Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 9;75(Pt 8):1123–1127. doi: 10.1107/S2056989019009447

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

S Syed Abuthahir a, M NizamMohideen a,*, V Viswanathan b, M Govindhan c,d, K Subramanian c
PMCID: PMC6690464  PMID: 31417777

The crystal structure of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid di­methyl­sulfoxide monosolvate is described and the inter­molecular contacts in the crystal analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Keywords: crystal structure, chromen, acetamide, pyran, dimethyl sulfoxide, hydrogen bonding, C—H⋯π inter­actions, offset π–π inter­actions, Hirshfeld surface analysis

Abstract

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.

Chemical context  

Coumarin and its derivatives represent one of the most active classes of compounds, possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied intensively and reviewed (Syed Abuthahir et al., 2019; Kumar et al., 2015; Kubrak et al., 2017; Srikrishna et al., 2018; Venugopala et al., 2013). Many of these compounds have proven to be active as anti­bacterial, anti­fungal, anti-inflammatory, anti­coagulant, anti-HIV and anti­tumor agents (Govindhan, Subramanian, Chennakesava Rao et al., 2015; Govindhan, Subramanian, Sridharan et al., 2015). Sulfur-containing isocoumarins (Henderson & Hill, 1982), fluorine-containing isocoumarins (Babar et al., 2008) and chlorine-containing isocoumarins (Abid et al., 2008) have also been studied. In view of the importance of their natural occurrence, biological, pharmacological and medicinal activities, and their use as synthetic inter­mediates, we have synthesized the title derivative 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate, and report herein on its crystal structure and Hirshfeld surface analysis.

Structural commentary  

The mol­ecular structure and conformation of the two independent mol­ecules, A and B in the asymmetric unit, are shown in Fig. 1. The bond lengths and angles in both mol­ecules are very similar. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry-independent mol­ecules are of a statistical nature. The structural overlay of the two mol­ecules is shown in Fig. 2 (r.m.s. deviation = 0.098 Å).graphic file with name e-75-01123-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

A view of the mol­ecule overlay of inverted mol­ecule B (red) on mol­ecule A (blue), with an r.m.s. deviation of 0.126 Å.

The 1H-isochromene moiety is planar (r.m.s. deviation = 0.001 Å for mol­ecule A and 0.015 Å for mol­ecule B) and atoms O2A and O2B deviate from this mean plane by 0.007 (3) and 0.039 (3) Å, respectively. The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (16)° for mol­ecule A and 1.83 (16)° for mol­ecule B; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996; Kokila et al., 1996). In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5).

The title compound exhibits structural similarities with those of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide (Govin­d­han, Subramanian, Chennakesava Rao et al., 2015) and N-(2,4-di­meth­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide (Syed Abuthahir et al., 2019).

Supra­molecular features  

The crystal structure features O—H⋯O and C—H⋯O hydrogen bonds (Table 1; Fig. 3). In the crystal, the A and B mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. C—H⋯π (Table 1) and π–π inter­actions are present within the layers. The observed π–π inter­actions involve the pyran ring of the chromene ring system and the benzene ring [Cg1⋯Cg3iv = 3.864 (2), Cg1⋯Cg4iv = 3.509 (2) and Cg2⋯Cg3iv 3.572 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings O1A/C1A/C6A–C9A, C1A–C6A, O1B/C1B/C6B–C9B, and C1B–C6B, respectively; symmetry code: (iv) x, 1 + y, z].

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1A–C6A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4A1⋯O6A 0.82 1.82 2.621 (5) 167
O4B—H4B1⋯S1B i 0.82 2.70 3.479 (3) 159
O4B—H4B1⋯O6B i 0.82 1.78 2.595 (4) 169
C10B—H10A⋯O2A 0.97 2.49 3.423 (4) 161
C10B—H10B⋯O6B ii 0.97 2.37 3.266 (4) 153
C10A—H10C⋯O6A iii 0.97 2.38 3.330 (5) 165
C10A—H10D⋯O2B 0.97 2.40 3.324 (4) 159
C4B—H4BCg2i 0.93 2.88 3.552 (3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title compound. The hydrogen bonds (Table 1) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

Hirshfeld surface analysis  

A recent article by Tiekink and collaborators (Tan et al., 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse inter­molecular contacts in crystals. The various calculations for the title compound were performed with CrystalExplorer17 (Turner et al., 2017).

The Hirshfeld surface of the title compound mapped over d norm is shown in Fig. 4, and the inter­molecular contacts are illustrated in Fig. 5. They are colour-mapped with the normalized contact distance, d norm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The d norm surface was mapped over a fixed colour scale of 0.774 (red) to 1.381 (blue) for the title compound, where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding.

Figure 4.

Figure 4

The Hirshfeld surface of the title compound, mapped over d norm.

Figure 5.

Figure 5

A view of the Hirshfeld surface mapped over d norm, showing the various inter­molecular contacts in the crystal of the title compound.

The fingerprint plots are given in Fig. 6. They reveal that the principal inter­molecular contacts are H⋯H at 33.9% (Fig. 6 b) and O⋯H/H⋯O at 41.2% (Fig. 6 c), followed by the C⋯H/H⋯C contacts at 9.6% (Fig. 6 d), C⋯C contacts at 6.3% (Fig. 6 e) and S⋯H/H⋯S contacts at 3.9% (Fig. 6 f).

Figure 6.

Figure 6

(a) The full two-dimensional fingerprint plot for the title compound, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) S⋯H/H⋯S contacts.

Database survey  

A search of the Cambridge Structural Database (Web CSD version 5.39; March 9, 2018; Groom et al., 2016) gave more than 35 hits for both linear and angular pyran­ocoumarin (psoralene class) structures. They include seselin (amyrolin) [refcodes AMYROL (Kato, 1970) and AMYROL01 (Bauri et al., 2006)], 2,3-dihy­droxy-9-hy­droxy-2(1-hy­droxy-1-methyl­eth­yl)-7H-furo-[3,2-g][1]-benzo­pyran-7-one monohydrate (FUGVOS; Thailambal & Pattabhi, 1987), bromo­hydroxy­seselin (XARQAL; Bauri et al., 2017a ), di­bromo­mometh­oxy­seselin (VAPKOP; Bauri et al., 2017b ), and a number of structures with various substituents at C3 and C4, many of which are natural products.

Intra­molecular C—H⋯O short contacts similar to those in the title compound are found in five compounds in the CSD: 1-(1-pyrrolidinylcarbon­yl)cyclo­propyl sulfamate (LISLAB; Morin et al., 2007), 2-[3′-(4"-chloro­phen­yl)-4′,6′-di­meth­oxy­indol-7′-yl]glyoxyl-1-pyrrolidine (PEQHAU; Black et al., 1997), [2-hy­droxy-5-(2-hy­droxy­benzo­yl)phen­yl](pyrrolidin-1-yl)methanone (QIBBEJ; Holtz et al., 2007), 2-meth­oxy-1-(1-pyrrolidinylcarbon­yl)naphthalene (SIHNAZ; Sakamoto et al., 2007) and (4S,5S)-4,5-bis­(pyrrolidinylcarbon­yl)-2,2-dimethyl-1,3-dioxolane (TAJDIR; Garcia et al., 1991).

Synthesis and crystallization  

A solution of lithium hydroxide (0.24 g, 1.2 mol eq.) in water (4 mL) was added to ethyl 2-(2-oxo-2H-chromen-4-yl­oxy) acetate (2.0 g, 1.0 mol eq.) in THF (10 mL) at 273 K and stirred at 273 K for 1 h. Completion of the reaction was confirmed by TLC (mobile phase ethyl acetate/hexa­ne) and THF was distilled off using a rotavapor. The obtained solution was washed with ethyl acetate (20 mL). The aqueous layer was acidified with 2N HCl (pH 1.0–2.0) and the obtained solid was filtered, washed with hexane and dried under vacuum to give as white solid. The purified compound was recrystallized using dimethyl sulfoxide as solvent.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97Å with U iso(H) = 1.5U eq(C-meth­yl) or 1.2U eq(C) for other H atoms. In mol­ecule A, the sulfur atom of the sulfinyldi­methane group is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5). In the final cycles of refinement, five outliers were omitted.

Table 2. Experimental details.

Crystal data
Chemical formula C11H8O5·C2H6OS
M r 298.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 23.1461 (12), 8.2631 (4), 14.6374 (8)
β (°) 97.687 (4)
V3) 2774.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.25 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.742, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 25798, 6824, 2743
R int 0.119
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.063, 0.208, 0.87
No. of reflections 6824
No. of parameters 376
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.42

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2018 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012); Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019009447/vm2218sup1.cif

e-75-01123-sup1.cif (797.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009447/vm2218Isup2.hkl

e-75-01123-Isup2.hkl (542.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009447/vm2218Isup3.cml

CCDC reference: 1891495

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Crystal data

C11H8O5·C2H6OS F(000) = 1248
Mr = 298.30 Dx = 1.428 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 23.1461 (12) Å Cell parameters from 6824 reflections
b = 8.2631 (4) Å θ = 1.8–28.3°
c = 14.6374 (8) Å µ = 0.26 mm1
β = 97.687 (4)° T = 293 K
V = 2774.4 (2) Å3 Block, colourless
Z = 8 0.25 × 0.18 × 0.12 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2743 reflections with I > 2σ(I)
ω and φ scans Rint = 0.119
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 28.3°, θmin = 1.8°
Tmin = 0.742, Tmax = 0.852 h = −30→30
25798 measured reflections k = −10→10
6824 independent reflections l = −19→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3
S = 0.87 (Δ/σ)max < 0.001
6824 reflections Δρmax = 0.69 e Å3
376 parameters Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C13A −0.04399 (18) 0.4312 (5) 0.3443 (3) 0.0728 (13)
H13A −0.070292 0.463777 0.386381 0.109*
H13B −0.039226 0.315849 0.346833 0.109*
H13C −0.059577 0.462937 0.282872 0.109*
C13B 0.4520 (2) 0.3039 (6) 0.5340 (4) 0.0918 (16)
H13D 0.491305 0.265054 0.546953 0.138*
H13E 0.427430 0.243383 0.569514 0.138*
H13F 0.450767 0.416386 0.550058 0.138*
C12B 0.4320 (2) 0.0677 (5) 0.4079 (4) 0.0834 (15)
H12A 0.419331 0.033276 0.345850 0.125*
H12B 0.407847 0.018839 0.448683 0.125*
H12C 0.471795 0.035236 0.425574 0.125*
S1B 0.42683 (4) 0.27960 (14) 0.41469 (9) 0.0666 (4)
C8B 0.27020 (14) 0.7563 (4) 0.6754 (2) 0.0410 (9)
H8B 0.286314 0.852257 0.657309 0.049*
C8A 0.22217 (14) 1.1613 (4) 0.5296 (2) 0.0388 (8)
H8A 0.206427 1.062620 0.544340 0.047*
C1A 0.21016 (13) 1.4456 (4) 0.4892 (2) 0.0343 (8)
C1B 0.28007 (13) 0.4732 (4) 0.7173 (2) 0.0365 (8)
C9A 0.18699 (13) 1.2921 (4) 0.5157 (2) 0.0356 (8)
C6B 0.22279 (14) 0.4729 (4) 0.7336 (2) 0.0374 (8)
C7B 0.21038 (14) 0.7526 (4) 0.6883 (3) 0.0408 (9)
C6A 0.26854 (14) 1.4507 (4) 0.4786 (2) 0.0374 (8)
C9B 0.30397 (13) 0.6232 (4) 0.6888 (2) 0.0350 (8)
C10B 0.39088 (14) 0.7553 (4) 0.6567 (3) 0.0450 (9)
H10A 0.365842 0.821170 0.613063 0.054*
H10B 0.425039 0.726291 0.628436 0.054*
C7A 0.28261 (15) 1.1714 (4) 0.5224 (3) 0.0425 (9)
C3A 0.20154 (16) 1.7230 (4) 0.4385 (3) 0.0486 (10)
H3A 0.179056 1.815309 0.424815 0.058*
C4A 0.25956 (17) 1.7231 (4) 0.4274 (3) 0.0502 (10)
H4A 0.275975 1.815759 0.405586 0.060*
C5A 0.29396 (15) 1.5876 (4) 0.4480 (3) 0.0451 (9)
H5A 0.333355 1.588921 0.441346 0.054*
C11B 0.40938 (15) 0.8519 (4) 0.7420 (3) 0.0484 (10)
C5B 0.19577 (16) 0.3353 (4) 0.7620 (3) 0.0469 (9)
H5B 0.157087 0.338287 0.772786 0.056*
C3B 0.28513 (17) 0.1906 (4) 0.7585 (3) 0.0496 (10)
H3B 0.306236 0.094800 0.767083 0.060*
C11A 0.08288 (14) 1.0434 (4) 0.4690 (3) 0.0436 (9)
C4B 0.22748 (17) 0.1949 (4) 0.7737 (3) 0.0501 (10)
H4B 0.209965 0.101248 0.792202 0.060*
C2A 0.17680 (15) 1.5856 (4) 0.4699 (2) 0.0423 (9)
H2A 0.137684 1.586033 0.478387 0.051*
C2B 0.31131 (15) 0.3286 (4) 0.7305 (2) 0.0429 (9)
H2B 0.350099 0.325359 0.720247 0.052*
C12A 0.05788 (19) 0.4705 (5) 0.2783 (3) 0.0771 (14)
H12D 0.063612 0.355485 0.278054 0.116*
H12E 0.033342 0.502275 0.223138 0.116*
H12F 0.094887 0.524054 0.281072 0.116*
C10A 0.10247 (14) 1.1508 (4) 0.5512 (3) 0.0421 (9)
H10C 0.068964 1.179268 0.581190 0.050*
H10D 0.129589 1.091455 0.595162 0.050*
O2B 0.17604 (10) 0.8632 (3) 0.6759 (2) 0.0583 (7)
O2A 0.30431 (9) 1.3180 (3) 0.49654 (17) 0.0443 (6)
O3B 0.36054 (9) 0.6118 (3) 0.67566 (17) 0.0447 (6)
O1A 0.31786 (11) 1.0636 (3) 0.5349 (2) 0.0623 (8)
O1B 0.18850 (9) 0.6100 (3) 0.71963 (17) 0.0455 (6)
O3A 0.13002 (9) 1.2960 (2) 0.52488 (17) 0.0422 (6)
O4A 0.06268 (12) 0.9068 (3) 0.49773 (19) 0.0586 (8)
H4A1 0.050295 0.850621 0.453194 0.088*
O4B 0.43802 (13) 0.9821 (3) 0.7219 (2) 0.0710 (9)
H4B1 0.445425 1.038184 0.768236 0.106*
O7B 0.47513 (11) 0.3440 (3) 0.3654 (2) 0.0764 (10)
O6A 0.01623 (13) 0.6980 (4) 0.3745 (3) 0.0979 (13)
O5B 0.39977 (12) 0.8143 (4) 0.8178 (2) 0.0682 (9)
O5A 0.08491 (13) 1.0796 (4) 0.3906 (2) 0.0718 (9)
S1A 0.02436 (6) 0.52545 (19) 0.37557 (13) 0.0507 (6) 0.782 (5)
S1'A 0.0025 (3) 0.5829 (7) 0.3230 (5) 0.057 (2) 0.218 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C13A 0.067 (3) 0.069 (3) 0.085 (4) −0.020 (2) 0.016 (2) −0.009 (3)
C13B 0.086 (3) 0.094 (4) 0.090 (4) −0.016 (3) −0.010 (3) −0.007 (3)
C12B 0.088 (3) 0.070 (3) 0.090 (4) −0.011 (3) 0.001 (3) 0.004 (3)
S1B 0.0449 (6) 0.0689 (7) 0.0854 (10) 0.0084 (5) 0.0070 (6) 0.0063 (6)
C8B 0.0393 (18) 0.0338 (18) 0.051 (3) −0.0033 (15) 0.0085 (16) 0.0001 (17)
C8A 0.0399 (18) 0.0315 (17) 0.045 (2) −0.0033 (14) 0.0075 (16) 0.0018 (16)
C1A 0.0360 (17) 0.0355 (18) 0.032 (2) 0.0010 (14) 0.0049 (15) −0.0044 (15)
C1B 0.0380 (18) 0.0345 (18) 0.036 (2) −0.0004 (15) 0.0007 (15) −0.0001 (16)
C9A 0.0353 (17) 0.0366 (19) 0.035 (2) −0.0010 (14) 0.0033 (15) −0.0007 (15)
C6B 0.0432 (19) 0.0366 (18) 0.032 (2) −0.0007 (15) 0.0052 (16) −0.0041 (16)
C7B 0.0416 (19) 0.039 (2) 0.042 (2) −0.0008 (16) 0.0051 (16) −0.0021 (17)
C6A 0.0445 (19) 0.0345 (18) 0.033 (2) −0.0015 (15) 0.0059 (16) −0.0057 (16)
C9B 0.0328 (16) 0.0382 (18) 0.033 (2) 0.0004 (14) 0.0028 (15) −0.0073 (16)
C10B 0.0347 (17) 0.043 (2) 0.059 (3) −0.0011 (16) 0.0159 (17) 0.0030 (19)
C7A 0.0432 (19) 0.040 (2) 0.044 (2) 0.0032 (16) 0.0033 (17) −0.0044 (17)
C3A 0.057 (2) 0.041 (2) 0.048 (3) 0.0097 (18) 0.0062 (19) 0.0031 (18)
C4A 0.071 (3) 0.039 (2) 0.041 (3) −0.0134 (19) 0.011 (2) 0.0038 (18)
C5A 0.047 (2) 0.045 (2) 0.045 (3) −0.0090 (17) 0.0108 (18) −0.0043 (18)
C11B 0.0358 (19) 0.042 (2) 0.069 (3) −0.0054 (16) 0.014 (2) −0.004 (2)
C5B 0.050 (2) 0.051 (2) 0.040 (3) −0.0126 (18) 0.0074 (17) 0.0001 (18)
C3B 0.066 (3) 0.038 (2) 0.042 (3) 0.0018 (18) −0.0043 (19) 0.0061 (18)
C11A 0.0343 (18) 0.044 (2) 0.053 (3) −0.0022 (16) 0.0095 (18) 0.000 (2)
C4B 0.070 (3) 0.041 (2) 0.038 (3) −0.0132 (19) 0.0029 (19) 0.0051 (17)
C2A 0.0445 (19) 0.041 (2) 0.041 (2) 0.0018 (16) 0.0038 (17) 0.0004 (17)
C2B 0.0436 (19) 0.042 (2) 0.042 (2) 0.0022 (16) 0.0001 (17) −0.0009 (17)
C12A 0.070 (3) 0.076 (3) 0.092 (4) −0.003 (2) 0.034 (3) −0.030 (3)
C10A 0.0368 (18) 0.0411 (19) 0.050 (3) −0.0006 (15) 0.0109 (17) 0.0002 (18)
O2B 0.0477 (15) 0.0467 (15) 0.081 (2) 0.0112 (12) 0.0088 (14) 0.0038 (14)
O2A 0.0367 (12) 0.0435 (14) 0.0539 (18) 0.0010 (10) 0.0101 (11) 0.0052 (12)
O3B 0.0342 (13) 0.0378 (13) 0.0629 (19) −0.0018 (10) 0.0094 (12) 0.0006 (12)
O1A 0.0475 (15) 0.0520 (16) 0.088 (2) 0.0149 (13) 0.0105 (14) 0.0099 (15)
O1B 0.0392 (13) 0.0430 (14) 0.0561 (18) 0.0005 (11) 0.0123 (12) 0.0030 (12)
O3A 0.0340 (12) 0.0348 (13) 0.0583 (18) 0.0003 (10) 0.0085 (11) 0.0034 (11)
O4A 0.0630 (17) 0.0405 (15) 0.072 (2) −0.0125 (13) 0.0081 (15) −0.0035 (14)
O4B 0.0748 (19) 0.0550 (17) 0.085 (2) −0.0232 (15) 0.0173 (18) −0.0107 (16)
O7B 0.0494 (16) 0.074 (2) 0.110 (3) 0.0176 (14) 0.0238 (16) 0.0302 (18)
O6A 0.074 (2) 0.073 (2) 0.153 (4) −0.0240 (17) 0.040 (2) −0.065 (2)
O5B 0.074 (2) 0.074 (2) 0.058 (2) −0.0207 (15) 0.0138 (16) −0.0042 (17)
O5A 0.089 (2) 0.079 (2) 0.049 (2) −0.0262 (17) 0.0148 (17) −0.0035 (17)
S1A 0.0455 (8) 0.0497 (9) 0.0550 (13) 0.0045 (6) −0.0008 (7) −0.0059 (8)
S1'A 0.059 (3) 0.049 (3) 0.061 (5) 0.004 (3) 0.002 (3) 0.007 (3)

Geometric parameters (Å, º)

C13A—S1'A 1.708 (6) C10B—H10A 0.9700
C13A—S1A 1.768 (4) C10B—H10B 0.9700
C13A—H13A 0.9600 C7A—O1A 1.205 (4)
C13A—H13B 0.9600 C7A—O2A 1.384 (4)
C13A—H13C 0.9600 C3A—C2A 1.378 (5)
C13B—S1B 1.777 (5) C3A—C4A 1.374 (5)
C13B—H13D 0.9600 C3A—H3A 0.9300
C13B—H13E 0.9600 C4A—C5A 1.384 (5)
C13B—H13F 0.9600 C4A—H4A 0.9300
C12B—S1B 1.759 (5) C5A—H5A 0.9300
C12B—H12A 0.9600 C11B—O5B 1.201 (5)
C12B—H12B 0.9600 C11B—O4B 1.317 (4)
C12B—H12C 0.9600 C5B—C4B 1.372 (5)
S1B—O7B 1.506 (3) C5B—H5B 0.9300
C8B—C9B 1.348 (4) C3B—C2B 1.379 (5)
C8B—C7B 1.423 (4) C3B—C4B 1.383 (5)
C8B—H8B 0.9300 C3B—H3B 0.9300
C8A—C9A 1.352 (4) C11A—O5A 1.193 (4)
C8A—C7A 1.420 (4) C11A—O4A 1.312 (4)
C8A—H8A 0.9300 C11A—C10A 1.515 (5)
C1A—C6A 1.382 (4) C4B—H4B 0.9300
C1A—C2A 1.399 (4) C2A—H2A 0.9300
C1A—C9A 1.449 (4) C2B—H2B 0.9300
C1B—C6B 1.378 (4) C12A—S1'A 1.776 (7)
C1B—C2B 1.396 (4) C12A—S1A 1.769 (4)
C1B—C9B 1.441 (5) C12A—H12D 0.9600
C9A—O3A 1.344 (4) C12A—H12E 0.9600
C6B—C5B 1.388 (5) C12A—H12F 0.9600
C6B—O1B 1.383 (4) C10A—O3A 1.436 (4)
C7B—O2B 1.209 (4) C10A—H10C 0.9700
C7B—O1B 1.384 (4) C10A—H10D 0.9700
C6A—C5A 1.377 (5) O4A—H4A1 0.8200
C6A—O2A 1.378 (4) O4B—H4B1 0.8200
C9B—O3B 1.352 (3) O6A—S1'A 1.229 (6)
C10B—O3B 1.424 (4) O6A—S1A 1.438 (3)
C10B—C11B 1.496 (5)
S1A—C13A—H13A 109.5 O2A—C7A—C8A 118.0 (3)
S1A—C13A—H13B 109.5 C2A—C3A—C4A 119.8 (3)
H13A—C13A—H13B 109.5 C2A—C3A—H3A 120.1
S1A—C13A—H13C 109.5 C4A—C3A—H3A 120.1
H13A—C13A—H13C 109.5 C3A—C4A—C5A 121.1 (3)
H13B—C13A—H13C 109.5 C3A—C4A—H4A 119.4
S1B—C13B—H13D 109.5 C5A—C4A—H4A 119.4
S1B—C13B—H13E 109.5 C6A—C5A—C4A 118.5 (3)
H13D—C13B—H13E 109.5 C6A—C5A—H5A 120.8
S1B—C13B—H13F 109.5 C4A—C5A—H5A 120.8
H13D—C13B—H13F 109.5 O5B—C11B—O4B 125.3 (4)
H13E—C13B—H13F 109.5 O5B—C11B—C10B 124.4 (3)
S1B—C12B—H12A 109.5 O4B—C11B—C10B 110.3 (4)
S1B—C12B—H12B 109.5 C4B—C5B—C6B 118.4 (3)
H12A—C12B—H12B 109.5 C4B—C5B—H5B 120.8
S1B—C12B—H12C 109.5 C6B—C5B—H5B 120.8
H12A—C12B—H12C 109.5 C2B—C3B—C4B 119.9 (3)
H12B—C12B—H12C 109.5 C2B—C3B—H3B 120.0
O7B—S1B—C12B 105.3 (2) C4B—C3B—H3B 120.0
O7B—S1B—C13B 105.3 (2) O5A—C11A—O4A 125.8 (4)
C12B—S1B—C13B 98.7 (2) O5A—C11A—C10A 124.8 (3)
C9B—C8B—C7B 121.3 (3) O4A—C11A—C10A 109.3 (4)
C9B—C8B—H8B 119.4 C5B—C4B—C3B 120.9 (3)
C7B—C8B—H8B 119.4 C5B—C4B—H4B 119.6
C9A—C8A—C7A 121.4 (3) C3B—C4B—H4B 119.6
C9A—C8A—H8A 119.3 C3A—C2A—C1A 120.4 (3)
C7A—C8A—H8A 119.3 C3A—C2A—H2A 119.8
C6A—C1A—C2A 118.3 (3) C1A—C2A—H2A 119.8
C6A—C1A—C9A 117.4 (3) C3B—C2B—C1B 120.6 (3)
C2A—C1A—C9A 124.3 (3) C3B—C2B—H2B 119.7
C6B—C1B—C2B 117.8 (3) C1B—C2B—H2B 119.7
C6B—C1B—C9B 117.8 (3) S1A—C12A—H12D 109.5
C2B—C1B—C9B 124.3 (3) S1A—C12A—H12E 109.5
O3A—C9A—C8A 125.7 (3) H12D—C12A—H12E 109.5
O3A—C9A—C1A 114.1 (3) S1A—C12A—H12F 109.5
C8A—C9A—C1A 120.2 (3) H12D—C12A—H12F 109.5
C1B—C6B—C5B 122.4 (3) H12E—C12A—H12F 109.5
C1B—C6B—O1B 121.3 (3) O3A—C10A—C11A 111.9 (3)
C5B—C6B—O1B 116.3 (3) O3A—C10A—H10C 109.2
O2B—C7B—O1B 115.5 (3) C11A—C10A—H10C 109.2
O2B—C7B—C8B 126.6 (3) O3A—C10A—H10D 109.2
O1B—C7B—C8B 117.9 (3) C11A—C10A—H10D 109.2
C5A—C6A—O2A 116.3 (3) H10C—C10A—H10D 107.9
C5A—C6A—C1A 121.9 (3) C6A—O2A—C7A 121.2 (3)
O2A—C6A—C1A 121.7 (3) C9B—O3B—C10B 118.8 (2)
C8B—C9B—O3B 126.1 (3) C7B—O1B—C6B 121.2 (3)
C8B—C9B—C1B 120.4 (3) C9A—O3A—C10A 118.9 (2)
O3B—C9B—C1B 113.4 (3) C11A—O4A—H4A1 109.5
O3B—C10B—C11B 112.0 (3) C11B—O4B—H4B1 109.5
O3B—C10B—H10A 109.2 O6A—S1A—C12A 108.5 (2)
C11B—C10B—H10A 109.2 O6A—S1A—C13A 108.8 (2)
O3B—C10B—H10B 109.2 C12A—S1A—C13A 98.8 (2)
C11B—C10B—H10B 109.2 O6A—S1'A—C13A 124.9 (5)
H10A—C10B—H10B 107.9 O6A—S1'A—C12A 119.4 (5)
O1A—C7A—O2A 115.2 (3) C13A—S1'A—C12A 100.8 (3)
O1A—C7A—C8A 126.8 (3)
C7A—C8A—C9A—O3A −177.0 (3) O3B—C10B—C11B—O5B −0.3 (5)
C7A—C8A—C9A—C1A 2.4 (5) O3B—C10B—C11B—O4B 179.0 (3)
C6A—C1A—C9A—O3A 179.9 (3) C1B—C6B—C5B—C4B −0.2 (5)
C2A—C1A—C9A—O3A −3.1 (5) O1B—C6B—C5B—C4B 177.8 (3)
C6A—C1A—C9A—C8A 0.5 (5) C6B—C5B—C4B—C3B 0.6 (6)
C2A—C1A—C9A—C8A 177.5 (3) C2B—C3B—C4B—C5B −0.4 (6)
C2B—C1B—C6B—C5B −0.2 (5) C4A—C3A—C2A—C1A −1.0 (6)
C9B—C1B—C6B—C5B −179.4 (3) C6A—C1A—C2A—C3A 1.9 (5)
C2B—C1B—C6B—O1B −178.2 (3) C9A—C1A—C2A—C3A −175.0 (3)
C9B—C1B—C6B—O1B 2.6 (5) C4B—C3B—C2B—C1B 0.0 (5)
C9B—C8B—C7B—O2B −178.0 (4) C6B—C1B—C2B—C3B 0.3 (5)
C9B—C8B—C7B—O1B 3.1 (5) C9B—C1B—C2B—C3B 179.5 (3)
C2A—C1A—C6A—C5A −1.4 (5) O5A—C11A—C10A—O3A −6.4 (5)
C9A—C1A—C6A—C5A 175.8 (3) O4A—C11A—C10A—O3A 174.6 (3)
C2A—C1A—C6A—O2A 179.8 (3) C5A—C6A—O2A—C7A −176.2 (3)
C9A—C1A—C6A—O2A −3.1 (5) C1A—C6A—O2A—C7A 2.8 (5)
C7B—C8B—C9B—O3B 177.7 (3) O1A—C7A—O2A—C6A 179.0 (3)
C7B—C8B—C9B—C1B −0.3 (5) C8A—C7A—O2A—C6A 0.2 (5)
C6B—C1B—C9B—C8B −2.6 (5) C8B—C9B—O3B—C10B 8.3 (5)
C2B—C1B—C9B—C8B 178.2 (3) C1B—C9B—O3B—C10B −173.6 (3)
C6B—C1B—C9B—O3B 179.2 (3) C11B—C10B—O3B—C9B 78.5 (4)
C2B—C1B—C9B—O3B 0.0 (5) O2B—C7B—O1B—C6B 177.8 (3)
C9A—C8A—C7A—O1A 178.7 (4) C8B—C7B—O1B—C6B −3.1 (5)
C9A—C8A—C7A—O2A −2.7 (5) C1B—C6B—O1B—C7B 0.3 (5)
C2A—C3A—C4A—C5A −0.6 (6) C5B—C6B—O1B—C7B −177.8 (3)
O2A—C6A—C5A—C4A 178.8 (3) C8A—C9A—O3A—C10A −0.4 (5)
C1A—C6A—C5A—C4A −0.1 (5) C1A—C9A—O3A—C10A −179.8 (3)
C3A—C4A—C5A—C6A 1.1 (6) C11A—C10A—O3A—C9A −84.3 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1A–C6A ring.

D—H···A D—H H···A D···A D—H···A
O4A—H4A1···O6A 0.82 1.82 2.621 (5) 167
O4B—H4B1···S1Bi 0.82 2.70 3.479 (3) 159
O4B—H4B1···O7Bi 0.82 1.78 2.595 (4) 169
C10B—H10A···O1A 0.97 2.49 3.423 (4) 161
C10B—H10B···O7Bii 0.97 2.37 3.266 (4) 153
C10A—H10C···O6Aiii 0.97 2.38 3.330 (5) 165
C10A—H10D···O2B 0.97 2.40 3.324 (4) 159
C4B—H4B···Cg1i 0.93 2.88 3.552 (3) 130

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+2, −z+1.

References

  1. Abid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018. [DOI] [PMC free article] [PubMed]
  2. Babar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266. [DOI] [PMC free article] [PubMed]
  3. Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.
  4. Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455. [DOI] [PMC free article] [PubMed]
  5. Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776. [DOI] [PMC free article] [PubMed]
  6. Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290.
  7. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 3081–3083. [DOI] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204.
  11. Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190.
  12. Govindhan, M., Subramanian, K., Sridharan, S., Chennakesava Rao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Henderson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1111–1176.
  15. Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301.
  16. Kato, K. (1970). Acta Cryst. B26, 2022–2029.
  17. Kokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081.
  18. Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175.
  19. Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81.
  20. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  21. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  22. Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535.
  23. Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588. [DOI] [PubMed]
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  28. Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141. [DOI] [PubMed]
  29. Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Govindhan, M. & Subramanian, K. (2019). Acta Cryst. E75, 482–488. [DOI] [PMC free article] [PubMed]
  30. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  31. Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.
  32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  33. Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl. Article ID 963248, 14 pages, http://dx.doi.org/10.1155/2013/963248. [DOI] [PMC free article] [PubMed]
  34. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989019009447/vm2218sup1.cif

e-75-01123-sup1.cif (797.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009447/vm2218Isup2.hkl

e-75-01123-Isup2.hkl (542.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009447/vm2218Isup3.cml

CCDC reference: 1891495

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES