 0.29071 (11) 0.0450 (5)
C45 0.3328 (2) 0.5236 (2) 0.24572 (13) 0.0527 (6)
H45 0.3271 0.5368 0.1990 0.063*
C46 0.41060 (19) 0.4627 (2) 0.26907 (12) 0.0498 (6)
H46 0.4565 0.4348 0.2377 0.060*
O44 0.18982 (15) 0.62631 (15) 0.26166 (10) 0.0658 (5)
C441 0.1221 (3) 0.6779 (3) 0.30621 (19) 0.0798 (10)
H41A 0.0799 0.7232 0.2801 0.120*
H41B 0.1618 0.7148 0.3392 0.120*
H41C 0.0785 0.6307 0.3295 0.120*

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0384 (10) 0.0551 (12) 0.0527 (11) 0.0020 (9) −0.0042 (8) 0.0126 (9)
C2 0.0415 (13) 0.0652 (17) 0.0704 (16) −0.0037 (12) −0.0026 (12) 0.0291 (14)
C3 0.0411 (12) 0.0667 (16) 0.0478 (12) 0.0014 (12) 0.0032 (10) 0.0187 (12)
N4 0.0346 (9) 0.0492 (11) 0.0420 (9) 0.0031 (8) −0.0005 (7) 0.0078 (8)
C5 0.0384 (11) 0.0606 (15) 0.0429 (11) 0.0028 (11) 0.0015 (9) 0.0121 (11)
C6 0.0410 (12) 0.0690 (17) 0.0462 (12) 0.0091 (12) −0.0034 (10) 0.0019 (12)
C17 0.0444 (13) 0.0526 (14) 0.0566 (14) 0.0029 (11) −0.0065 (10) 0.0121 (11)
O17 0.0535 (11) 0.158 (3) 0.0728 (14) 0.0043 (14) −0.0081 (10) 0.0598 (15)
C11 0.0395 (11) 0.0524 (14) 0.0442 (12) 0.0042 (10) −0.0099 (9) 0.0036 (10)
C12 0.0519 (13) 0.0615 (15) 0.0357 (11) −0.0014 (12) −0.0091 (9) 0.0028 (10)
Br12 0.1004 (3) 0.0570 (2) 0.0557 (2) −0.00293 (15) −0.00205 (15) −0.01036 (12)
C13 0.0542 (15) 0.091 (2) 0.0494 (14) −0.0214 (16) −0.0125 (12) 0.0166 (14)
C14 0.0434 (15) 0.134 (3) 0.0594 (17) 0.0089 (19) −0.0024 (13) 0.025 (2)
C15 0.0631 (19) 0.107 (3) 0.070 (2) 0.034 (2) −0.0001 (15) 0.0001 (19)
C16 0.0592 (16) 0.0640 (17) 0.0720 (18) 0.0157 (14) −0.0086 (13) −0.0041 (14)
C41 0.0361 (10) 0.0400 (11) 0.0409 (11) −0.0010 (9) −0.0020 (8) 0.0017 (9)
C42 0.0418 (12) 0.0658 (16) 0.0398 (12) 0.0062 (11) 0.0061 (9) 0.0092 (11)
C43 0.0413 (13) 0.0646 (16) 0.0520 (13) 0.0094 (12) 0.0085 (10) 0.0035 (12)
C44 0.0380 (11) 0.0454 (13) 0.0514 (12) 0.0051 (10) −0.0051 (9) −0.0012 (10)
C45 0.0575 (15) 0.0621 (15) 0.0386 (11) 0.0137 (12) −0.0058 (10) −0.0035 (11)
C46 0.0512 (13) 0.0608 (15) 0.0373 (11) 0.0171 (12) −0.0018 (10) −0.0071 (10)
O44 0.0611 (11) 0.0735 (13) 0.0629 (11) 0.0303 (10) −0.0045 (9) 0.0034 (10)
C441 0.0693 (19) 0.081 (2) 0.089 (2) 0.0359 (18) 0.0017 (17) −0.0007 (18)

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Geometric parameters (Å, º)

N1—C17 1.334 (3) C13—C14 1.363 (5)
N1—C6 1.457 (3) C13—H13 0.9300
N1—C2 1.459 (3) C14—C15 1.358 (5)
C2—C3 1.508 (4) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.381 (5)
C2—H2B 0.9700 C15—H15 0.9300
C3—N4 1.458 (3) C16—H16 0.9300
C3—H3A 0.9700 C41—C42 1.382 (3)
C3—H3B 0.9700 C41—C46 1.399 (3)
N4—C41 1.416 (3) C42—C43 1.393 (3)
N4—C5 1.463 (3) C42—H42 0.9300
C5—C6 1.504 (3) C43—C44 1.375 (3)
C5—H5A 0.9700 C43—H43 0.9300
C5—H5B 0.9700 C44—O44 1.370 (3)
C6—H6A 0.9700 C44—C45 1.376 (3)
C6—H6B 0.9700 C45—C46 1.371 (4)
C17—O17 1.218 (3) C45—H45 0.9300
C17—C11 1.511 (3) C46—H46 0.9300
C11—C12 1.371 (4) O44—C441 1.413 (4)
C11—C16 1.377 (4) C441—H41A 0.9600
C12—C13 1.389 (4) C441—H41B 0.9600
C12—Br12 1.903 (3) C441—H41C 0.9600
C17—N1—C6 125.6 (2) C13—C12—Br12 118.4 (2)
C17—N1—C2 120.6 (2) C14—C13—C12 119.2 (3)
C6—N1—C2 113.77 (19) C14—C13—H13 120.4
N1—C2—C3 111.1 (2) C12—C13—H13 120.4
N1—C2—H2A 109.4 C15—C14—C13 120.4 (3)
C3—C2—H2A 109.4 C15—C14—H14 119.8
N1—C2—H2B 109.4 C13—C14—H14 119.8
C3—C2—H2B 109.4 C14—C15—C16 120.3 (3)
H2A—C2—H2B 108.0 C14—C15—H15 119.9
N4—C3—C2 110.2 (2) C16—C15—H15 119.9
N4—C3—H3A 109.6 C11—C16—C15 120.5 (3)
C2—C3—H3A 109.6 C11—C16—H16 119.8
N4—C3—H3B 109.6 C15—C16—H16 119.8
C2—C3—H3B 109.6 C42—C41—C46 116.7 (2)
H3A—C3—H3B 108.1 C42—C41—N4 124.0 (2)
C41—N4—C3 117.09 (18) C46—C41—N4 119.25 (19)
C41—N4—C5 115.76 (18) C41—C42—C43 121.7 (2)
C3—N4—C5 110.56 (17) C41—C42—H42 119.2
N4—C5—C6 110.5 (2) C43—C42—H42 119.2
N4—C5—H5A 109.6 C44—C43—C42 120.1 (2)
C6—C5—H5A 109.6 C44—C43—H43 120.0
N4—C5—H5B 109.6 C42—C43—H43 120.0
C6—C5—H5B 109.6 O44—C44—C43 125.4 (2)
H5A—C5—H5B 108.1 O44—C44—C45 115.4 (2)
N1—C6—C5 110.1 (2) C43—C44—C45 119.1 (2)
N1—C6—H6A 109.6 C46—C45—C44 120.6 (2)
C5—C6—H6A 109.6 C46—C45—H45 119.7
N1—C6—H6B 109.6 C44—C45—H45 119.7
C5—C6—H6B 109.6 C45—C46—C41 121.7 (2)
H6A—C6—H6B 108.1 C45—C46—H46 119.1
O17—C17—N1 123.3 (2) C41—C46—H46 119.1
O17—C17—C11 119.1 (2) C44—O44—C441 117.6 (2)
N1—C17—C11 117.6 (2) O44—C441—H41A 109.5
C12—C11—C16 118.3 (2) O44—C441—H41B 109.5
C12—C11—C17 122.0 (2) H41A—C441—H41B 109.5
C16—C11—C17 119.4 (2) O44—C441—H41C 109.5
C11—C12—C13 121.3 (3) H41A—C441—H41C 109.5
C11—C12—Br12 120.29 (19) H41B—C441—H41C 109.5
C17—N1—C2—C3 129.3 (3) Br12—C12—C13—C14 −178.5 (2)
C6—N1—C2—C3 −52.6 (3) C12—C13—C14—C15 0.8 (4)
N1—C2—C3—N4 54.3 (3) C13—C14—C15—C16 −1.9 (5)
C2—C3—N4—C41 165.8 (2) C12—C11—C16—C15 0.2 (4)
C2—C3—N4—C5 −58.7 (3) C17—C11—C16—C15 −174.1 (3)
C41—N4—C5—C6 −163.87 (19) C14—C15—C16—C11 1.4 (5)
C3—N4—C5—C6 60.0 (3) C3—N4—C41—C42 1.7 (3)
C17—N1—C6—C5 −128.8 (3) C5—N4—C41—C42 −131.6 (2)
C2—N1—C6—C5 53.1 (3) C3—N4—C41—C46 −175.5 (2)
N4—C5—C6—N1 −56.0 (3) C5—N4—C41—C46 51.3 (3)
C6—N1—C17—O17 −176.9 (3) C46—C41—C42—C43 −1.1 (4)
C2—N1—C17—O17 1.1 (4) N4—C41—C42—C43 −178.3 (2)
C6—N1—C17—C11 2.2 (4) C41—C42—C43—C44 −0.2 (4)
C2—N1—C17—C11 −179.9 (2) C42—C43—C44—O44 −178.8 (2)
O17—C17—C11—C12 −89.6 (3) C42—C43—C44—C45 1.2 (4)
N1—C17—C11—C12 91.3 (3) O44—C44—C45—C46 179.1 (3)
O17—C17—C11—C16 84.4 (4) C43—C44—C45—C46 −0.9 (4)
N1—C17—C11—C16 −94.7 (3) C44—C45—C46—C41 −0.4 (4)
C16—C11—C12—C13 −1.3 (4) C42—C41—C46—C45 1.4 (4)
C17—C11—C12—C13 172.8 (2) N4—C41—C46—C45 178.7 (2)
C16—C11—C12—Br12 178.01 (19) C43—C44—O44—C441 5.3 (4)
C17—C11—C12—Br12 −7.9 (3) C45—C44—O44—C441 −174.7 (3)
C11—C12—C13—C14 0.8 (4)

1-(2-Bromoobenzoyl)-4-(4-methoxyphenyl)piperazine (IV). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O17i 0.97 2.56 3.524 (3) 171
C2—H2A···Cg1i 0.97 2.82 3.630 (3) 142
C15—H15···Cg2ii 0.93 2.68 3.579 (4) 164

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, z.

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Crystal data

C18H19IN2O2 Dx = 1.602 Mg m3
Mr = 422.25 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3838 reflections
a = 12.7671 (13) Å θ = 2.6–27.7°
b = 13.5429 (12) Å µ = 1.84 mm1
c = 20.2542 (16) Å T = 293 K
V = 3502.0 (5) Å3 Block, orange
Z = 8 0.48 × 0.42 × 0.38 mm
F(000) = 1680

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3062 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω scans θmax = 27.7°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −16→9
Tmin = 0.408, Tmax = 0.497 k = −17→12
14215 measured reflections l = −25→26

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + 37.1584P] where P = (Fo2 + 2Fc2)/3
S = 1.18 (Δ/σ)max < 0.001
3838 reflections Δρmax = 1.27 e Å3
209 parameters Δρmin = −2.19 e Å3
0 restraints

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6767 (5) 0.2532 (5) 0.4083 (3) 0.0444 (15)
C2 0.5718 (6) 0.2371 (7) 0.4337 (5) 0.061 (3)
H2A 0.5755 0.2250 0.4808 0.073*
H2B 0.5421 0.1789 0.4130 0.073*
C3 0.5017 (6) 0.3231 (7) 0.4213 (4) 0.052 (2)
H3A 0.4312 0.3075 0.4358 0.062*
H3B 0.5261 0.3796 0.4465 0.062*
N4 0.5006 (4) 0.3478 (4) 0.3506 (3) 0.0390 (14)
C5 0.6074 (5) 0.3718 (6) 0.3295 (4) 0.0445 (18)
H5A 0.6329 0.4278 0.3545 0.053*
H5B 0.6070 0.3899 0.2831 0.053*
C6 0.6796 (6) 0.2846 (6) 0.3397 (4) 0.0453 (18)
H6A 0.6582 0.2305 0.3114 0.054*
H6B 0.7506 0.3030 0.3279 0.054*
C17 0.7611 (6) 0.2329 (6) 0.4454 (4) 0.0467 (18)
O17 0.7546 (5) 0.1949 (5) 0.5001 (3) 0.0697 (19)
C11 0.8673 (5) 0.2557 (6) 0.4170 (4) 0.0386 (15)
C12 0.9137 (6) 0.3478 (5) 0.4227 (3) 0.0397 (16)
I12 0.83463 (5) 0.46721 (5) 0.46533 (3) 0.0580 (2)
C13 1.0151 (6) 0.3627 (6) 0.4001 (4) 0.0489 (19)
H13 1.0461 0.4246 0.4041 0.059*
C14 1.0693 (7) 0.2870 (8) 0.3723 (5) 0.064 (3)
H14 1.1371 0.2976 0.3571 0.077*
C15 1.0243 (8) 0.1942 (9) 0.3665 (5) 0.075 (3)
H15 1.0614 0.1423 0.3476 0.090*
C16 0.9247 (7) 0.1806 (7) 0.3889 (5) 0.063 (2)
H16 0.8945 0.1184 0.3851 0.076*
C41 0.4211 (5) 0.4122 (5) 0.3293 (3) 0.0362 (15)
C42 0.3441 (6) 0.4490 (6) 0.3699 (4) 0.0471 (19)
H42 0.3446 0.4326 0.4145 0.057*
C43 0.2655 (6) 0.5101 (6) 0.3459 (4) 0.0446 (18)
H43 0.2138 0.5329 0.3744 0.053*
C44 0.2632 (6) 0.5375 (6) 0.2800 (4) 0.0427 (16)
C45 0.3388 (6) 0.5001 (6) 0.2392 (3) 0.0473 (19)
H45 0.3379 0.5169 0.1947 0.057*
C46 0.4155 (6) 0.4388 (6) 0.2622 (4) 0.0471 (19)
H46 0.4651 0.4141 0.2329 0.056*
O44 0.1910 (5) 0.5988 (5) 0.2516 (3) 0.0615 (16)
C441 0.1209 (8) 0.6484 (8) 0.2934 (5) 0.078 (3)
H41A 0.0746 0.6886 0.2674 0.117*
H41B 0.1595 0.6896 0.3234 0.117*
H41C 0.0807 0.6011 0.3179 0.117*

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.036 (3) 0.044 (3) 0.053 (4) 0.000 (3) −0.004 (3) 0.022 (3)
C2 0.037 (4) 0.076 (6) 0.070 (6) −0.001 (4) −0.004 (4) 0.037 (5)
C3 0.037 (4) 0.071 (6) 0.048 (4) −0.001 (4) 0.006 (3) 0.029 (4)
N4 0.030 (3) 0.045 (3) 0.042 (3) 0.000 (3) 0.000 (2) 0.013 (3)
C5 0.034 (4) 0.060 (5) 0.040 (4) 0.002 (3) 0.000 (3) 0.017 (4)
C6 0.037 (4) 0.055 (5) 0.044 (4) 0.005 (3) −0.001 (3) 0.010 (4)
C17 0.037 (4) 0.046 (4) 0.057 (5) −0.006 (3) −0.009 (4) 0.012 (4)
O17 0.048 (3) 0.094 (5) 0.067 (4) −0.001 (3) −0.008 (3) 0.039 (4)
C11 0.034 (3) 0.041 (4) 0.041 (4) 0.000 (3) −0.008 (3) 0.003 (3)
C12 0.041 (4) 0.042 (4) 0.036 (4) 0.003 (3) −0.009 (3) −0.001 (3)
I12 0.0702 (4) 0.0501 (3) 0.0538 (3) 0.0045 (3) −0.0031 (3) −0.0162 (3)
C13 0.047 (4) 0.056 (5) 0.044 (4) −0.012 (4) −0.007 (4) −0.001 (4)
C14 0.036 (4) 0.098 (8) 0.059 (5) 0.005 (5) 0.003 (4) 0.001 (5)
C15 0.056 (6) 0.088 (8) 0.081 (7) 0.036 (6) −0.007 (5) −0.017 (6)
C16 0.055 (5) 0.057 (6) 0.077 (6) 0.004 (4) −0.012 (5) −0.008 (5)
C41 0.031 (3) 0.038 (4) 0.040 (4) −0.002 (3) −0.002 (3) 0.000 (3)
C42 0.041 (4) 0.061 (5) 0.039 (4) 0.003 (4) 0.008 (3) 0.015 (4)
C43 0.036 (4) 0.044 (4) 0.053 (4) 0.003 (3) 0.010 (3) 0.006 (3)
C44 0.036 (4) 0.043 (4) 0.049 (4) 0.003 (3) −0.005 (3) 0.002 (3)
C45 0.059 (5) 0.054 (5) 0.030 (3) 0.012 (4) −0.006 (3) 0.002 (3)
C46 0.048 (4) 0.055 (5) 0.038 (4) 0.017 (4) 0.002 (3) −0.003 (3)
O44 0.057 (4) 0.066 (4) 0.062 (4) 0.026 (3) −0.004 (3) 0.008 (3)
C441 0.062 (6) 0.084 (7) 0.089 (7) 0.032 (6) −0.001 (6) −0.001 (6)

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Geometric parameters (Å, º)

N1—C17 1.342 (9) C13—C14 1.358 (12)
N1—C2 1.452 (9) C13—H13 0.9300
N1—C6 1.453 (9) C14—C15 1.387 (14)
C2—C3 1.490 (11) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.362 (13)
C2—H2B 0.9700 C15—H15 0.9300
C3—N4 1.471 (9) C16—H16 0.9300
C3—H3A 0.9700 C41—C42 1.375 (10)
C3—H3B 0.9700 C41—C46 1.407 (10)
N4—C41 1.406 (9) C42—C43 1.388 (10)
N4—C5 1.464 (8) C42—H42 0.9300
C5—C6 1.512 (10) C43—C44 1.386 (10)
C5—H5A 0.9700 C43—H43 0.9300
C5—H5B 0.9700 C44—O44 1.368 (9)
C6—H6A 0.9700 C44—C45 1.368 (10)
C6—H6B 0.9700 C45—C46 1.365 (10)
C17—O17 1.224 (9) C45—H45 0.9300
C17—C11 1.505 (10) C46—H46 0.9300
C11—C16 1.377 (11) O44—C441 1.403 (10)
C11—C12 1.385 (10) C441—H41A 0.9600
C12—C13 1.389 (10) C441—H41B 0.9600
C12—I12 2.093 (7) C441—H41C 0.9600
C17—N1—C2 120.8 (6) C13—C12—I12 118.2 (6)
C17—N1—C6 125.0 (6) C14—C13—C12 120.1 (8)
C2—N1—C6 114.0 (6) C14—C13—H13 119.9
N1—C2—C3 112.1 (7) C12—C13—H13 119.9
N1—C2—H2A 109.2 C13—C14—C15 120.5 (8)
C3—C2—H2A 109.2 C13—C14—H14 119.7
N1—C2—H2B 109.2 C15—C14—H14 119.7
C3—C2—H2B 109.2 C16—C15—C14 118.7 (9)
H2A—C2—H2B 107.9 C16—C15—H15 120.6
N4—C3—C2 110.3 (7) C14—C15—H15 120.6
N4—C3—H3A 109.6 C15—C16—C11 122.3 (9)
C2—C3—H3A 109.6 C15—C16—H16 118.8
N4—C3—H3B 109.6 C11—C16—H16 118.8
C2—C3—H3B 109.6 C42—C41—N4 123.9 (6)
H3A—C3—H3B 108.1 C42—C41—C46 116.6 (7)
C41—N4—C5 116.5 (6) N4—C41—C46 119.4 (6)
C41—N4—C3 116.5 (6) C41—C42—C43 121.6 (7)
C5—N4—C3 109.0 (6) C41—C42—H42 119.2
N4—C5—C6 110.8 (6) C43—C42—H42 119.2
N4—C5—H5A 109.5 C44—C43—C42 120.8 (7)
C6—C5—H5A 109.5 C44—C43—H43 119.6
N4—C5—H5B 109.5 C42—C43—H43 119.6
C6—C5—H5B 109.5 O44—C44—C45 116.5 (7)
H5A—C5—H5B 108.1 O44—C44—C43 125.6 (7)
N1—C6—C5 110.1 (6) C45—C44—C43 117.9 (7)
N1—C6—H6A 109.6 C46—C45—C44 121.7 (7)
C5—C6—H6A 109.6 C46—C45—H45 119.2
N1—C6—H6B 109.6 C44—C45—H45 119.2
C5—C6—H6B 109.6 C45—C46—C41 121.4 (7)
H6A—C6—H6B 108.2 C45—C46—H46 119.3
O17—C17—N1 122.6 (7) C41—C46—H46 119.3
O17—C17—C11 119.6 (7) C44—O44—C441 117.8 (7)
N1—C17—C11 117.8 (6) O44—C441—H41A 109.5
C16—C11—C12 118.2 (7) O44—C441—H41B 109.5
C16—C11—C17 119.1 (7) H41A—C441—H41B 109.5
C12—C11—C17 122.6 (7) O44—C441—H41C 109.5
C11—C12—C13 120.1 (7) H41A—C441—H41C 109.5
C11—C12—I12 121.6 (5) H41B—C441—H41C 109.5
C17—N1—C2—C3 133.1 (8) I12—C12—C13—C14 179.8 (6)
C6—N1—C2—C3 −51.4 (11) C12—C13—C14—C15 −0.3 (13)
N1—C2—C3—N4 54.7 (10) C13—C14—C15—C16 0.3 (15)
C2—C3—N4—C41 166.2 (6) C14—C15—C16—C11 0.1 (15)
C2—C3—N4—C5 −59.6 (9) C12—C11—C16—C15 −0.4 (13)
C41—N4—C5—C6 −165.0 (6) C17—C11—C16—C15 −175.2 (8)
C3—N4—C5—C6 60.7 (8) C5—N4—C41—C42 −133.4 (8)
C17—N1—C6—C5 −133.5 (8) C3—N4—C41—C42 −2.6 (10)
C2—N1—C6—C5 51.2 (9) C5—N4—C41—C46 49.2 (10)
N4—C5—C6—N1 −56.1 (8) C3—N4—C41—C46 −180.0 (7)
C2—N1—C17—O17 4.4 (13) N4—C41—C42—C43 −178.1 (7)
C6—N1—C17—O17 −170.6 (8) C46—C41—C42—C43 −0.6 (12)
C2—N1—C17—C11 −177.2 (8) C41—C42—C43—C44 −1.1 (12)
C6—N1—C17—C11 7.8 (12) C42—C43—C44—O44 −178.5 (7)
O17—C17—C11—C16 79.4 (11) C42—C43—C44—C45 1.9 (12)
N1—C17—C11—C16 −99.0 (9) O44—C44—C45—C46 179.5 (7)
O17—C17—C11—C12 −95.1 (10) C43—C44—C45—C46 −0.9 (12)
N1—C17—C11—C12 86.5 (9) C44—C45—C46—C41 −0.8 (13)
C16—C11—C12—C13 0.4 (11) C42—C41—C46—C45 1.6 (12)
C17—C11—C12—C13 174.9 (7) N4—C41—C46—C45 179.2 (7)
C16—C11—C12—I12 −179.4 (6) C45—C44—O44—C441 −171.8 (8)
C17—C11—C12—I12 −4.9 (9) C43—C44—O44—C441 8.6 (13)
C11—C12—C13—C14 0.0 (11)

1-(2-Iodobenzoyl)-4-(4-methoxyphenyl)piperazine (V). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O17i 0.97 2.60 3.542 (10) 164
C2—H2A···Cg1i 0.97 2.87 3.719 (11) 147
C15—H15···Cg2ii 0.93 2.73 3.656 (12) 172

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, z.

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Crystal data

C18H20N2O3 Dx = 1.329 Mg m3
Mr = 312.36 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3474 reflections
a = 9.7265 (6) Å θ = 2.7–27.9°
b = 12.9084 (9) Å µ = 0.09 mm1
c = 24.861 (1) Å T = 293 K
V = 3121.4 (3) Å3 Plate, yellow
Z = 8 0.50 × 0.40 × 0.16 mm
F(000) = 1328

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD 3474 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2492 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω scans θmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −12→5
Tmin = 0.917, Tmax = 0.986 k = −13→16
11981 measured reflections l = −31→31

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.038P)2 + 0.9467P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3474 reflections Δρmax = 0.16 e Å3
212 parameters Δρmin = −0.17 e Å3
0 restraints

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.65619 (12) 0.42451 (10) 0.35751 (5) 0.0368 (3)
C2 0.64088 (15) 0.36047 (14) 0.40542 (6) 0.0448 (4)
H2A 0.5498 0.3298 0.4057 0.054*
H2B 0.6498 0.4035 0.4372 0.054*
C3 0.74781 (15) 0.27547 (13) 0.40711 (6) 0.0432 (4)
H3A 0.7390 0.2367 0.4404 0.052*
H3B 0.7334 0.2281 0.3774 0.052*
N4 0.88519 (12) 0.32027 (10) 0.40359 (5) 0.0384 (3)
C5 0.89929 (15) 0.38044 (13) 0.35376 (6) 0.0429 (4)
H5A 0.8865 0.3351 0.3230 0.051*
H5B 0.9912 0.4094 0.3517 0.051*
C6 0.79474 (14) 0.46694 (12) 0.35178 (6) 0.0401 (4)
H6A 0.8126 0.5159 0.3806 0.048*
H6B 0.8023 0.5035 0.3178 0.048*
C17 0.54733 (14) 0.44756 (11) 0.32643 (5) 0.0324 (3)
O17 0.43132 (10) 0.41265 (8) 0.33693 (4) 0.0404 (3)
C11 0.56584 (14) 0.52022 (11) 0.28009 (6) 0.0329 (3)
C12 0.64738 (14) 0.49883 (11) 0.23528 (6) 0.0349 (3)
O12 0.71754 (12) 0.40749 (9) 0.23434 (4) 0.0461 (3)
H12 0.789 (2) 0.4130 (15) 0.2100 (8) 0.069*
C13 0.65334 (16) 0.56961 (12) 0.19321 (6) 0.0412 (4)
H13 0.7060 0.5548 0.1629 0.049*
C14 0.58174 (17) 0.66145 (13) 0.19606 (6) 0.0471 (4)
H14 0.5888 0.7092 0.1682 0.057*
C15 0.49942 (17) 0.68344 (13) 0.23996 (7) 0.0483 (4)
H15 0.4501 0.7451 0.2415 0.058*
C16 0.49147 (15) 0.61263 (12) 0.28139 (6) 0.0408 (4)
H16 0.4354 0.6268 0.3108 0.049*
C41 0.99766 (14) 0.25442 (12) 0.41654 (6) 0.0355 (3)
C42 0.98274 (16) 0.15034 (13) 0.42966 (6) 0.0419 (4)
H42 0.8956 0.1207 0.4291 0.050*
C43 1.09521 (16) 0.08983 (13) 0.44351 (6) 0.0450 (4)
H43 1.0825 0.0204 0.4523 0.054*
C44 1.22554 (15) 0.13157 (13) 0.44442 (6) 0.0407 (4)
C45 1.24231 (15) 0.23528 (13) 0.43236 (7) 0.0451 (4)
H45 1.3295 0.2648 0.4335 0.054*
C46 1.13003 (15) 0.29544 (13) 0.41862 (7) 0.0446 (4)
H46 1.1432 0.3651 0.4106 0.054*
O44 1.33074 (12) 0.06448 (10) 0.45724 (5) 0.0569 (3)
C441 1.46702 (17) 0.10399 (16) 0.45482 (7) 0.0576 (5)
H41A 1.5311 0.0492 0.4622 0.086*
H41B 1.4778 0.1579 0.4811 0.086*
H41C 1.4842 0.1315 0.4196 0.086*

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0309 (6) 0.0442 (7) 0.0354 (6) −0.0022 (5) −0.0010 (5) 0.0077 (6)
C2 0.0336 (8) 0.0634 (11) 0.0374 (8) 0.0013 (7) 0.0034 (6) 0.0138 (8)
C3 0.0354 (8) 0.0504 (10) 0.0437 (8) −0.0035 (7) 0.0016 (7) 0.0152 (7)
N4 0.0308 (6) 0.0418 (7) 0.0425 (7) −0.0002 (5) 0.0028 (5) 0.0091 (6)
C5 0.0340 (7) 0.0480 (10) 0.0466 (9) −0.0019 (7) 0.0044 (6) 0.0096 (7)
C6 0.0340 (8) 0.0407 (9) 0.0454 (8) −0.0053 (6) −0.0044 (6) 0.0076 (7)
C17 0.0336 (7) 0.0309 (8) 0.0327 (7) 0.0007 (6) 0.0008 (6) −0.0043 (6)
O17 0.0318 (5) 0.0467 (6) 0.0428 (6) −0.0038 (4) −0.0005 (4) 0.0058 (5)
C11 0.0317 (7) 0.0342 (8) 0.0328 (7) −0.0023 (6) −0.0033 (6) 0.0008 (6)
C12 0.0340 (7) 0.0356 (8) 0.0352 (8) −0.0029 (6) −0.0019 (6) −0.0021 (6)
O12 0.0488 (7) 0.0439 (7) 0.0456 (6) 0.0073 (5) 0.0128 (5) 0.0021 (5)
C13 0.0437 (9) 0.0464 (9) 0.0334 (8) −0.0071 (7) 0.0001 (6) 0.0016 (7)
C14 0.0597 (10) 0.0429 (9) 0.0388 (8) −0.0052 (8) −0.0061 (7) 0.0100 (7)
C15 0.0574 (10) 0.0369 (9) 0.0507 (10) 0.0068 (7) −0.0067 (8) 0.0035 (7)
C16 0.0414 (8) 0.0408 (9) 0.0402 (8) 0.0029 (7) 0.0008 (7) −0.0020 (7)
C41 0.0339 (7) 0.0398 (8) 0.0328 (7) 0.0008 (6) 0.0017 (6) −0.0008 (6)
C42 0.0386 (8) 0.0441 (9) 0.0430 (8) −0.0059 (7) −0.0040 (7) 0.0038 (7)
C43 0.0512 (9) 0.0375 (9) 0.0464 (9) −0.0011 (7) −0.0037 (7) 0.0073 (7)
C44 0.0407 (8) 0.0472 (10) 0.0343 (7) 0.0075 (7) 0.0020 (6) 0.0006 (7)
C45 0.0316 (7) 0.0491 (10) 0.0545 (10) −0.0004 (7) 0.0036 (7) 0.0016 (8)
C46 0.0390 (8) 0.0359 (8) 0.0589 (10) −0.0003 (7) 0.0040 (7) 0.0032 (8)
O44 0.0447 (7) 0.0560 (8) 0.0700 (8) 0.0120 (6) −0.0018 (6) 0.0148 (6)
C441 0.0427 (10) 0.0790 (14) 0.0509 (10) 0.0160 (9) 0.0008 (7) 0.0129 (9)

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Geometric parameters (Å, º)

N1—C17 1.3440 (18) C13—C14 1.377 (2)
N1—C2 1.4575 (18) C13—H13 0.9300
N1—C6 1.4616 (18) C14—C15 1.383 (2)
C2—C3 1.512 (2) C14—H14 0.9300
C2—H2A 0.9700 C15—C16 1.379 (2)
C2—H2B 0.9700 C15—H15 0.9300
C3—N4 1.4587 (18) C16—H16 0.9300
C3—H3A 0.9700 C41—C42 1.390 (2)
C3—H3B 0.9700 C41—C46 1.393 (2)
N4—C41 1.4222 (18) C42—C43 1.388 (2)
N4—C5 1.4686 (19) C42—H42 0.9300
C5—C6 1.511 (2) C43—C44 1.378 (2)
C5—H5A 0.9700 C43—H43 0.9300
C5—H5B 0.9700 C44—O44 1.3779 (18)
C6—H6A 0.9700 C44—C45 1.382 (2)
C6—H6B 0.9700 C45—C46 1.383 (2)
C17—O17 1.2428 (16) C45—H45 0.9300
C17—C11 1.496 (2) C46—H46 0.9300
C11—C12 1.395 (2) O44—C441 1.422 (2)
C11—C16 1.395 (2) C441—H41A 0.9600
C12—O12 1.3625 (18) C441—H41B 0.9600
C12—C13 1.390 (2) C441—H41C 0.9600
O12—H12 0.92 (2)
C17—N1—C2 120.99 (12) C12—O12—H12 108.7 (12)
C17—N1—C6 125.97 (12) C14—C13—C12 120.40 (14)
C2—N1—C6 112.73 (11) C14—C13—H13 119.8
N1—C2—C3 111.34 (12) C12—C13—H13 119.8
N1—C2—H2A 109.4 C13—C14—C15 120.69 (15)
C3—C2—H2A 109.4 C13—C14—H14 119.7
N1—C2—H2B 109.4 C15—C14—H14 119.7
C3—C2—H2B 109.4 C16—C15—C14 119.06 (15)
H2A—C2—H2B 108.0 C16—C15—H15 120.5
N4—C3—C2 109.92 (13) C14—C15—H15 120.5
N4—C3—H3A 109.7 C15—C16—C11 121.35 (14)
C2—C3—H3A 109.7 C15—C16—H16 119.3
N4—C3—H3B 109.7 C11—C16—H16 119.3
C2—C3—H3B 109.7 C42—C41—C46 117.07 (14)
H3A—C3—H3B 108.2 C42—C41—N4 123.40 (13)
C41—N4—C3 117.01 (12) C46—C41—N4 119.48 (14)
C41—N4—C5 115.80 (11) C43—C42—C41 121.33 (14)
C3—N4—C5 110.23 (11) C43—C42—H42 119.3
N4—C5—C6 110.83 (12) C41—C42—H42 119.3
N4—C5—H5A 109.5 C44—C43—C42 120.62 (15)
C6—C5—H5A 109.5 C44—C43—H43 119.7
N4—C5—H5B 109.5 C42—C43—H43 119.7
C6—C5—H5B 109.5 C43—C44—O44 116.19 (15)
H5A—C5—H5B 108.1 C43—C44—C45 118.95 (14)
N1—C6—C5 109.90 (13) O44—C44—C45 124.86 (14)
N1—C6—H6A 109.7 C44—C45—C46 120.29 (15)
C5—C6—H6A 109.7 C44—C45—H45 119.9
N1—C6—H6B 109.7 C46—C45—H45 119.9
C5—C6—H6B 109.7 C45—C46—C41 121.71 (15)
H6A—C6—H6B 108.2 C45—C46—H46 119.1
O17—C17—N1 120.95 (13) C41—C46—H46 119.1
O17—C17—C11 119.87 (12) C44—O44—C441 117.20 (14)
N1—C17—C11 119.11 (12) O44—C441—H41A 109.5
C12—C11—C16 118.83 (13) O44—C441—H41B 109.5
C12—C11—C17 123.99 (13) H41A—C441—H41B 109.5
C16—C11—C17 117.11 (12) O44—C441—H41C 109.5
O12—C12—C13 122.33 (13) H41A—C441—H41C 109.5
O12—C12—C11 118.02 (13) H41B—C441—H41C 109.5
C13—C12—C11 119.64 (14)
C17—N1—C2—C3 131.68 (15) C11—C12—C13—C14 1.4 (2)
C6—N1—C2—C3 −54.39 (18) C12—C13—C14—C15 −2.0 (2)
N1—C2—C3—N4 55.85 (17) C13—C14—C15—C16 0.9 (2)
C2—C3—N4—C41 166.38 (12) C14—C15—C16—C11 0.7 (2)
C2—C3—N4—C5 −58.51 (16) C12—C11—C16—C15 −1.3 (2)
C41—N4—C5—C6 −164.75 (13) C17—C11—C16—C15 −178.57 (14)
C3—N4—C5—C6 59.54 (17) C3—N4—C41—C42 3.0 (2)
C17—N1—C6—C5 −132.34 (15) C5—N4—C41—C42 −129.62 (15)
C2—N1—C6—C5 54.10 (17) C3—N4—C41—C46 −174.21 (14)
N4—C5—C6—N1 −56.31 (17) C5—N4—C41—C46 53.14 (19)
C2—N1—C17—O17 −1.9 (2) C46—C41—C42—C43 −0.8 (2)
C6—N1—C17—O17 −174.98 (14) N4—C41—C42—C43 −178.14 (14)
C2—N1—C17—C11 175.29 (13) C41—C42—C43—C44 −0.2 (2)
C6—N1—C17—C11 2.2 (2) C42—C43—C44—O44 −178.28 (14)
O17—C17—C11—C12 −117.64 (16) C42—C43—C44—C45 1.3 (2)
N1—C17—C11—C12 65.13 (19) C43—C44—C45—C46 −1.2 (2)
O17—C17—C11—C16 59.44 (18) O44—C44—C45—C46 178.31 (15)
N1—C17—C11—C16 −117.79 (15) C44—C45—C46—C41 0.1 (2)
C16—C11—C12—O12 −178.98 (13) C42—C41—C46—C45 0.9 (2)
C17—C11—C12—O12 −1.9 (2) N4—C41—C46—C45 178.32 (14)
C16—C11—C12—C13 0.2 (2) C43—C44—O44—C441 175.77 (14)
C17—C11—C12—C13 177.27 (13) C45—C44—O44—C441 −3.8 (2)
O12—C12—C13—C14 −179.40 (14)

1-(2-Hydroxybenzoyl)-4-(4-methoxyphenyl)piperazine (VI). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O12—H12···O17i 0.92 (2) 1.81 (2) 2.7327 (15) 175.4 (18)

Symmetry code: (i) x+1/2, y, −z+1/2.

Funding Statement

This work was funded by University Grants Commission grant BSR Faculty Fellowship to H. S. Yathirajan.

References

  1. Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). Acta Cryst. C65, o92–o96. [DOI] [PubMed]
  2. Allen, L. C. (1989). J. Am. Chem. Soc. 111, 9003–9014.
  3. Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 05–11.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048. [DOI] [PMC free article] [PubMed]
  6. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  7. Braga, D., Grepioni, F. & Tedesco, E. (1998). Organometallics, 17, 2669–2672.
  8. Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). Fundam. Clin. Pharmacol. 33, 13–24. [DOI] [PubMed]
  9. Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766. [DOI] [PubMed]
  10. Bruker (2015). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  12. Elliott, S. (2011). Drug Test. Anal. 3, 430–438. [DOI] [PubMed]
  13. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  14. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  15. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
  16. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
  17. Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
  18. Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323. [DOI] [PubMed]
  19. Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237. [DOI] [PubMed]
  20. Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57. [DOI] [PubMed]
  21. Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1671. [DOI] [PMC free article] [PubMed]
  22. Kharb, R., Bansal, K. & Sharma, A. K. (2012). Pharma Chemica, 4, 2470–2488.
  23. Mahesha, N., Sagar, B. K., Yathirajan, H. S., Furuya, T., Haraguchi, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 202–207. [DOI] [PMC free article] [PubMed]
  24. Mahesha, N., Yathirajan, H. S., Furuya, T., Akitsu, T. & Glidewell, C. (2019). Acta Cryst. E75, 129–133. [DOI] [PMC free article] [PubMed]
  25. Nagai, F., Nonaka, R. & Satoh Hisashi Kamimura, K. (2007). Eur. J. Pharm. 559, 132–137. [DOI] [PubMed]
  26. Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.
  27. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  28. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  29. Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. [DOI] [PubMed]
  33. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  34. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
  35. Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, o503. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III, IV, V, VI. DOI: 10.1107/S2056989019010491/zl2757sup1.cif

e-75-01253-sup1.cif (3.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019010491/zl2757Isup2.hkl

e-75-01253-Isup2.hkl (171.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019010491/zl2757IIsup3.hkl

e-75-01253-IIsup3.hkl (264.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989019010491/zl2757IIIsup4.hkl

e-75-01253-IIIsup4.hkl (290.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989019010491/zl2757IVsup5.hkl

e-75-01253-IVsup5.hkl (340KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989019010491/zl2757Vsup6.hkl

e-75-01253-Vsup6.hkl (306.4KB, hkl)

Structure factors: contains datablock(s) VI. DOI: 10.1107/S2056989019010491/zl2757VIsup7.hkl

e-75-01253-VIsup7.hkl (277.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757Isup8.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757IIsup9.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757IIIsup10.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757Vsup11.cml

Supporting information file. DOI: 10.1107/S2056989019010491/zl2757VIsup12.cml

CCDC references: 1942579, 1942578, 1942577, 1942576, 1942575, 1942574

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES