Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 9;75(Pt 8):1117–1122. doi: 10.1107/S2056989019009435

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one

S Syed Abuthahir a, M NizamMohideen a,*, S Mayakrishnan b, N Uma Maheswari c, V Viswanathan d
PMCID: PMC6690470  PMID: 31417776

The crystal structures of two new isocoumarin derivatives, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, are described. The inter­molecular contacts in the crystals were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Keywords: crystal structure, chromen, isochromene, hydrogen bonding, N—H⋯π inter­actions, C—H⋯π inter­actions, offset π—π inter­actions, Hirshfeld surface analysis

Abstract

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset π–π inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.

Chemical context  

In recent years, there has been growing inter­est in the synthesis of natural products, since they are a tremendous and trustworthy source for the development of new drugs. The isocoumarin nucleus is a rich structural pattern in natural products (Barry, 1964) that are also constructive inter­mediates in the synthesis of a range of significant compounds, including some carbocyclic and heterocyclic compounds. Many isocoumarins show evidence of attention-grabbing biological properties and a number of pharmacological activities, such as anti­bacterial, anti­fungal, anti­tumor, anti-inflammatory, anti-allergic anti-cancer, anti-virus and anti-HIV (Khan et al., 2010) activities. Isocoumarins are isolated in a enormous range of microorganisms, plants, insects and show significant biological activity, such the regulation of plant growth (Bianchi et al., 2004). Isocoumarins and their derivatives are secondary metabolites of an extensive range of microbial plant and insect sources and in the creation of other medicinal compounds (Manivel et al., 2008; Basvanag et al., 2009). Depending on their chemical composition and concentration, they can be active either as inhibitors or stimulators in these processes. Isocoumarins and their derivatives (Ercole et al., 2009; Schnebel et al., 2003; Schmalle et al., 1982) have been reported that have a close resemblance as far as isochromane and its attached phenyl ring is considered. The synthesis and pharmacological and other properties of coumarin and isocoumarin derivatives have been studied intensely and reviewed (Jain et al., 2012; Pal et al., 2011). Against this background and in view of the importance of their natural occurrence, biological activities, pharmacological activities, medicinal activities and utility as synthetic inter­mediates, we have synthesized the title compounds, and report herein on their crystal structures.graphic file with name e-75-01117-scheme1.jpg

Structural commentary  

The mol­ecular structure and conformation of compound I is illustrated in Fig. 1. It consists of a 1H-isochromen-1-one moiety substituted by two phenyl groups, an amino group and a methyl group. The mol­ecular structures and conformations of the two independent mol­ecules (A and B) of compound II are illustrated in Fig. 2. Both mol­ecules consist of a 1H-isochromen-1-one moiety substituted by two ethyl groups, an amino group and a methyl group. The bond lengths and angles in the two independent mol­ecules agree with each other within experimental error. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry-independent mol­ecules are of a statistical nature. For both compounds, the bond lengths and angles are close to those observed for a similar structure (Mayakrishnan et al., 2018). In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present in each mol­ecule forming an S(6) ring motif: see Table 1 and Fig. 1 for I, and Table 2 and Fig. 2 for II.

Figure 1.

Figure 1

The mol­ecular structure of I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond (Table 1) is shown as a dashed line.

Figure 2.

Figure 2

The mol­ecular structure of the two independent mol­ecules (A and B) of II, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bonds (Table 2) are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °) for I .

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1/C5–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O2 0.86 2.05 2.6915 (19) 131
N1—H1NCg1i 0.86 2.81 3.631 (2) 157
C20—H20⋯Cg2ii 0.93 2.70 3.588 (2) 160
C21—H21⋯Cg3iii 0.93 2.84 3.488 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °) for II .

Cg2 is the centroid of the C1A/C5A–C9A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A2⋯O2A 0.86 2.05 2.701 (3) 131
N1B—H1B2⋯O2B 0.86 2.05 2.696 (3) 131
N1A—H1A1⋯O1B i 0.86 2.57 3.328 (3) 148
N1B—H1B1⋯O1A ii 0.86 2.50 3.235 (3) 143
N1B—H1B1⋯O2A ii 0.86 2.53 3.367 (3) 165
C12A—H12ACg2iii 0.96 2.99 3.773 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

In I, the phenyl rings (C11–C16 and C17–C22) are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromen-1-one (O1/C1–C9) ring system by 67.64 (6) and 44.92 (6)°, respectively. The 1H-isochromen-1-one moiety is planar (r.m.s. deviation = 0.021 Å) and atom O2 deviates from the mean plane by 0.041 (1) Å. In II, the 1H-isochromen-1-one ring system in each mol­ecule (A and B) is also planar (r.m.s. deviations are 0.012 and 0.0321Å, respectively) and atoms O2A and O2B deviate from their respective mean planes by 0.052 (2) and 0.014 (2) Å, respectively.

Supra­molecular features  

In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction (Fig. 3 and Table 1). A C—H⋯π inter­action (C20—H20⋯Cg2ii; Table 1) links the chains into layers parallel to (100). The layers are linked by a second C—H⋯π inter­action (C21—H21⋯Cg3iii; Table 1) to form a three-dimensional structure (Fig. 4). No significant π–π inter­actions with centroid–centroid distances less than 4 Å are observed.

Figure 3.

Figure 3

A partial view along the a axis of the crystal packing of I. The intra­molecular hydrogen bond and the N—H⋯π inter­action (Table 1) are shown as dashed lines, and only the H atoms (grey balls) involved in the various inter­actions have been included.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of I. The intra­molecular hydrogen bonds and the N—H⋯π and C—H⋯π inter­actions (Table 1) are shown as dashed lines, and only the H atoms (grey balls) involved in the various inter­actions have been included.

In the crystal of II, the two independent mol­ecules are linked by N—H⋯O hydrogen bonds involving the amino H atom of mol­ecule B and the keto and chromen group oxygen atoms, O1A and O2A, of mol­ecule A, forming –ABAB– chains along the [101] direction (see Table 2 and Fig. 5). The chains are linked by C—H⋯π inter­actions involving inversion-related A mol­ecules to form ribbons (Table 2 and Fig. 5). The ribbons are linked by offset π–π inter­actions, forming a three-dimensional structure (Fig. 6): inter­centroid distances Cg1⋯Cg2i = 3.506 (2) Å [α = 0.97 (12)°, β = 15.9°, inter­planar distances = 3.356 (1) and 3.373 (1) Å, offset = 0.958 Å] and Cg3⋯Cg4iv = 3.870 (2) Å [α = 6.01 (13)°, β = 16.5°, inter­planar distances = 3.611 (1) and 3.711 (1) Å, offset = 1.392 Å]; symmetry codes: (i) −x, −y, −z; (iv) −x, −y + Inline graphic, z − Inline graphic; Cg1, Cg2, Cg3 and Cg4 are centroids of the (O1A/C1A–C4A/C9A), (C1A/C5A–C9A), (O1B/C1B–C4B/C9B) and (C1B/C5B–C9B) rings, respectively].

Figure 5.

Figure 5

A partial view of the crystal packing of II (mol­ecule A blue, mol­ecule B red). The intra­molecular hydrogen bond (Table 2) and the C—H⋯π inter­action, involving atom H12A (blue ball), are shown as dashed lines, and only the H atoms involved in the various inter­actions have been included.

Figure 6.

Figure 6

A view along the a axis of the crystal packing of II (mol­ecule A blue, mol­ecule B red; O and N atoms are shown as balls). The hydrogen bonds (Table 2) are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

Hirshfeld surface analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse the inter­molecular contacts in the crystals, were performed with CrystalExplorer17 (Turner et al., 2017).

The Hirshfeld surfaces of I and II mapped over d norm are given in Fig. 7, and the inter­molecular contacts are illustrated in Fig. 8 for I and Fig. 9 for II. They are colour-mapped with the normalized contact distance, d norm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The d norm surface was mapped over an arbitrary colour scale of −0.125 (red) to 1.528 (blue) for compound I and −0.178 (red) to 1.537 (blue) for compound II. The red spots on the surface indicate the inter­molecular contacts involved in hydrogen bonding.

Figure 7.

Figure 7

The Hirshfeld surfaces mapped over d norm, for (a) I and (b) II.

Figure 8.

Figure 8

A view of the Hirshfeld surface mapped over d norm of I, showing the various inter­molecular contacts in the crystal.

Figure 9.

Figure 9

A view of the Hirshfeld surface mapped over d norm of II, showing the various inter­molecular contacts in the crystal.

The fingerprint plots are given in Figs. 10 and 11. For I, they reveal that the principal inter­molecular contacts are H⋯H at 48.9% (Fig. 10 b), O⋯H/H⋯O at 14.0% (Fig. 10 c), C⋯H/H⋯C contacts at 15.4% (Fig. 10 d) and H⋯N/N⋯H at 1.4% (Fig. 10 e) followed by the C⋯C contacts at 2% (Fig. 10 f). For II, they reveal a similar trend, with the principal inter­molecular contacts being H⋯H at 61.7% (Fig. 11 b), O⋯H/H⋯O at 15.6% (Fig. 11 c), C⋯H/H⋯C contacts at 14.6% (Fig. 11 d), and C⋯C contacts at 5.1% (Fig. 11 e) followed by the H⋯N/N⋯H at 2.2% (Fig. 11 f). In both compounds, the H⋯H inter­molecular contacts predominate, followed by O⋯H/H⋯O contacts. However, the C⋯C contacts are significantly different: 2% cf. 5.1% for I and II, respectively.

Figure 10.

Figure 10

The full two-dimensional fingerprint plot for I, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) N⋯H/H⋯N contacts and (f) C⋯C.

Figure 11.

Figure 11

The full two-dimensional fingerprint plot for II, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯·H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016) for 8-amino-1H-isochromen-1-ones gave only one hit, viz. 8-amino-3,4-bis­(4-meth­oxy­phen­yl)-1H-isochromen-1-one (CSD refcode NIKMAY; Mayakrishnan et al., 2018). The conformation of this mol­ecule is slightly different from that of compound (I). The isochromen-1-one ring system is planar (r.m.s. deviation = 0.042 Å) and the 4-meth­oxy­phenyl rings are inclined to this mean plane by 67.22 (13) and 71.26 (11)°, and to each other by 66.91 (18)°. The corresponding dihedral angles in compound I are 67.64 (6), 44.92 (6) and 56.41 (7)°. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif as in compound (I). In the crystal, however, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [301], similar to the situation in compound II, rather than by N—H⋯π inter­actions as in the crystal of compound I.

Synthesis and crystallization  

Compound I: An oven-dried round-bottom 25 ml flask with a magnetic stirrer bar was charged with 7-methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (1.0 equiv), di­phenyl­acetyl­ene (1.2 equiv), [RhCp*Cl2]2 (3.0 mol %), Cu(OAc) (1.0 equiv) and di­methyl­formamide (5 ml). The flask was sealed using a Teflon-coated screw cap and the reaction was continuously heated at 383 K for 24 h. The mixture was then cooled to ambient temperature, diluted with 25 ml of ethyl acetate, filtered through a celite pad, and washed with 40–60 ml of ethyl acetate. The combined organic phases were concentrated under reduced pressure, and the residue was purified by column chromatography using silica gel which led to the desired product, compound I.

Compound II: An oven-dried round-bottom 25 ml flask with a magnetic stirrer bar was charged with 7-methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (1.0 equiv), hex-3-yne (1.2 equiv), [RhCp*Cl2]2 (3.0 mol %), Cu(OAc) (1.0 equiv) and di­methyl­formamide (5 ml). The flask was sealed using a Teflon-coated screw cap and the reaction was continuously heated at 383 K for 24 h. The mixture was then cooled to ambient temperature, diluted with 25 ml of ethyl acetate, then filtered through a celite pad and washed with 40–60 ml of ethyl acetate. The combined organic phases were concentrated under reduced pressure, and the residue was purified by column chromatography using silica gel, which led to the desired product, viz. compound II.

Colourless block-like crystals of compounds I and II were obtained by slow evaporation of solutions in ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(N, C) for other H atoms. The crystal of compound II diffracted extremely weakly beyond 20° in θ and the data set was restricted to a maximum θ angle of 23.8°.

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C22H17NO2 C14H17NO2
M r 327.36 231.28
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.1652 (3), 16.9764 (6), 10.9687 (4) 10.4844 (8), 26.562 (2), 9.3651 (6)
β (°) 91.156 (1) 105.367 (3)
V3) 1706.30 (10) 2514.8 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.32 × 0.18 × 0.12 0.25 × 0.22 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.756, 0.824 0.756, 0.824
No. of measured, independent and observed [I > 2σ(I)] reflections 14904, 3628, 2719 13067, 3755, 2132
R int 0.025 0.048
θmax (°) 26.8 23.8
(sin θ/λ)max−1) 0.634 0.567
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.118, 1.03 0.054, 0.168, 1.01
No. of reflections 3628 3755
No. of parameters 228 313
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.15 0.15, −0.25

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2018 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019009435/su5498sup1.cif

e-75-01117-sup1.cif (866.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009435/su5498Isup4.hkl

e-75-01117-Isup4.hkl (289.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019009435/su5498IIsup5.hkl

e-75-01117-IIsup5.hkl (299.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009435/su5498Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019009435/su5498IIsup5.cml

CCDC references: 1937678, 1937677

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Crystal data

C22H17NO2 F(000) = 688
Mr = 327.36 Dx = 1.274 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.1652 (3) Å Cell parameters from 3001 reflections
b = 16.9764 (6) Å θ = 1.8–26.9°
c = 10.9687 (4) Å µ = 0.08 mm1
β = 91.156 (1)° T = 296 K
V = 1706.30 (10) Å3 Block, colourless
Z = 4 0.32 × 0.18 × 0.12 mm

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Data collection

Bruker Kappa APEXII CCD diffractometer 2719 reflections with I > 2σ(I)
ω and φ scans Rint = 0.025
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 26.8°, θmin = 2.2°
Tmin = 0.756, Tmax = 0.824 h = −7→11
14904 measured reflections k = −16→21
3628 independent reflections l = −13→13

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.3498P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3628 reflections Δρmax = 0.22 e Å3
228 parameters Δρmin = −0.15 e Å3
0 restraints Extinction correction: (SHELXL-2018/3; Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.027 (3)

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.30517 (11) 0.50819 (6) −0.13908 (8) 0.0428 (3)
O2 0.34168 (15) 0.45740 (7) −0.31876 (9) 0.0642 (4)
N1 0.29626 (19) 0.30274 (9) −0.35783 (12) 0.0693 (5)
H1N 0.296082 0.260175 −0.400359 0.083*
H2N 0.321068 0.346662 −0.390514 0.083*
C1 0.25918 (14) 0.36948 (8) −0.16525 (11) 0.0369 (3)
C2 0.30400 (16) 0.44376 (9) −0.21526 (12) 0.0423 (3)
C3 0.26388 (14) 0.50381 (8) −0.01861 (11) 0.0343 (3)
C4 0.22498 (14) 0.43536 (8) 0.03282 (11) 0.0328 (3)
C5 0.18557 (15) 0.29115 (8) 0.00781 (13) 0.0404 (3)
H5 0.162684 0.287498 0.089835 0.048*
C6 0.18321 (16) 0.22339 (9) −0.06446 (14) 0.0444 (4)
C7 0.21712 (16) 0.22931 (9) −0.18611 (14) 0.0466 (4)
H7 0.213012 0.184295 −0.234375 0.056*
C8 0.25737 (16) 0.30058 (9) −0.23912 (12) 0.0437 (4)
C9 0.22152 (14) 0.36370 (8) −0.04094 (11) 0.0338 (3)
C10 0.1460 (2) 0.14520 (10) −0.00914 (18) 0.0717 (6)
H10A 0.063444 0.151158 0.042499 0.108*
H10B 0.227983 0.126275 0.038250 0.108*
H10C 0.122961 0.108174 −0.072811 0.108*
C11 0.19198 (14) 0.43298 (7) 0.16566 (11) 0.0341 (3)
C12 0.05157 (16) 0.41920 (9) 0.20535 (13) 0.0427 (3)
H12 −0.022264 0.406927 0.149128 0.051*
C13 0.02070 (18) 0.42361 (10) 0.32806 (14) 0.0523 (4)
H13 −0.074106 0.415271 0.353831 0.063*
C14 0.1301 (2) 0.44033 (10) 0.41240 (13) 0.0530 (4)
H14 0.108969 0.443448 0.494830 0.064*
C15 0.27035 (18) 0.45239 (9) 0.37447 (13) 0.0471 (4)
H15 0.344296 0.463112 0.431370 0.057*
C16 0.30160 (16) 0.44859 (8) 0.25200 (12) 0.0395 (3)
H16 0.396814 0.456537 0.226936 0.047*
C17 0.27264 (14) 0.58255 (8) 0.03882 (12) 0.0359 (3)
C18 0.16250 (17) 0.60991 (9) 0.11333 (14) 0.0465 (4)
H18 0.081520 0.578437 0.127440 0.056*
C19 0.1727 (2) 0.68360 (9) 0.16655 (15) 0.0556 (4)
H19 0.098591 0.701582 0.216101 0.067*
C20 0.2924 (2) 0.73034 (9) 0.14627 (14) 0.0547 (4)
H20 0.299569 0.779622 0.182915 0.066*
C21 0.40126 (18) 0.70442 (9) 0.07209 (15) 0.0527 (4)
H21 0.482036 0.736185 0.058695 0.063*
C22 0.39120 (16) 0.63116 (9) 0.01716 (14) 0.0447 (4)
H22 0.464196 0.614417 −0.034512 0.054*

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0583 (6) 0.0377 (6) 0.0324 (5) −0.0033 (5) 0.0039 (4) 0.0015 (4)
O2 0.1014 (10) 0.0597 (8) 0.0317 (6) −0.0104 (7) 0.0110 (6) 0.0030 (5)
N1 0.1126 (13) 0.0608 (9) 0.0347 (7) −0.0103 (9) 0.0097 (7) −0.0132 (6)
C1 0.0402 (7) 0.0394 (8) 0.0310 (6) 0.0003 (6) −0.0027 (5) −0.0023 (5)
C2 0.0523 (8) 0.0445 (8) 0.0301 (7) 0.0001 (7) −0.0013 (6) −0.0002 (6)
C3 0.0358 (7) 0.0364 (7) 0.0307 (6) 0.0014 (6) −0.0008 (5) −0.0007 (5)
C4 0.0340 (6) 0.0339 (7) 0.0305 (6) 0.0023 (5) −0.0008 (5) −0.0023 (5)
C5 0.0477 (8) 0.0367 (8) 0.0370 (7) −0.0016 (6) 0.0064 (6) −0.0021 (6)
C6 0.0440 (8) 0.0362 (8) 0.0531 (8) −0.0033 (6) 0.0050 (6) −0.0064 (6)
C7 0.0508 (8) 0.0414 (9) 0.0474 (8) −0.0016 (7) −0.0002 (7) −0.0158 (7)
C8 0.0486 (8) 0.0495 (9) 0.0329 (7) −0.0003 (7) −0.0020 (6) −0.0088 (6)
C9 0.0347 (7) 0.0351 (7) 0.0316 (6) 0.0009 (6) −0.0017 (5) −0.0019 (5)
C10 0.0957 (14) 0.0402 (10) 0.0803 (13) −0.0122 (9) 0.0301 (11) −0.0094 (9)
C11 0.0424 (7) 0.0271 (7) 0.0328 (7) 0.0027 (6) 0.0010 (5) −0.0023 (5)
C12 0.0422 (7) 0.0455 (9) 0.0404 (8) 0.0012 (6) 0.0027 (6) −0.0027 (6)
C13 0.0547 (9) 0.0536 (10) 0.0493 (9) 0.0054 (8) 0.0173 (7) 0.0003 (7)
C14 0.0782 (11) 0.0486 (9) 0.0327 (7) 0.0133 (8) 0.0101 (7) −0.0031 (6)
C15 0.0650 (10) 0.0406 (8) 0.0354 (7) 0.0070 (7) −0.0083 (7) −0.0049 (6)
C16 0.0444 (7) 0.0373 (8) 0.0367 (7) 0.0019 (6) −0.0020 (6) −0.0015 (6)
C17 0.0401 (7) 0.0320 (7) 0.0355 (7) 0.0032 (6) −0.0066 (6) 0.0020 (5)
C18 0.0486 (8) 0.0389 (8) 0.0520 (9) 0.0026 (7) 0.0036 (7) −0.0011 (7)
C19 0.0721 (11) 0.0435 (9) 0.0513 (9) 0.0128 (9) 0.0072 (8) −0.0047 (7)
C20 0.0816 (12) 0.0332 (8) 0.0488 (9) 0.0013 (8) −0.0110 (8) −0.0042 (7)
C21 0.0570 (9) 0.0399 (9) 0.0609 (10) −0.0069 (7) −0.0110 (8) 0.0020 (7)
C22 0.0440 (8) 0.0394 (8) 0.0505 (8) 0.0015 (7) −0.0020 (6) 0.0003 (6)

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Geometric parameters (Å, º)

O1—C2 1.3763 (17) C11—C12 1.3867 (19)
O1—C3 1.3838 (15) C11—C16 1.3922 (19)
O2—C2 1.2155 (16) C12—C13 1.383 (2)
N1—C8 1.3574 (19) C12—H12 0.9300
N1—H1N 0.8600 C13—C14 1.380 (2)
N1—H2N 0.8600 C13—H13 0.9300
C1—C9 1.4167 (18) C14—C15 1.374 (2)
C1—C8 1.4227 (19) C14—H14 0.9300
C1—C2 1.438 (2) C15—C16 1.3807 (19)
C3—C4 1.3430 (18) C15—H15 0.9300
C3—C17 1.4792 (18) C16—H16 0.9300
C4—C9 1.4611 (18) C17—C22 1.389 (2)
C4—C11 1.4947 (17) C17—C18 1.391 (2)
C5—C9 1.3851 (19) C18—C19 1.383 (2)
C5—C6 1.397 (2) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.375 (2)
C6—C7 1.380 (2) C19—H19 0.9300
C6—C10 1.501 (2) C20—C21 1.373 (2)
C7—C8 1.395 (2) C20—H20 0.9300
C7—H7 0.9300 C21—C22 1.384 (2)
C10—H10A 0.9600 C21—H21 0.9300
C10—H10B 0.9600 C22—H22 0.9300
C10—H10C 0.9600
C2—O1—C3 122.56 (11) C12—C11—C16 118.69 (12)
C8—N1—H1N 120.0 C12—C11—C4 121.20 (12)
C8—N1—H2N 120.0 C16—C11—C4 120.04 (12)
H1N—N1—H2N 120.0 C13—C12—C11 120.39 (14)
C9—C1—C8 119.40 (13) C13—C12—H12 119.8
C9—C1—C2 120.31 (12) C11—C12—H12 119.8
C8—C1—C2 120.25 (12) C14—C13—C12 120.22 (15)
O2—C2—O1 114.63 (13) C14—C13—H13 119.9
O2—C2—C1 127.72 (13) C12—C13—H13 119.9
O1—C2—C1 117.64 (11) C15—C14—C13 119.94 (14)
C4—C3—O1 121.84 (12) C15—C14—H14 120.0
C4—C3—C17 128.00 (12) C13—C14—H14 120.0
O1—C3—C17 110.16 (11) C14—C15—C16 120.08 (14)
C3—C4—C9 119.40 (11) C14—C15—H15 120.0
C3—C4—C11 119.57 (11) C16—C15—H15 120.0
C9—C4—C11 120.98 (11) C15—C16—C11 120.64 (14)
C9—C5—C6 120.94 (13) C15—C16—H16 119.7
C9—C5—H5 119.5 C11—C16—H16 119.7
C6—C5—H5 119.5 C22—C17—C18 118.79 (13)
C7—C6—C5 119.18 (14) C22—C17—C3 120.00 (12)
C7—C6—C10 120.84 (14) C18—C17—C3 121.20 (13)
C5—C6—C10 119.98 (14) C19—C18—C17 120.41 (15)
C6—C7—C8 122.20 (13) C19—C18—H18 119.8
C6—C7—H7 118.9 C17—C18—H18 119.8
C8—C7—H7 118.9 C20—C19—C18 120.06 (15)
N1—C8—C7 119.99 (14) C20—C19—H19 120.0
N1—C8—C1 121.59 (14) C18—C19—H19 120.0
C7—C8—C1 118.41 (13) C21—C20—C19 120.17 (15)
C5—C9—C1 119.84 (12) C21—C20—H20 119.9
C5—C9—C4 121.96 (12) C19—C20—H20 119.9
C1—C9—C4 118.19 (12) C20—C21—C22 120.21 (15)
C6—C10—H10A 109.5 C20—C21—H21 119.9
C6—C10—H10B 109.5 C22—C21—H21 119.9
H10A—C10—H10B 109.5 C21—C22—C17 120.32 (14)
C6—C10—H10C 109.5 C21—C22—H22 119.8
H10A—C10—H10C 109.5 C17—C22—H22 119.8
H10B—C10—H10C 109.5
C3—O1—C2—O2 179.19 (13) C3—C4—C9—C5 178.47 (13)
C3—O1—C2—C1 −0.67 (19) C11—C4—C9—C5 1.05 (19)
C9—C1—C2—O2 178.61 (15) C3—C4—C9—C1 −0.26 (18)
C8—C1—C2—O2 0.9 (2) C11—C4—C9—C1 −177.68 (12)
C9—C1—C2—O1 −1.5 (2) C3—C4—C11—C12 111.95 (15)
C8—C1—C2—O1 −179.26 (12) C9—C4—C11—C12 −70.64 (17)
C2—O1—C3—C4 2.49 (19) C3—C4—C11—C16 −64.84 (17)
C2—O1—C3—C17 −178.45 (12) C9—C4—C11—C16 112.57 (14)
O1—C3—C4—C9 −1.94 (19) C16—C11—C12—C13 2.2 (2)
C17—C3—C4—C9 179.17 (12) C4—C11—C12—C13 −174.66 (13)
O1—C3—C4—C11 175.51 (11) C11—C12—C13—C14 −1.2 (2)
C17—C3—C4—C11 −3.4 (2) C12—C13—C14—C15 −0.2 (2)
C9—C5—C6—C7 −0.1 (2) C13—C14—C15—C16 0.7 (2)
C9—C5—C6—C10 179.11 (15) C14—C15—C16—C11 0.3 (2)
C5—C6—C7—C8 1.6 (2) C12—C11—C16—C15 −1.7 (2)
C10—C6—C7—C8 −177.57 (16) C4—C11—C16—C15 175.14 (13)
C6—C7—C8—N1 176.95 (15) C4—C3—C17—C22 136.31 (15)
C6—C7—C8—C1 −1.8 (2) O1—C3—C17—C22 −42.68 (16)
C9—C1—C8—N1 −178.25 (14) C4—C3—C17—C18 −44.8 (2)
C2—C1—C8—N1 −0.5 (2) O1—C3—C17—C18 136.26 (13)
C9—C1—C8—C7 0.5 (2) C22—C17—C18—C19 −1.2 (2)
C2—C1—C8—C7 178.22 (13) C3—C17—C18—C19 179.82 (13)
C6—C5—C9—C1 −1.2 (2) C17—C18—C19—C20 −0.2 (2)
C6—C5—C9—C4 −179.90 (13) C18—C19—C20—C21 0.7 (2)
C8—C1—C9—C5 0.97 (19) C19—C20—C21—C22 0.1 (2)
C2—C1—C9—C5 −176.77 (12) C20—C21—C22—C17 −1.5 (2)
C8—C1—C9—C4 179.73 (12) C18—C17—C22—C21 2.0 (2)
C2—C1—C9—C4 1.99 (19) C3—C17—C22—C21 −178.99 (13)

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) . Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1/C5–C9 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H2N···O2 0.86 2.05 2.6915 (19) 131
N1—H1N···Cg1i 0.86 2.81 3.631 (2) 157
C20—H20···Cg2ii 0.93 2.70 3.588 (2) 160
C21—H21···Cg3iii 0.93 2.84 3.488 (2) 128

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y+2, −z+1.

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Crystal data

C14H17NO2 F(000) = 992
Mr = 231.28 Dx = 1.222 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.4844 (8) Å Cell parameters from 3755 reflections
b = 26.562 (2) Å θ = 1.8–26.9°
c = 9.3651 (6) Å µ = 0.08 mm1
β = 105.367 (3)° T = 296 K
V = 2514.8 (3) Å3 Block, colourless
Z = 8 0.25 × 0.22 × 0.13 mm

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Data collection

Bruker Kappa APEXII CCD diffractometer 2132 reflections with I > 2σ(I)
ω and φ scans Rint = 0.048
Absorption correction: multi-scan (SADABS; Bruker, 2008) θmax = 23.8°, θmin = 2.2°
Tmin = 0.756, Tmax = 0.824 h = −11→11
13067 measured reflections k = −29→23
3755 independent reflections l = −10→7

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0872P)2] where P = (Fo2 + 2Fc2)/3
3755 reflections (Δ/σ)max < 0.001
313 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.25 e Å3

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.19526 (18) −0.03883 (8) 0.3169 (2) 0.0621 (6)
O2A 0.1114 (2) −0.10719 (9) 0.2007 (2) 0.0765 (7)
N1A −0.1310 (2) −0.10445 (9) 0.0078 (2) 0.0688 (7)
H1A1 −0.198031 −0.117045 −0.055946 0.083*
H1A2 −0.062249 −0.122669 0.044001 0.083*
C1A −0.0241 (2) −0.03391 (10) 0.1564 (2) 0.0420 (7)
C2A 0.0926 (3) −0.06286 (12) 0.2204 (3) 0.0529 (8)
C3A 0.1906 (3) 0.01162 (12) 0.3555 (3) 0.0532 (8)
C4A 0.0834 (2) 0.03978 (10) 0.3010 (3) 0.0458 (7)
C5A −0.1438 (3) 0.04469 (10) 0.1329 (3) 0.0493 (7)
H5A −0.147825 0.078312 0.159015 0.059*
C6A −0.2512 (3) 0.02321 (12) 0.0321 (3) 0.0538 (8)
C7A −0.2452 (3) −0.02619 (13) −0.0072 (3) 0.0556 (8)
H7A −0.317482 −0.040423 −0.074901 0.067*
C8A −0.1338 (3) −0.05578 (11) 0.0513 (3) 0.0492 (7)
C9A −0.0303 (2) 0.01716 (10) 0.1956 (2) 0.0417 (7)
C10A −0.3711 (3) 0.05465 (13) −0.0348 (3) 0.0806 (10)
H10A −0.349955 0.079114 −0.100375 0.121*
H10B −0.398847 0.071563 0.042527 0.121*
H10C −0.441292 0.033370 −0.089177 0.121*
C11A 0.3183 (3) 0.02507 (13) 0.4640 (3) 0.0761 (10)
H11A 0.326355 0.061432 0.470382 0.091*
H11B 0.391030 0.012236 0.428775 0.091*
C12A 0.3281 (3) 0.00403 (13) 0.6162 (3) 0.0828 (11)
H12A 0.262132 0.019401 0.656040 0.124*
H12B 0.414351 0.010997 0.679928 0.124*
H12C 0.314202 −0.031714 0.609490 0.124*
C13A 0.0781 (3) 0.09389 (11) 0.3488 (3) 0.0597 (8)
H13A 0.033743 0.113977 0.263609 0.072*
H13B 0.167579 0.106592 0.385238 0.072*
C14A 0.0062 (3) 0.09996 (13) 0.4687 (3) 0.0818 (10)
H14A −0.082689 0.087702 0.433030 0.123*
H14B 0.004438 0.134906 0.494236 0.123*
H14C 0.051468 0.081108 0.554672 0.123*
O1B 0.34202 (18) 0.19483 (8) 0.14816 (19) 0.0623 (6)
O2B 0.4302 (2) 0.12582 (9) 0.2580 (2) 0.0859 (7)
N1B 0.6446 (2) 0.13134 (10) 0.4921 (3) 0.0786 (8)
H1B1 0.705569 0.119291 0.564264 0.094*
H1B2 0.591805 0.111350 0.431977 0.094*
C1B 0.5316 (2) 0.20312 (11) 0.3560 (3) 0.0442 (7)
C2B 0.4371 (3) 0.17168 (12) 0.2564 (3) 0.0562 (8)
C3B 0.3370 (3) 0.24666 (12) 0.1273 (3) 0.0532 (8)
C4B 0.4230 (3) 0.27743 (10) 0.2151 (3) 0.0479 (7)
C5B 0.6132 (3) 0.28607 (11) 0.4388 (3) 0.0564 (8)
H5B 0.608867 0.320854 0.427094 0.068*
C6B 0.7082 (3) 0.26519 (14) 0.5561 (3) 0.0614 (8)
C7B 0.7174 (3) 0.21419 (14) 0.5708 (3) 0.0628 (9)
H7B 0.782810 0.200493 0.648214 0.075*
C8B 0.6315 (3) 0.18187 (11) 0.4730 (3) 0.0531 (8)
C9B 0.5246 (2) 0.25581 (11) 0.3387 (3) 0.0447 (7)
C10B 0.8005 (3) 0.29914 (14) 0.6652 (4) 0.0914 (12)
H10D 0.861250 0.279047 0.737701 0.137*
H10E 0.750228 0.320132 0.713663 0.137*
H10F 0.848950 0.319861 0.613864 0.137*
C11B 0.2212 (3) 0.25846 (13) 0.0000 (3) 0.0767 (10)
H11C 0.226498 0.238303 −0.084589 0.092*
H11D 0.225174 0.293610 −0.026570 0.092*
C12B 0.0907 (3) 0.24846 (15) 0.0340 (4) 0.1083 (14)
H12D 0.090713 0.214998 0.072749 0.162*
H12E 0.020240 0.251665 −0.055014 0.162*
H12F 0.078047 0.272358 0.105949 0.162*
C13B 0.4150 (3) 0.33380 (11) 0.1925 (3) 0.0604 (8)
H13C 0.374007 0.340940 0.088909 0.073*
H13D 0.503755 0.347615 0.217150 0.073*
C14B 0.3362 (3) 0.35947 (11) 0.2865 (3) 0.0731 (9)
H14D 0.247412 0.346648 0.260456 0.110*
H14E 0.334475 0.395109 0.269095 0.110*
H14F 0.376919 0.352867 0.389239 0.110*

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0559 (13) 0.0674 (16) 0.0564 (12) 0.0158 (11) 0.0035 (10) 0.0115 (11)
O2A 0.1035 (18) 0.0453 (15) 0.0803 (14) 0.0221 (13) 0.0241 (12) 0.0094 (12)
N1A 0.0866 (19) 0.0476 (18) 0.0742 (17) −0.0169 (14) 0.0249 (14) −0.0101 (13)
C1A 0.0511 (17) 0.0357 (18) 0.0386 (13) −0.0001 (13) 0.0105 (12) 0.0057 (12)
C2A 0.064 (2) 0.049 (2) 0.0463 (16) 0.0100 (17) 0.0163 (15) 0.0123 (15)
C3A 0.0533 (19) 0.056 (2) 0.0485 (16) −0.0012 (16) 0.0103 (14) 0.0049 (14)
C4A 0.0430 (16) 0.049 (2) 0.0427 (14) −0.0015 (14) 0.0061 (13) 0.0024 (13)
C5A 0.0508 (17) 0.0438 (19) 0.0486 (15) 0.0030 (14) 0.0049 (14) 0.0003 (13)
C6A 0.0471 (18) 0.059 (2) 0.0502 (16) 0.0017 (16) 0.0046 (14) 0.0033 (15)
C7A 0.0494 (18) 0.067 (2) 0.0456 (16) −0.0171 (17) 0.0040 (13) −0.0008 (15)
C8A 0.067 (2) 0.0393 (19) 0.0470 (15) −0.0117 (16) 0.0243 (15) −0.0002 (14)
C9A 0.0415 (16) 0.0449 (19) 0.0371 (13) −0.0023 (13) 0.0078 (12) 0.0049 (12)
C10A 0.055 (2) 0.092 (3) 0.081 (2) 0.0079 (19) −0.0065 (16) 0.0077 (19)
C11A 0.0516 (19) 0.096 (3) 0.070 (2) −0.0024 (18) −0.0020 (16) 0.0106 (19)
C12A 0.087 (2) 0.090 (3) 0.0563 (19) 0.007 (2) −0.0078 (17) −0.0083 (18)
C13A 0.0571 (18) 0.059 (2) 0.0587 (17) −0.0130 (15) 0.0078 (14) −0.0117 (15)
C14A 0.093 (2) 0.083 (3) 0.073 (2) −0.002 (2) 0.0271 (18) −0.0218 (18)
O1B 0.0632 (13) 0.0536 (15) 0.0614 (12) −0.0025 (11) 0.0012 (10) −0.0087 (11)
O2B 0.1026 (18) 0.0414 (16) 0.1027 (17) −0.0062 (13) 0.0079 (14) −0.0060 (13)
N1B 0.0833 (19) 0.056 (2) 0.093 (2) 0.0262 (15) 0.0168 (15) 0.0176 (15)
C1B 0.0418 (16) 0.044 (2) 0.0457 (14) 0.0047 (14) 0.0097 (13) 0.0033 (13)
C2B 0.0595 (19) 0.046 (2) 0.0612 (18) −0.0001 (17) 0.0132 (16) −0.0027 (16)
C3B 0.0580 (19) 0.050 (2) 0.0506 (16) 0.0081 (16) 0.0120 (14) 0.0028 (15)
C4B 0.0540 (17) 0.0415 (19) 0.0477 (15) 0.0049 (14) 0.0125 (14) 0.0031 (14)
C5B 0.0607 (19) 0.043 (2) 0.0632 (17) −0.0024 (15) 0.0131 (16) −0.0019 (15)
C6B 0.0448 (18) 0.074 (3) 0.0608 (18) −0.0025 (17) 0.0062 (15) −0.0052 (18)
C7B 0.0483 (18) 0.081 (3) 0.0538 (17) 0.0108 (18) 0.0049 (14) 0.0059 (18)
C8B 0.0516 (18) 0.048 (2) 0.0620 (18) 0.0109 (15) 0.0197 (15) 0.0048 (15)
C9B 0.0437 (16) 0.043 (2) 0.0479 (15) 0.0016 (13) 0.0124 (13) 0.0002 (13)
C10B 0.066 (2) 0.109 (3) 0.087 (2) −0.010 (2) −0.0018 (19) −0.024 (2)
C11B 0.075 (2) 0.086 (3) 0.0574 (18) 0.0129 (19) −0.0039 (17) −0.0030 (17)
C12B 0.063 (2) 0.118 (4) 0.125 (3) 0.013 (2) −0.009 (2) 0.008 (3)
C13B 0.073 (2) 0.052 (2) 0.0570 (16) 0.0107 (16) 0.0178 (15) 0.0086 (15)
C14B 0.092 (2) 0.050 (2) 0.083 (2) 0.0184 (18) 0.0329 (19) 0.0023 (17)

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Geometric parameters (Å, º)

O1A—C2A 1.366 (3) O1B—C2B 1.365 (3)
O1A—C3A 1.392 (3) O1B—C3B 1.389 (3)
O2A—C2A 1.216 (3) O2B—C2B 1.221 (3)
N1A—C8A 1.358 (3) N1B—C8B 1.356 (3)
N1A—H1A1 0.8600 N1B—H1B1 0.8600
N1A—H1A2 0.8600 N1B—H1B2 0.8600
C1A—C9A 1.411 (3) C1B—C9B 1.409 (3)
C1A—C8A 1.425 (3) C1B—C8B 1.417 (3)
C1A—C2A 1.435 (4) C1B—C2B 1.435 (4)
C3A—C4A 1.334 (3) C3B—C4B 1.328 (4)
C3A—C11A 1.494 (4) C3B—C11B 1.492 (4)
C4A—C9A 1.461 (3) C4B—C9B 1.467 (3)
C4A—C13A 1.511 (4) C4B—C13B 1.511 (4)
C5A—C6A 1.386 (3) C5B—C6B 1.388 (4)
C5A—C9A 1.387 (3) C5B—C9B 1.388 (3)
C5A—H5A 0.9300 C5B—H5B 0.9300
C6A—C7A 1.369 (4) C6B—C7B 1.363 (4)
C6A—C10A 1.501 (4) C6B—C10B 1.507 (4)
C7A—C8A 1.393 (4) C7B—C8B 1.396 (4)
C7A—H7A 0.9300 C7B—H7B 0.9300
C10A—H10A 0.9600 C10B—H10D 0.9600
C10A—H10B 0.9600 C10B—H10E 0.9600
C10A—H10C 0.9600 C10B—H10F 0.9600
C11A—C12A 1.509 (4) C11B—C12B 1.509 (4)
C11A—H11A 0.9700 C11B—H11C 0.9700
C11A—H11B 0.9700 C11B—H11D 0.9700
C12A—H12A 0.9600 C12B—H12D 0.9600
C12A—H12B 0.9600 C12B—H12E 0.9600
C12A—H12C 0.9600 C12B—H12F 0.9600
C13A—C14A 1.517 (4) C13B—C14B 1.519 (4)
C13A—H13A 0.9700 C13B—H13C 0.9700
C13A—H13B 0.9700 C13B—H13D 0.9700
C14A—H14A 0.9600 C14B—H14D 0.9600
C14A—H14B 0.9600 C14B—H14E 0.9600
C14A—H14C 0.9600 C14B—H14F 0.9600
C2A—O1A—C3A 123.1 (2) C2B—O1B—C3B 122.9 (2)
C8A—N1A—H1A1 120.0 C8B—N1B—H1B1 120.0
C8A—N1A—H1A2 120.0 C8B—N1B—H1B2 120.0
H1A1—N1A—H1A2 120.0 H1B1—N1B—H1B2 120.0
C9A—C1A—C8A 119.1 (2) C9B—C1B—C8B 119.3 (2)
C9A—C1A—C2A 120.0 (2) C9B—C1B—C2B 119.8 (2)
C8A—C1A—C2A 120.9 (3) C8B—C1B—C2B 120.8 (3)
O2A—C2A—O1A 115.0 (3) O2B—C2B—O1B 115.1 (3)
O2A—C2A—C1A 127.6 (3) O2B—C2B—C1B 127.3 (3)
O1A—C2A—C1A 117.5 (3) O1B—C2B—C1B 117.6 (3)
C4A—C3A—O1A 121.6 (2) C4B—C3B—O1B 121.9 (2)
C4A—C3A—C11A 129.7 (3) C4B—C3B—C11B 129.8 (3)
O1A—C3A—C11A 108.7 (3) O1B—C3B—C11B 108.3 (3)
C3A—C4A—C9A 118.8 (3) C3B—C4B—C9B 118.6 (3)
C3A—C4A—C13A 120.9 (2) C3B—C4B—C13B 121.3 (2)
C9A—C4A—C13A 120.3 (2) C9B—C4B—C13B 120.0 (2)
C6A—C5A—C9A 121.5 (3) C6B—C5B—C9B 121.0 (3)
C6A—C5A—H5A 119.3 C6B—C5B—H5B 119.5
C9A—C5A—H5A 119.3 C9B—C5B—H5B 119.5
C7A—C6A—C5A 119.4 (3) C7B—C6B—C5B 119.6 (3)
C7A—C6A—C10A 121.0 (3) C7B—C6B—C10B 120.7 (3)
C5A—C6A—C10A 119.7 (3) C5B—C6B—C10B 119.7 (3)
C6A—C7A—C8A 121.9 (3) C6B—C7B—C8B 121.9 (3)
C6A—C7A—H7A 119.0 C6B—C7B—H7B 119.0
C8A—C7A—H7A 119.0 C8B—C7B—H7B 119.0
N1A—C8A—C7A 120.1 (3) N1B—C8B—C7B 119.8 (3)
N1A—C8A—C1A 121.2 (3) N1B—C8B—C1B 121.6 (3)
C7A—C8A—C1A 118.7 (3) C7B—C8B—C1B 118.6 (3)
C5A—C9A—C1A 119.3 (2) C5B—C9B—C1B 119.5 (2)
C5A—C9A—C4A 121.6 (3) C5B—C9B—C4B 121.5 (3)
C1A—C9A—C4A 119.1 (2) C1B—C9B—C4B 119.0 (2)
C6A—C10A—H10A 109.5 C6B—C10B—H10D 109.5
C6A—C10A—H10B 109.5 C6B—C10B—H10E 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
C6A—C10A—H10C 109.5 C6B—C10B—H10F 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
C3A—C11A—C12A 112.3 (3) C3B—C11B—C12B 112.7 (3)
C3A—C11A—H11A 109.1 C3B—C11B—H11C 109.1
C12A—C11A—H11A 109.1 C12B—C11B—H11C 109.1
C3A—C11A—H11B 109.1 C3B—C11B—H11D 109.1
C12A—C11A—H11B 109.1 C12B—C11B—H11D 109.1
H11A—C11A—H11B 107.9 H11C—C11B—H11D 107.8
C11A—C12A—H12A 109.5 C11B—C12B—H12D 109.5
C11A—C12A—H12B 109.5 C11B—C12B—H12E 109.5
H12A—C12A—H12B 109.5 H12D—C12B—H12E 109.5
C11A—C12A—H12C 109.5 C11B—C12B—H12F 109.5
H12A—C12A—H12C 109.5 H12D—C12B—H12F 109.5
H12B—C12A—H12C 109.5 H12E—C12B—H12F 109.5
C4A—C13A—C14A 112.6 (2) C4B—C13B—C14B 112.5 (2)
C4A—C13A—H13A 109.1 C4B—C13B—H13C 109.1
C14A—C13A—H13A 109.1 C14B—C13B—H13C 109.1
C4A—C13A—H13B 109.1 C4B—C13B—H13D 109.1
C14A—C13A—H13B 109.1 C14B—C13B—H13D 109.1
H13A—C13A—H13B 107.8 H13C—C13B—H13D 107.8
C13A—C14A—H14A 109.5 C13B—C14B—H14D 109.5
C13A—C14A—H14B 109.5 C13B—C14B—H14E 109.5
H14A—C14A—H14B 109.5 H14D—C14B—H14E 109.5
C13A—C14A—H14C 109.5 C13B—C14B—H14F 109.5
H14A—C14A—H14C 109.5 H14D—C14B—H14F 109.5
H14B—C14A—H14C 109.5 H14E—C14B—H14F 109.5
C3A—O1A—C2A—O2A −178.6 (2) C3B—O1B—C2B—O2B −178.2 (2)
C3A—O1A—C2A—C1A 0.4 (3) C3B—O1B—C2B—C1B 2.8 (4)
C9A—C1A—C2A—O2A 177.9 (3) C9B—C1B—C2B—O2B −179.6 (3)
C8A—C1A—C2A—O2A −3.1 (4) C8B—C1B—C2B—O2B −0.2 (4)
C9A—C1A—C2A—O1A −0.9 (3) C9B—C1B—C2B—O1B −0.7 (4)
C8A—C1A—C2A—O1A 178.1 (2) C8B—C1B—C2B—O1B 178.7 (2)
C2A—O1A—C3A—C4A 0.8 (4) C2B—O1B—C3B—C4B −2.0 (4)
C2A—O1A—C3A—C11A 179.3 (2) C2B—O1B—C3B—C11B 179.9 (2)
O1A—C3A—C4A—C9A −1.5 (4) O1B—C3B—C4B—C9B −1.0 (4)
C11A—C3A—C4A—C9A −179.6 (2) C11B—C3B—C4B—C9B 176.7 (3)
O1A—C3A—C4A—C13A 177.5 (2) O1B—C3B—C4B—C13B −179.1 (2)
C11A—C3A—C4A—C13A −0.6 (4) C11B—C3B—C4B—C13B −1.4 (4)
C9A—C5A—C6A—C7A −0.4 (4) C9B—C5B—C6B—C7B 2.1 (4)
C9A—C5A—C6A—C10A −179.1 (2) C9B—C5B—C6B—C10B −178.3 (3)
C5A—C6A—C7A—C8A 0.1 (4) C5B—C6B—C7B—C8B −1.7 (4)
C10A—C6A—C7A—C8A 178.7 (3) C10B—C6B—C7B—C8B 178.8 (3)
C6A—C7A—C8A—N1A −179.0 (2) C6B—C7B—C8B—N1B −180.0 (3)
C6A—C7A—C8A—C1A 0.8 (4) C6B—C7B—C8B—C1B −0.5 (4)
C9A—C1A—C8A—N1A 178.5 (2) C9B—C1B—C8B—N1B −178.3 (2)
C2A—C1A—C8A—N1A −0.5 (4) C2B—C1B—C8B—N1B 2.3 (4)
C9A—C1A—C8A—C7A −1.3 (3) C9B—C1B—C8B—C7B 2.2 (4)
C2A—C1A—C8A—C7A 179.7 (2) C2B—C1B—C8B—C7B −177.2 (2)
C6A—C5A—C9A—C1A −0.2 (4) C6B—C5B—C9B—C1B −0.3 (4)
C6A—C5A—C9A—C4A 179.6 (2) C6B—C5B—C9B—C4B 179.4 (2)
C8A—C1A—C9A—C5A 1.0 (3) C8B—C1B—C9B—C5B −1.8 (3)
C2A—C1A—C9A—C5A −180.0 (2) C2B—C1B—C9B—C5B 177.6 (2)
C8A—C1A—C9A—C4A −178.7 (2) C8B—C1B—C9B—C4B 178.5 (2)
C2A—C1A—C9A—C4A 0.2 (3) C2B—C1B—C9B—C4B −2.2 (3)
C3A—C4A—C9A—C5A −178.8 (2) C3B—C4B—C9B—C5B −176.7 (2)
C13A—C4A—C9A—C5A 2.2 (4) C13B—C4B—C9B—C5B 1.4 (4)
C3A—C4A—C9A—C1A 1.0 (3) C3B—C4B—C9B—C1B 3.0 (3)
C13A—C4A—C9A—C1A −178.1 (2) C13B—C4B—C9B—C1B −178.9 (2)
C4A—C3A—C11A—C12A 103.6 (4) C4B—C3B—C11B—C12B −109.5 (4)
O1A—C3A—C11A—C12A −74.7 (3) O1B—C3B—C11B—C12B 68.5 (3)
C3A—C4A—C13A—C14A −98.1 (3) C3B—C4B—C13B—C14B 93.8 (3)
C9A—C4A—C13A—C14A 80.9 (3) C9B—C4B—C13B—C14B −84.3 (3)

8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1A/C5A–C9A ring.

D—H···A D—H H···A D···A D—H···A
N1A—H1A2···O2A 0.86 2.05 2.701 (3) 131
N1B—H1B2···O2B 0.86 2.05 2.696 (3) 131
N1A—H1A1···O1Bi 0.86 2.57 3.328 (3) 148
N1B—H1B1···O1Aii 0.86 2.50 3.235 (3) 143
N1B—H1B1···O2Aii 0.86 2.53 3.367 (3) 165
C12A—H12A···Cg1iii 0.96 2.99 3.773 (2) 140

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+2, −y+1, −z.

References

  1. Barry, R. D. (1964). Chem. Rev. 64, 239–241.
  2. Basvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276–1278.
  3. Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927. [DOI] [PubMed]
  4. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Jain, P. K. & Joshi, H. (2012). J. Appl. Pharmaceutical Sciences, 2, 236–240.
  9. Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Manivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609–1610.
  12. Mayakrishnan, S., Arun, Y., Maheswari, N. U. & Perumal, P. T. (2018). Chem. Commun. 54, 11889–11892. [DOI] [PubMed]
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Pal, S., Chatare, V. & Pal, M. (2011). Curr. Org. Chem. 15, 782–800.
  15. Schmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938–2941.
  16. Schnebel, M., Weidner, I., Wartchow, R. & Butenschön, H. (2003). Eur. J. Org. Chem. pp. 4363–4372.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989019009435/su5498sup1.cif

e-75-01117-sup1.cif (866.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009435/su5498Isup4.hkl

e-75-01117-Isup4.hkl (289.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989019009435/su5498IIsup5.hkl

e-75-01117-IIsup5.hkl (299.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019009435/su5498Isup4.cml

Supporting information file. DOI: 10.1107/S2056989019009435/su5498IIsup5.cml

CCDC references: 1937678, 1937677

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES