Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Jul 26;75(Pt 8):1274–1279. doi: 10.1107/S2056989019009988

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

Mihaela Tuksar a, Mirta Rubčić b,*, Ernest Meštrović a,
PMCID: PMC6690476  PMID: 31417806

The title salt crystallizes with three independent ionic pairs in the asymmetric unit. In the crystal, (3,5-di­methyl­adamantan-1-yl)ammonium cations and methane­sulfonate anions associate via N—H⋯O hydrogen bonds into layers that extend parallel to (001) and comprise large supra­molecular hydrogen-bonded rings.

Keywords: crystal structure, memantine, X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), IR spectroscopy

Abstract

The asymmetric unit of the title compound, C12H22N+·CH3O3S, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.

Chemical context  

Memantine or 3,5-di­methyl­adamantane-1-yl­amine is an active pharmaceutical ingredient which acts as an uncompetitive NMDA receptor antagonist (Reisberg et al., 2003; Rammes et al., 2008; Parsons et al., 2013). The compound was approved for the treatment of moderate-to-severe Alzheimer’s disease and is currently marketed as the chloride salt. The crystal structure of memanti­nium chloride 0.1-hydrate has previously been described (Lou et al., 2009). Herein we report the structure of an alternative salt, (3,5-di­methyl­adamantan-1-yl)ammonium methane­sulfonate (I) (memanti­nium mesylate), developed with the aim of producing a material with physico-chemical properties superior to those of memanti­nium chloride.graphic file with name e-75-01274-scheme1.jpg

Structural commentary  

The asymmetric unit of (3,5-di­methyl­adamantan-1-yl)ammonium methane­sulfonate, (I) (Fig. 1) consists of three crystallographically independent (3,5-di­methyl­adamantan-1-yl)ammonium cations and three methane­sulfonate anions. The structure of the cations is rigid, with all four six-membered rings of the adamantane core of the (3,5-di­methyl­adamantan-1-yl)ammonium cations assuming a typical chair conformation. No significant geometrical differences are observed between the independent cations, or between the methane­sulfonate anions. The (3,5-di­methyl­adamantan-1-yl)ammonium cations are achiral. They possess a plane of symmetry by which two enanti­omorphic halves of the ion, containing chiral centers (C3 and C5, C15 and C17, C27 and C29), are reflections of each other.

Figure 1.

Figure 1

ORTEP plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary small radii.

Supra­molecular features  

The crystal packing of the title compound is characterized by hydrogen-bonding inter­actions between the protonated amino groups of cations and the oxygen atoms of the methane­sulfonate anions (Table 1, Fig. 2). Each hydrogen atom of the protonated amino groups of the (3,5-di­methyl­adamantan-1-yl)ammonium cations is engaged in hydrogen bonding with the neighbouring methane­sulfonate anions. While each of the established N—H⋯O hydrogen bonds has a characteristic D 1 1(2) graph-set motif, they combine into larger Inline graphic(12) motifs (Fig. 2). Assemblies formed in such a way are supported by weaker C—H⋯O contacts, as shown in Fig. 2. Such connectivity leads to the formation of supra­molecular layers parallel to the (001) plane, which involve large hydrogen-bonded rings (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.90 (2) 1.92 (2) 2.819 (2) 177 (2)
N1—H1B⋯O1 0.90 (2) 1.94 (2) 2.833 (2) 179 (2)
N1—H1C⋯O4 0.89 (2) 1.96 (2) 2.844 (2) 170 (2)
N2—H2A⋯O2ii 0.88 (2) 1.92 (2) 2.7991 (18) 179 (2)
N2—H2B⋯O9ii 0.87 (2) 1.94 (2) 2.8090 (19) 175 (2)
N2—H2C⋯O6 0.90 (2) 1.90 (2) 2.7923 (19) 177 (2)
N3—H3A⋯O3 0.90 (2) 1.91 (2) 2.7717 (19) 159 (2)
N3—H3B⋯O5 0.90 (2) 1.89 (2) 2.7752 (19) 172 (2)
N3—H3C⋯O8i 0.89 (2) 1.90 (2) 2.785 (2) 172 (2)
C39—H39B⋯O6iii 0.96 2.59 3.423 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

(a) A view of the D 1 1(2) and Inline graphic(12) motifs formed via N—H⋯O hydrogen bonds. (b) Crystal packing of the title compound showing relevant hydrogen bonds and C—H⋯O contacts. Hydrogen bonds are indicated by black dashed lines, while the C—H⋯O contacts are shown as green dashed lines.

Figure 3.

Figure 3

Crystal packing of the title compound showing the layers parallel to (001) based on hydrogen bonded rings. View of the structure: (a) along the [100] direction; (b) along the [001] direction. Hydrogen bonds are indicated by dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD version 5.40, update of November 2018; Groom et al., 2016) for structures containing the (3,5-di­methyl­adamantan-1-yl)ammonium cation gave four hits: (3,5-dimethyl-1-adamant­yl)ammonium chloride hydrate (DUCYAC; Lou et al., 2009), 3,5-di­methyl­adamantane-1-ammonium cucurbit[8]uril chloride hexa­cosa­hydrate (GAWLIC, Hostaš et al., 2016), cucurbit[7]uril memantine clathrate chloride hydrate (SULZIJ, McInnes et al., 2010) and 3,5-di­methyl­adamantan-1-yl­ammonium 2,4,6-triiso­propyl­benzene­sulfonate (YECDIW, Tkachev et al., 2017). Among these, the structure of 3,5-di­methyl­adamantan-1-yl­ammonium 2,4,6-triiso­propyl­benzene­sulfonate shows the greatest similarity in its hydrogen-bonding motifs with those observed in the title compound. In the structure of YECDIW, N—H⋯O hydrogen bonds having a D 1 1(2) graph-set motif dominate the crystal packing. However, in contrast to the hydrogen-bonded layers in the title structure, a complex chain-like hydrogen-bonding network is formed. Such differences can be attributed, at least to some extent, to the distinct steric demands of the anions present in these structures.

Hirshfeld surface analysis  

The Hirshfeld surfaces for the cations and anions constituting the asymmetric unit of (I) were calculated using CrystalExplorer17 (Turner et al., 2017) and are shown in Fig. 4. Mapping the d norm values on the corresponding Hirshfeld surface allows a detailed analysis of hydrogen bonds and short inter­molecular contacts (Spackman & Jayatilaka, 2009). In this case, red spots indicate N—H⋯O hydrogen bonds, blue regions correspond to positive d norm values, and white areas indicate contacts of equal length to the sum of the van der Waals radii, i.e. d norm is 0. While the Hirshfeld surfaces for the three cations appear similar to each other, the two-dimensional fingerprint plots reveal distinctive differences between them. The full two-dimensional fingerprint plots along with the decomposed ones, displaying the contributions of the relevant contacts, are shown in Fig. 5. It can be seen that the N3-containing cation has the largest contribution of H⋯O/O⋯H contacts (23.9%), while for the N1- and N2-containing cations this contribution amounts to 14.9 and 17.1%, respectively. Analysis of the fingerprint plots for the anions reveals that they have fairly similar environments within the crystal and consequently a comparable distribution of the inter­molecular contacts (Fig. 5).

Figure 4.

Figure 4

Views of the Hirshfeld surfaces mapped over d norm for: (a) the N1-containing cation; (b) the S1-containing anion, (c) the N2-containing cation; (d) the S2-containing anion, (e) the N3-containing cation and (f) the S3-containing anion (range: −0.6178 to 1.7852 a.u.).

Figure 5.

Figure 5

The fingerprint plots for the ions constituting the asymmetric unit of (I): (a) the N1-containing cation; (b) the N2-containing cation, (c) the N3-containing cation; (d) the S1-containing anion, (e) the S2-containing anion and (f) the S3-containing anion. Left side: full fingerprint plot, middle: contribution of the H⋯O/O⋯H contacts, and right side: contribution of the H⋯H contacts to the inter­molecular inter­actions.

Synthesis and crystallization  

To a solution of 10.0 g of (3,5-di­methyl­adamantan-1-yl)ammonium chloride (supplied by PLIVA Croatia Ltd.) in 300 ml of water, 140 ml of toluene was added and the pH adjusted to about 10.7 by using 40% NaOH (aq). The toluene and water layers were separated. To the toluene solution of 3,5-di­methyl­adamantane-1-yl­amine, 3.3 ml of methane­sulfonic acid at 293–298 K was added. The reaction mixture was stirred at 293–298 K for 1 h, cooled to 273–278 K and stirred at that temperature for 1 h. The resulting crystals were filtered off, washed with toluene and dried at 313 K/20 mbar for about 15 h. The obtained solid was slurried in 125 ml of acetone at 293–298 K for about 18 h, filtered off, washed with acetone and dried at 313 K/20 mbar for about 15 h. The product was recrystallized from i-propyl acetate, yielding crystals suitable for single-crystal X-ray diffraction, yield 11.7 g (92%).

Thermal analysis  

The thermal stability of the title compound was investigated in the solid state by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thermogravimetric analysis was performed on TA Instruments TGA in closed aluminium pans with one hole on the crucible under a nitro­gen flow (50 mL min−1) with a heating rate of 10°C min−1 in the temperature range 25–300°C.

Thermogravimetric analysis does not reveal any weight loss during heating up to about 200°C, whereupon a change in mass is observed that can be associated with the thermal decomposition of the sample (Fig. 6 a). DSC analysis of (I) reveals two thermal events (Fig. 6 b). The first endotherm at about 125°C suggests that the sample is experiencing a phase transition, as no weight loss can be observed on the corresponding TG curve in this temperature region. The second strong endotherm, observed on the DSC curve at about 210°C, can be ascribed to the melting point of the new phase. Existence of a new, stable phase was confirmed via a PXRD experiment, where comparison of the powder patterns of the starting sample (I) and the one obtained by heating (I) at about 130°C for 17 h revealed significant differences (Fig. 7). Additional confirmation for this conclusion is found in the DSC curve of the material obtained after heating (I), where only one endothermic event can be observed, the one appearing at 210°C and corresponding to its melting point.

Figure 6.

Figure 6

(a) TG curve of (I); (b) DSC curve of (I).

Figure 7.

Figure 7

PXRD pattern of the bulk sample of I (red), simulated pattern for (I) (green), and PXRD pattern of the new phase obtained by heating (I) at about 130°C for 17 h (blue).

IR spectroscopy  

The infrared (IR) spectrum of title compound was recorded by using the ATR (attenuated total reflectance) technique on a PerkinElmer Spectrum Two instrument. The spectrum of (I) displays a broad band positioned at ca 2900 cm−1, which corresponds to N—H stretching vibrations of the protonated amino group of the (3,5-di­methyl­adamantan-1-yl)ammonium cations superimposed with the C—H stretching vibrations of the adamantane skeleton and methyl groups of the methane­sulfonate anion (Fig. 8). The bands corresponding to the S—O asymmetric and symmetric stretching modes appear at 1179 and 1042 cm−1, respectively (Başköse et al., 2012). The band at 780 cm−1 is associated with the C—S stretching vibration, whereas the one at 540 cm−1 corresponds to the bending mode of the SO3 moiety (Başköse et al., 2012).

Figure 8.

Figure 8

IR spectrum of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms bonded to carbon atoms of the adamantane core were refined as riding with C—H = 0.98 Å for methine C atoms (C7—H7, C19—H19 and C31—H31) and C—H = 0.97 Å for the methyl­ene H atoms, both with U iso(H) = 1.2U eq(C). Hydrogen atoms bonded to carbon atoms of the methyl groups of both the memantine cations and the methane­sulfonate anions were refined as rotating rigid groups with C—H = 0.96 Å and U iso(H) = 1.5U eq(C). Hydrogen atoms bonded to nitro­gen atoms were found in the difference-Fourier maps at final steps of the refinement and refined with U iso(H) = 1.2U eq(N). Their coordinates were refined independently, but N—H distances were restrained to 0.89 (2) Å.

Table 2. Experimental details.

Crystal data
Chemical formula C12H22N+·CH3O3S
M r 275.40
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 295
a, b, c (Å) 11.7761 (2), 11.8731 (2), 18.2788 (3)
α, β, γ (°) 92.501 (2), 94.696 (2), 116.609 (2)
V3) 2268.09 (8)
Z 6
Radiation type Cu Kα
μ (mm−1) 1.92
Crystal size (mm) 0.32 × 0.21 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2018)
T min, T max 0.200, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 76762, 8992, 8048
R int 0.062
(sin θ/λ)max−1) 0.620
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.133, 1.06
No. of reflections 8992
No. of parameters 523
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.53

Computer programs: CrysAlis PRO (Rigaku, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009988/fy2137sup1.cif

e-75-01274-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009988/fy2137Isup2.hkl

e-75-01274-Isup2.hkl (713.7KB, hkl)

TOC graphic. DOI: 10.1107/S2056989019009988/fy2137sup3.tif

Supporting information file. DOI: 10.1107/S2056989019009988/fy2137Isup4.cml

CCDC reference: 1942388

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and EM acknowledge PLIVA for financial support.

supplementary crystallographic information

Crystal data

C12H22N+·CH3O3S Z = 6
Mr = 275.40 F(000) = 900
Triclinic, P1 Dx = 1.210 Mg m3
a = 11.7761 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.8731 (2) Å Cell parameters from 30823 reflections
c = 18.2788 (3) Å θ = 5.1–72.7°
α = 92.501 (2)° µ = 1.92 mm1
β = 94.696 (2)° T = 295 K
γ = 116.609 (2)° Prism, colorless
V = 2268.09 (8) Å3 0.32 × 0.21 × 0.11 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 8992 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source 8048 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.062
Detector resolution: 16.1285 pixels mm-1 θmax = 72.9°, θmin = 4.2°
ω scans h = −13→14
Absorption correction: multi-scan (CrysAlis PRO; Rigaku, 2018) k = −14→14
Tmin = 0.200, Tmax = 1.000 l = −22→22
76762 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.429P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
8992 reflections Δρmax = 0.86 e Å3
523 parameters Δρmin = −0.53 e Å3
9 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.63651 (4) 0.78463 (4) 0.39086 (2) 0.04527 (12)
S2 0.67423 (4) 0.34333 (4) 0.38657 (2) 0.04606 (12)
S3 0.12114 (4) 0.83219 (4) 0.39052 (2) 0.04759 (12)
O2 0.51832 (13) 0.79458 (13) 0.39206 (8) 0.0608 (3)
O6 0.66922 (13) 0.21916 (12) 0.38512 (8) 0.0615 (3)
O3 0.63630 (13) 0.68285 (13) 0.43196 (8) 0.0637 (4)
O9 0.22683 (12) 0.95327 (12) 0.38131 (8) 0.0597 (3)
N2 0.46247 (14) −0.01597 (13) 0.33925 (7) 0.0433 (3)
H2A 0.4793 (18) −0.0755 (16) 0.3563 (11) 0.052*
H2B 0.3914 (16) −0.0237 (19) 0.3549 (11) 0.052*
H2C 0.5300 (16) 0.0593 (15) 0.3524 (11) 0.052*
N3 0.84089 (14) 0.66545 (13) 0.50755 (7) 0.0443 (3)
H3A 0.7713 (16) 0.6768 (19) 0.4943 (11) 0.053*
H3B 0.8237 (19) 0.5892 (15) 0.4864 (11) 0.053*
H3C 0.9054 (17) 0.7263 (17) 0.4886 (11) 0.053*
O5 0.78864 (13) 0.43837 (13) 0.42985 (9) 0.0681 (4)
O8 0.03123 (14) 0.84536 (14) 0.43564 (9) 0.0701 (4)
O1 0.66929 (16) 0.77755 (15) 0.31635 (8) 0.0689 (4)
N1 0.79465 (15) 0.63192 (15) 0.27752 (8) 0.0492 (3)
H1A 0.8792 (15) 0.6704 (19) 0.2924 (11) 0.059*
H1B 0.7552 (19) 0.6784 (19) 0.2896 (11) 0.059*
H1C 0.7541 (19) 0.5562 (16) 0.2945 (11) 0.059*
O4 0.65613 (18) 0.37874 (16) 0.31366 (8) 0.0799 (4)
O7 0.06024 (15) 0.75862 (18) 0.32090 (8) 0.0807 (5)
C1 0.78006 (15) 0.61136 (14) 0.19499 (8) 0.0403 (3)
C13 0.44439 (15) −0.03377 (14) 0.25673 (8) 0.0410 (3)
C21 0.57125 (16) −0.00684 (16) 0.22910 (9) 0.0466 (3)
H21A 0.602030 −0.063954 0.248806 0.056*
H21B 0.633874 0.079104 0.245897 0.056*
C2 0.85215 (15) 0.73767 (14) 0.16319 (9) 0.0437 (3)
H2D 0.941858 0.775209 0.182302 0.052*
H2E 0.818326 0.795085 0.177964 0.052*
C25 0.86750 (14) 0.67267 (14) 0.58989 (8) 0.0388 (3)
C8 0.63814 (16) 0.55422 (17) 0.16706 (9) 0.0495 (4)
H8A 0.603732 0.611128 0.181834 0.059*
H8B 0.591700 0.474521 0.187850 0.059*
C14 0.39642 (17) 0.05787 (16) 0.22769 (9) 0.0465 (4)
H14A 0.458103 0.144183 0.244420 0.056*
H14B 0.316197 0.041308 0.246425 0.056*
C33 0.74579 (15) 0.58585 (15) 0.62134 (9) 0.0465 (4)
H33A 0.716038 0.499680 0.600214 0.056*
H33B 0.679657 0.611394 0.608577 0.056*
C3 0.83830 (16) 0.71802 (15) 0.07895 (9) 0.0461 (3)
C9 0.83407 (18) 0.52124 (16) 0.17324 (9) 0.0494 (4)
H9A 0.789149 0.441714 0.194516 0.059*
H9B 0.923813 0.557457 0.192103 0.059*
C29 0.77116 (18) 0.59194 (16) 0.70548 (10) 0.0515 (4)
C17 0.55484 (18) −0.02435 (18) 0.14428 (9) 0.0518 (4)
C20 0.34628 (19) −0.17022 (16) 0.23234 (10) 0.0550 (4)
H20A 0.265548 −0.187900 0.250751 0.066*
H20B 0.376024 −0.228155 0.251938 0.066*
C7 0.62339 (17) 0.53292 (18) 0.08302 (10) 0.0570 (4)
H7 0.532571 0.496120 0.064282 0.068*
C10 0.69578 (17) 0.65902 (18) 0.05044 (10) 0.0551 (4)
H10A 0.661208 0.716286 0.064169 0.066*
H10B 0.685028 0.645408 −0.002913 0.066*
C27 0.94396 (19) 0.81789 (16) 0.70574 (10) 0.0550 (4)
C28 0.82115 (19) 0.72963 (17) 0.73701 (10) 0.0547 (4)
H28A 0.756156 0.757187 0.725515 0.066*
H28B 0.837695 0.734841 0.790224 0.066*
C32 0.97039 (18) 0.63053 (19) 0.60735 (10) 0.0533 (4)
H32A 1.047882 0.685745 0.587058 0.064*
H32B 0.941860 0.544971 0.585529 0.064*
C26 0.91308 (17) 0.80841 (14) 0.62144 (9) 0.0480 (4)
H26A 0.847120 0.834588 0.609658 0.058*
H26B 0.988817 0.864055 0.599813 0.058*
C15 0.37718 (19) 0.04088 (19) 0.14298 (10) 0.0541 (4)
C4 0.89072 (19) 0.62571 (18) 0.05718 (10) 0.0547 (4)
H4A 0.980834 0.662137 0.075195 0.066*
H4B 0.882463 0.612470 0.003875 0.066*
C16 0.50501 (19) 0.06612 (19) 0.11542 (10) 0.0560 (4)
H16A 0.494476 0.056705 0.061962 0.067*
H16B 0.567400 0.152538 0.131348 0.067*
C5 0.8188 (2) 0.49778 (17) 0.08899 (10) 0.0581 (4)
C31 0.99688 (19) 0.6358 (2) 0.69101 (11) 0.0613 (5)
H31 1.062627 0.608260 0.703034 0.074*
C34 1.04425 (19) 0.7718 (2) 0.72352 (11) 0.0667 (5)
H34A 1.122481 0.826226 0.703591 0.080*
H34B 1.063191 0.776712 0.776554 0.080*
C18 0.4547 (2) −0.16083 (19) 0.11936 (11) 0.0642 (5)
H18A 0.442643 −0.173304 0.065954 0.077*
H18B 0.484759 −0.219250 0.137810 0.077*
C30 0.8754 (2) 0.55030 (19) 0.72313 (11) 0.0622 (5)
H30A 0.893369 0.553496 0.776130 0.075*
H30B 0.845513 0.463685 0.702762 0.075*
C22 0.2800 (2) −0.0963 (2) 0.11844 (11) 0.0669 (5)
H22A 0.265956 −0.108476 0.065038 0.080*
H22B 0.199032 −0.114068 0.136608 0.080*
C11 0.9113 (2) 0.84445 (19) 0.04648 (12) 0.0637 (5)
H11A 0.906209 0.830026 −0.006045 0.096*
H11B 0.999280 0.882959 0.067192 0.096*
H11C 0.874229 0.899532 0.057953 0.096*
C6 0.6764 (2) 0.44274 (18) 0.06038 (11) 0.0675 (6)
H6A 0.665622 0.428149 0.007073 0.081*
H6B 0.629446 0.362181 0.080179 0.081*
C19 0.3283 (2) −0.18780 (18) 0.14795 (11) 0.0624 (5)
H19 0.265373 −0.274972 0.131457 0.075*
C37 0.7589 (2) 0.9253 (2) 0.43596 (13) 0.0725 (6)
H37A 0.839530 0.923855 0.434650 0.109*
H37B 0.743534 0.933165 0.486261 0.109*
H37C 0.760564 0.996040 0.411638 0.109*
C24 0.6820 (2) 0.0025 (3) 0.11616 (13) 0.0750 (6)
H24A 0.716007 −0.048908 0.139055 0.112*
H24B 0.741106 0.090204 0.128023 0.112*
H24C 0.669158 −0.016810 0.063679 0.112*
C39 0.1879 (3) 0.7482 (2) 0.43919 (13) 0.0772 (6)
H39A 0.121442 0.666667 0.446964 0.116*
H39B 0.230009 0.794210 0.485935 0.116*
H39C 0.248720 0.737812 0.411344 0.116*
C23 0.3304 (3) 0.1337 (3) 0.11357 (13) 0.0826 (7)
H23A 0.390720 0.218550 0.131858 0.124*
H23B 0.248716 0.114611 0.129763 0.124*
H23C 0.322531 0.126083 0.060676 0.124*
C36 0.6483 (2) 0.5065 (2) 0.73711 (14) 0.0810 (7)
H36A 0.614309 0.422261 0.713577 0.122*
H36B 0.586811 0.538270 0.728493 0.122*
H36C 0.666388 0.505295 0.789161 0.122*
C38 0.5456 (2) 0.3353 (3) 0.43141 (15) 0.0786 (6)
H38A 0.541871 0.414355 0.430089 0.118*
H38B 0.556891 0.318705 0.481714 0.118*
H38C 0.467537 0.268600 0.407036 0.118*
C35 0.9899 (3) 0.9543 (2) 0.73805 (14) 0.0888 (8)
H35A 0.924801 0.980266 0.725943 0.133*
H35B 1.066459 1.008865 0.717829 0.133*
H35C 1.007226 0.959284 0.790653 0.133*
C12 0.8726 (4) 0.4071 (3) 0.06721 (16) 0.0966 (9)
H12A 0.860777 0.390739 0.014533 0.145*
H12B 0.828734 0.329128 0.089069 0.145*
H12C 0.962179 0.444489 0.084328 0.145*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0487 (2) 0.0458 (2) 0.0460 (2) 0.02573 (18) 0.00387 (16) 0.00512 (15)
S2 0.0469 (2) 0.0452 (2) 0.0465 (2) 0.02134 (17) 0.00555 (16) 0.00208 (15)
S3 0.0452 (2) 0.0508 (2) 0.0449 (2) 0.01982 (18) 0.00683 (16) 0.00448 (16)
O2 0.0593 (8) 0.0671 (8) 0.0715 (8) 0.0403 (7) 0.0124 (6) 0.0197 (6)
O6 0.0610 (8) 0.0462 (6) 0.0745 (9) 0.0241 (6) −0.0017 (6) −0.0025 (6)
O3 0.0582 (8) 0.0571 (7) 0.0800 (9) 0.0301 (6) −0.0012 (7) 0.0199 (6)
O9 0.0518 (7) 0.0555 (7) 0.0734 (8) 0.0235 (6) 0.0180 (6) 0.0126 (6)
N2 0.0448 (7) 0.0447 (7) 0.0426 (7) 0.0218 (6) 0.0052 (6) 0.0063 (5)
N3 0.0466 (8) 0.0460 (7) 0.0408 (7) 0.0222 (6) 0.0014 (6) 0.0012 (5)
O5 0.0549 (8) 0.0566 (7) 0.0888 (10) 0.0262 (6) −0.0052 (7) −0.0202 (7)
O8 0.0662 (9) 0.0684 (8) 0.0819 (10) 0.0310 (7) 0.0342 (7) 0.0145 (7)
O1 0.0861 (10) 0.0835 (9) 0.0517 (7) 0.0504 (8) 0.0150 (7) 0.0031 (6)
N1 0.0524 (8) 0.0561 (8) 0.0377 (7) 0.0238 (7) 0.0040 (6) 0.0008 (6)
O4 0.1053 (12) 0.0754 (10) 0.0541 (8) 0.0353 (9) 0.0109 (8) 0.0192 (7)
O7 0.0631 (9) 0.1011 (12) 0.0585 (8) 0.0245 (8) −0.0072 (7) −0.0159 (8)
C1 0.0414 (8) 0.0436 (7) 0.0347 (7) 0.0188 (6) 0.0020 (6) 0.0012 (5)
C13 0.0452 (8) 0.0406 (7) 0.0389 (7) 0.0213 (6) 0.0030 (6) 0.0042 (6)
C21 0.0471 (9) 0.0523 (9) 0.0459 (8) 0.0277 (7) 0.0041 (7) 0.0049 (6)
C2 0.0418 (8) 0.0392 (7) 0.0460 (8) 0.0157 (6) 0.0002 (6) 0.0008 (6)
C25 0.0394 (8) 0.0398 (7) 0.0388 (7) 0.0199 (6) 0.0019 (6) 0.0019 (5)
C8 0.0396 (8) 0.0561 (9) 0.0469 (9) 0.0163 (7) 0.0059 (7) 0.0045 (7)
C14 0.0502 (9) 0.0506 (8) 0.0477 (8) 0.0306 (7) 0.0058 (7) 0.0076 (7)
C33 0.0417 (8) 0.0416 (8) 0.0499 (9) 0.0141 (7) 0.0029 (7) 0.0008 (6)
C3 0.0453 (8) 0.0458 (8) 0.0436 (8) 0.0175 (7) 0.0030 (6) 0.0079 (6)
C9 0.0583 (10) 0.0490 (8) 0.0482 (9) 0.0293 (8) 0.0122 (7) 0.0101 (7)
C29 0.0529 (10) 0.0469 (8) 0.0500 (9) 0.0174 (7) 0.0119 (7) 0.0068 (7)
C17 0.0551 (10) 0.0605 (10) 0.0454 (8) 0.0310 (8) 0.0075 (7) 0.0030 (7)
C20 0.0577 (10) 0.0423 (8) 0.0570 (10) 0.0159 (8) 0.0051 (8) 0.0049 (7)
C7 0.0425 (9) 0.0619 (10) 0.0463 (9) 0.0079 (8) −0.0052 (7) 0.0014 (7)
C10 0.0501 (10) 0.0640 (10) 0.0459 (9) 0.0222 (8) −0.0034 (7) 0.0089 (7)
C27 0.0631 (11) 0.0425 (8) 0.0474 (9) 0.0149 (8) 0.0012 (8) −0.0042 (7)
C28 0.0646 (11) 0.0566 (10) 0.0460 (9) 0.0300 (9) 0.0108 (8) −0.0003 (7)
C32 0.0534 (10) 0.0683 (11) 0.0518 (9) 0.0396 (9) 0.0055 (7) 0.0049 (8)
C26 0.0532 (9) 0.0369 (7) 0.0486 (9) 0.0162 (7) 0.0029 (7) 0.0024 (6)
C15 0.0604 (10) 0.0673 (11) 0.0453 (9) 0.0385 (9) 0.0020 (7) 0.0099 (7)
C4 0.0619 (11) 0.0598 (10) 0.0468 (9) 0.0292 (9) 0.0168 (8) 0.0087 (7)
C16 0.0650 (11) 0.0644 (10) 0.0447 (8) 0.0335 (9) 0.0100 (8) 0.0131 (7)
C5 0.0807 (13) 0.0510 (9) 0.0505 (9) 0.0346 (9) 0.0211 (9) 0.0042 (7)
C31 0.0606 (11) 0.0860 (13) 0.0547 (10) 0.0495 (11) −0.0007 (8) 0.0110 (9)
C34 0.0477 (10) 0.0842 (14) 0.0510 (10) 0.0175 (10) −0.0082 (8) 0.0000 (9)
C18 0.0839 (14) 0.0612 (11) 0.0528 (10) 0.0394 (11) 0.0032 (9) −0.0076 (8)
C30 0.0843 (14) 0.0586 (10) 0.0519 (10) 0.0391 (10) 0.0062 (9) 0.0132 (8)
C22 0.0564 (11) 0.0861 (14) 0.0511 (10) 0.0291 (10) −0.0084 (8) −0.0019 (9)
C11 0.0627 (11) 0.0570 (10) 0.0664 (11) 0.0210 (9) 0.0078 (9) 0.0226 (9)
C6 0.0829 (14) 0.0473 (9) 0.0471 (9) 0.0088 (9) 0.0043 (9) −0.0066 (7)
C19 0.0633 (11) 0.0510 (10) 0.0567 (10) 0.0146 (9) −0.0034 (9) −0.0094 (8)
C37 0.0709 (13) 0.0549 (11) 0.0742 (13) 0.0149 (10) 0.0018 (11) −0.0047 (9)
C24 0.0710 (14) 0.1042 (17) 0.0612 (12) 0.0486 (13) 0.0164 (10) 0.0057 (11)
C39 0.1087 (19) 0.0742 (13) 0.0702 (13) 0.0590 (14) 0.0121 (12) 0.0177 (11)
C23 0.1070 (19) 0.1152 (19) 0.0631 (13) 0.0822 (17) 0.0089 (12) 0.0256 (12)
C36 0.0736 (15) 0.0771 (14) 0.0745 (14) 0.0141 (12) 0.0283 (12) 0.0176 (11)
C38 0.0623 (13) 0.0978 (17) 0.0868 (16) 0.0438 (13) 0.0230 (11) 0.0076 (13)
C35 0.122 (2) 0.0487 (11) 0.0681 (13) 0.0174 (12) 0.0026 (13) −0.0133 (9)
C12 0.157 (3) 0.0811 (16) 0.0877 (17) 0.0780 (18) 0.0545 (18) 0.0141 (13)

Geometric parameters (Å, º)

S1—O3 1.4497 (13) C10—H10A 0.9700
S1—O2 1.4503 (13) C10—H10B 0.9700
S1—O1 1.4548 (14) C27—C34 1.527 (3)
S1—C37 1.754 (2) C27—C35 1.531 (3)
S2—O4 1.4427 (15) C27—C28 1.532 (3)
S2—O6 1.4478 (13) C27—C26 1.541 (2)
S2—O5 1.4491 (14) C28—H28A 0.9700
S2—C38 1.748 (2) C28—H28B 0.9700
S3—O7 1.4453 (15) C32—C31 1.528 (2)
S3—O9 1.4480 (14) C32—H32A 0.9700
S3—O8 1.4511 (14) C32—H32B 0.9700
S3—C39 1.751 (2) C26—H26A 0.9700
N2—C13 1.4983 (19) C26—H26B 0.9700
N2—H2A 0.878 (15) C15—C16 1.531 (3)
N2—H2B 0.873 (15) C15—C22 1.532 (3)
N2—H2C 0.896 (15) C15—C23 1.534 (3)
N3—C25 1.5026 (19) C4—C5 1.539 (3)
N3—H3A 0.904 (15) C4—H4A 0.9700
N3—H3B 0.896 (15) C4—H4B 0.9700
N3—H3C 0.890 (15) C16—H16A 0.9700
N1—C1 1.5008 (19) C16—H16B 0.9700
N1—H1A 0.901 (15) C5—C12 1.528 (3)
N1—H1B 0.897 (16) C5—C6 1.535 (3)
N1—H1C 0.893 (15) C31—C30 1.520 (3)
C1—C9 1.524 (2) C31—C34 1.526 (3)
C1—C2 1.525 (2) C31—H31 0.9800
C1—C8 1.526 (2) C34—H34A 0.9700
C13—C21 1.516 (2) C34—H34B 0.9700
C13—C20 1.528 (2) C18—C19 1.519 (3)
C13—C14 1.529 (2) C18—H18A 0.9700
C21—C17 1.540 (2) C18—H18B 0.9700
C21—H21A 0.9700 C30—H30A 0.9700
C21—H21B 0.9700 C30—H30B 0.9700
C2—C3 1.532 (2) C22—C19 1.533 (3)
C2—H2D 0.9700 C22—H22A 0.9700
C2—H2E 0.9700 C22—H22B 0.9700
C25—C33 1.520 (2) C11—H11A 0.9600
C25—C26 1.520 (2) C11—H11B 0.9600
C25—C32 1.521 (2) C11—H11C 0.9600
C8—C7 1.529 (2) C6—H6A 0.9700
C8—H8A 0.9700 C6—H6B 0.9700
C8—H8B 0.9700 C19—H19 0.9800
C14—C15 1.538 (2) C37—H37A 0.9600
C14—H14A 0.9700 C37—H37B 0.9600
C14—H14B 0.9700 C37—H37C 0.9600
C33—C29 1.535 (2) C24—H24A 0.9600
C33—H33A 0.9700 C24—H24B 0.9600
C33—H33B 0.9700 C24—H24C 0.9600
C3—C4 1.533 (3) C39—H39A 0.9600
C3—C11 1.533 (2) C39—H39B 0.9600
C3—C10 1.533 (2) C39—H39C 0.9600
C9—C5 1.534 (2) C23—H23A 0.9600
C9—H9A 0.9700 C23—H23B 0.9600
C9—H9B 0.9700 C23—H23C 0.9600
C29—C36 1.527 (3) C36—H36A 0.9600
C29—C30 1.532 (3) C36—H36B 0.9600
C29—C28 1.533 (2) C36—H36C 0.9600
C17—C24 1.524 (3) C38—H38A 0.9600
C17—C16 1.530 (2) C38—H38B 0.9600
C17—C18 1.536 (3) C38—H38C 0.9600
C20—C19 1.532 (3) C35—H35A 0.9600
C20—H20A 0.9700 C35—H35B 0.9600
C20—H20B 0.9700 C35—H35C 0.9600
C7—C6 1.520 (3) C12—H12A 0.9600
C7—C10 1.530 (3) C12—H12B 0.9600
C7—H7 0.9800 C12—H12C 0.9600
O3—S1—O2 112.16 (8) C27—C28—H28B 109.3
O3—S1—O1 112.49 (9) C29—C28—H28B 109.3
O2—S1—O1 112.24 (9) H28A—C28—H28B 107.9
O3—S1—C37 106.48 (10) C25—C32—C31 108.64 (14)
O2—S1—C37 106.90 (11) C25—C32—H32A 110.0
O1—S1—C37 106.03 (11) C31—C32—H32A 110.0
O4—S2—O6 112.33 (9) C25—C32—H32B 110.0
O4—S2—O5 112.53 (10) C31—C32—H32B 110.0
O6—S2—O5 111.99 (8) H32A—C32—H32B 108.3
O4—S2—C38 106.23 (12) C25—C26—C27 109.43 (13)
O6—S2—C38 107.04 (11) C25—C26—H26A 109.8
O5—S2—C38 106.18 (11) C27—C26—H26A 109.8
O7—S3—O9 112.24 (10) C25—C26—H26B 109.8
O7—S3—O8 112.80 (10) C27—C26—H26B 109.8
O9—S3—O8 111.98 (8) H26A—C26—H26B 108.2
O7—S3—C39 106.65 (12) C16—C15—C22 108.80 (16)
O9—S3—C39 105.98 (11) C16—C15—C23 110.50 (17)
O8—S3—C39 106.65 (11) C22—C15—C23 111.15 (18)
C13—N2—H2A 108.9 (13) C16—C15—C14 108.38 (14)
C13—N2—H2B 108.9 (13) C22—C15—C14 108.47 (15)
H2A—N2—H2B 108.3 (18) C23—C15—C14 109.49 (16)
C13—N2—H2C 107.2 (13) C3—C4—C5 111.38 (15)
H2A—N2—H2C 109.0 (18) C3—C4—H4A 109.4
H2B—N2—H2C 114.4 (18) C5—C4—H4A 109.4
C25—N3—H3A 111.5 (13) C3—C4—H4B 109.4
C25—N3—H3B 111.5 (13) C5—C4—H4B 109.4
H3A—N3—H3B 105.7 (18) H4A—C4—H4B 108.0
C25—N3—H3C 111.2 (13) C17—C16—C15 111.81 (15)
H3A—N3—H3C 105.8 (18) C17—C16—H16A 109.3
H3B—N3—H3C 110.8 (19) C15—C16—H16A 109.3
C1—N1—H1A 106.7 (14) C17—C16—H16B 109.3
C1—N1—H1B 107.8 (14) C15—C16—H16B 109.3
H1A—N1—H1B 113 (2) H16A—C16—H16B 107.9
C1—N1—H1C 107.3 (14) C12—C5—C9 109.66 (18)
H1A—N1—H1C 112.9 (19) C12—C5—C6 110.9 (2)
H1B—N1—H1C 109 (2) C9—C5—C6 108.75 (16)
N1—C1—C9 108.80 (13) C12—C5—C4 110.77 (18)
N1—C1—C2 109.46 (12) C9—C5—C4 108.30 (15)
C9—C1—C2 110.08 (13) C6—C5—C4 108.38 (16)
N1—C1—C8 108.44 (13) C30—C31—C34 109.47 (17)
C9—C1—C8 110.26 (14) C30—C31—C32 110.15 (16)
C2—C1—C8 109.76 (13) C34—C31—C32 108.73 (16)
N2—C13—C21 109.02 (12) C30—C31—H31 109.5
N2—C13—C20 108.75 (13) C34—C31—H31 109.5
C21—C13—C20 110.00 (14) C32—C31—H31 109.5
N2—C13—C14 108.56 (12) C31—C34—C27 110.87 (15)
C21—C13—C14 110.25 (13) C31—C34—H34A 109.5
C20—C13—C14 110.23 (14) C27—C34—H34A 109.5
C13—C21—C17 109.86 (13) C31—C34—H34B 109.5
C13—C21—H21A 109.7 C27—C34—H34B 109.5
C17—C21—H21A 109.7 H34A—C34—H34B 108.1
C13—C21—H21B 109.7 C19—C18—C17 110.38 (15)
C17—C21—H21B 109.7 C19—C18—H18A 109.6
H21A—C21—H21B 108.2 C17—C18—H18A 109.6
C1—C2—C3 110.01 (12) C19—C18—H18B 109.6
C1—C2—H2D 109.7 C17—C18—H18B 109.6
C3—C2—H2D 109.7 H18A—C18—H18B 108.1
C1—C2—H2E 109.7 C31—C30—C29 110.54 (15)
C3—C2—H2E 109.7 C31—C30—H30A 109.5
H2D—C2—H2E 108.2 C29—C30—H30A 109.5
N3—C25—C33 109.30 (12) C31—C30—H30B 109.5
N3—C25—C26 108.86 (12) C29—C30—H30B 109.5
C33—C25—C26 109.96 (13) H30A—C30—H30B 108.1
N3—C25—C32 108.23 (13) C15—C22—C19 110.50 (15)
C33—C25—C32 110.02 (13) C15—C22—H22A 109.5
C26—C25—C32 110.44 (14) C19—C22—H22A 109.5
C1—C8—C7 108.38 (14) C15—C22—H22B 109.5
C1—C8—H8A 110.0 C19—C22—H22B 109.5
C7—C8—H8A 110.0 H22A—C22—H22B 108.1
C1—C8—H8B 110.0 C3—C11—H11A 109.5
C7—C8—H8B 110.0 C3—C11—H11B 109.5
H8A—C8—H8B 108.4 H11A—C11—H11B 109.5
C13—C14—C15 109.31 (13) C3—C11—H11C 109.5
C13—C14—H14A 109.8 H11A—C11—H11C 109.5
C15—C14—H14A 109.8 H11B—C11—H11C 109.5
C13—C14—H14B 109.8 C7—C6—C5 110.54 (14)
C15—C14—H14B 109.8 C7—C6—H6A 109.5
H14A—C14—H14B 108.3 C5—C6—H6A 109.5
C25—C33—C29 110.04 (13) C7—C6—H6B 109.5
C25—C33—H33A 109.7 C5—C6—H6B 109.5
C29—C33—H33A 109.7 H6A—C6—H6B 108.1
C25—C33—H33B 109.7 C18—C19—C20 109.84 (16)
C29—C33—H33B 109.7 C18—C19—C22 109.75 (18)
H33A—C33—H33B 108.2 C20—C19—C22 108.95 (17)
C2—C3—C4 108.56 (13) C18—C19—H19 109.4
C2—C3—C11 110.40 (14) C20—C19—H19 109.4
C4—C3—C11 110.30 (15) C22—C19—H19 109.4
C2—C3—C10 108.42 (14) S1—C37—H37A 109.5
C4—C3—C10 108.78 (15) S1—C37—H37B 109.5
C11—C3—C10 110.32 (14) H37A—C37—H37B 109.5
C1—C9—C5 109.68 (14) S1—C37—H37C 109.5
C1—C9—H9A 109.7 H37A—C37—H37C 109.5
C5—C9—H9A 109.7 H37B—C37—H37C 109.5
C1—C9—H9B 109.7 C17—C24—H24A 109.5
C5—C9—H9B 109.7 C17—C24—H24B 109.5
H9A—C9—H9B 108.2 H24A—C24—H24B 109.5
C36—C29—C30 111.16 (18) C17—C24—H24C 109.5
C36—C29—C28 110.63 (17) H24A—C24—H24C 109.5
C30—C29—C28 108.68 (16) H24B—C24—H24C 109.5
C36—C29—C33 109.98 (16) S3—C39—H39A 109.5
C30—C29—C33 107.91 (15) S3—C39—H39B 109.5
C28—C29—C33 108.40 (14) H39A—C39—H39B 109.5
C24—C17—C16 110.87 (17) S3—C39—H39C 109.5
C24—C17—C18 110.44 (17) H39A—C39—H39C 109.5
C16—C17—C18 108.76 (15) H39B—C39—H39C 109.5
C24—C17—C21 110.12 (15) C15—C23—H23A 109.5
C16—C17—C21 108.09 (14) C15—C23—H23B 109.5
C18—C17—C21 108.49 (15) H23A—C23—H23B 109.5
C13—C20—C19 108.48 (14) C15—C23—H23C 109.5
C13—C20—H20A 110.0 H23A—C23—H23C 109.5
C19—C20—H20A 110.0 H23B—C23—H23C 109.5
C13—C20—H20B 110.0 C29—C36—H36A 109.5
C19—C20—H20B 110.0 C29—C36—H36B 109.5
H20A—C20—H20B 108.4 H36A—C36—H36B 109.5
C6—C7—C8 109.66 (16) C29—C36—H36C 109.5
C6—C7—C10 109.48 (17) H36A—C36—H36C 109.5
C8—C7—C10 109.83 (15) H36B—C36—H36C 109.5
C6—C7—H7 109.3 S2—C38—H38A 109.5
C8—C7—H7 109.3 S2—C38—H38B 109.5
C10—C7—H7 109.3 H38A—C38—H38B 109.5
C7—C10—C3 110.09 (14) S2—C38—H38C 109.5
C7—C10—H10A 109.6 H38A—C38—H38C 109.5
C3—C10—H10A 109.6 H38B—C38—H38C 109.5
C7—C10—H10B 109.6 C27—C35—H35A 109.5
C3—C10—H10B 109.6 C27—C35—H35B 109.5
H10A—C10—H10B 108.2 H35A—C35—H35B 109.5
C34—C27—C35 111.57 (19) C27—C35—H35C 109.5
C34—C27—C28 108.39 (16) H35A—C35—H35C 109.5
C35—C27—C28 110.15 (18) H35B—C35—H35C 109.5
C34—C27—C26 109.22 (16) C5—C12—H12A 109.5
C35—C27—C26 109.83 (16) C5—C12—H12B 109.5
C28—C27—C26 107.59 (15) H12A—C12—H12B 109.5
C27—C28—C29 111.83 (14) C5—C12—H12C 109.5
C27—C28—H28A 109.3 H12A—C12—H12C 109.5
C29—C28—H28A 109.3 H12B—C12—H12C 109.5
N2—C13—C21—C17 −179.89 (13) C35—C27—C26—C25 −179.97 (18)
C20—C13—C21—C17 60.96 (17) C28—C27—C26—C25 −60.08 (19)
C14—C13—C21—C17 −60.81 (17) C13—C14—C15—C16 −58.79 (19)
N1—C1—C2—C3 179.87 (13) C13—C14—C15—C22 59.17 (19)
C9—C1—C2—C3 60.33 (17) C13—C14—C15—C23 −179.39 (18)
C8—C1—C2—C3 −61.22 (17) C2—C3—C4—C5 59.02 (19)
N1—C1—C8—C7 −179.81 (14) C11—C3—C4—C5 −179.90 (16)
C9—C1—C8—C7 −60.78 (18) C10—C3—C4—C5 −58.78 (19)
C2—C1—C8—C7 60.66 (18) C24—C17—C16—C15 180.00 (16)
N2—C13—C14—C15 −179.95 (14) C18—C17—C16—C15 58.4 (2)
C21—C13—C14—C15 60.69 (18) C21—C17—C16—C15 −59.2 (2)
C20—C13—C14—C15 −60.94 (18) C22—C15—C16—C17 −58.15 (19)
N3—C25—C33—C29 179.97 (13) C23—C15—C16—C17 179.57 (17)
C26—C25—C33—C29 −60.58 (17) C14—C15—C16—C17 59.6 (2)
C32—C25—C33—C29 61.26 (17) C1—C9—C5—C12 −179.83 (19)
C1—C2—C3—C4 −58.56 (18) C1—C9—C5—C6 −58.40 (19)
C1—C2—C3—C11 −179.59 (14) C1—C9—C5—C4 59.2 (2)
C1—C2—C3—C10 59.46 (17) C3—C4—C5—C12 −179.67 (19)
N1—C1—C9—C5 179.41 (14) C3—C4—C5—C9 −59.4 (2)
C2—C1—C9—C5 −60.65 (18) C3—C4—C5—C6 58.44 (19)
C8—C1—C9—C5 60.60 (18) C25—C32—C31—C30 59.1 (2)
C25—C33—C29—C36 178.98 (17) C25—C32—C31—C34 −60.8 (2)
C25—C33—C29—C30 −59.61 (18) C30—C31—C34—C27 −60.0 (2)
C25—C33—C29—C28 57.92 (18) C32—C31—C34—C27 60.4 (2)
C13—C21—C17—C24 −179.97 (16) C35—C27—C34—C31 179.94 (18)
C13—C21—C17—C16 58.77 (18) C28—C27—C34—C31 58.5 (2)
C13—C21—C17—C18 −59.00 (18) C26—C27—C34—C31 −58.5 (2)
N2—C13—C20—C19 −179.97 (15) C24—C17—C18—C19 179.54 (17)
C21—C13—C20—C19 −60.65 (19) C16—C17—C18—C19 −58.6 (2)
C14—C13—C20—C19 61.13 (19) C21—C17—C18—C19 58.8 (2)
C1—C8—C7—C6 60.18 (19) C34—C31—C30—C29 59.6 (2)
C1—C8—C7—C10 −60.2 (2) C32—C31—C30—C29 −59.9 (2)
C6—C7—C10—C3 −60.18 (19) C36—C29—C30—C31 179.75 (18)
C8—C7—C10—C3 60.3 (2) C28—C29—C30—C31 −58.3 (2)
C2—C3—C10—C7 −59.00 (19) C33—C29—C30—C31 59.08 (19)
C4—C3—C10—C7 58.89 (19) C16—C15—C22—C19 57.9 (2)
C11—C3—C10—C7 180.00 (16) C23—C15—C22—C19 179.75 (18)
C34—C27—C28—C29 −58.18 (19) C14—C15—C22—C19 −59.8 (2)
C35—C27—C28—C29 179.51 (18) C8—C7—C6—C5 −60.2 (2)
C26—C27—C28—C29 59.8 (2) C10—C7—C6—C5 60.35 (19)
C36—C29—C28—C27 −179.52 (17) C12—C5—C6—C7 179.38 (17)
C30—C29—C28—C27 58.2 (2) C9—C5—C6—C7 58.7 (2)
C33—C29—C28—C27 −58.9 (2) C4—C5—C6—C7 −58.82 (19)
N3—C25—C32—C31 −179.24 (15) C17—C18—C19—C20 −60.1 (2)
C33—C25—C32—C31 −59.88 (19) C17—C18—C19—C22 59.7 (2)
C26—C25—C32—C31 61.68 (19) C13—C20—C19—C18 60.0 (2)
N3—C25—C26—C27 −178.60 (14) C13—C20—C19—C22 −60.3 (2)
C33—C25—C26—C27 61.69 (18) C15—C22—C19—C18 −59.5 (2)
C32—C25—C26—C27 −59.91 (18) C15—C22—C19—C20 60.8 (2)
C34—C27—C26—C25 57.37 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O7i 0.90 (2) 1.92 (2) 2.819 (2) 177 (2)
N1—H1B···O1 0.90 (2) 1.94 (2) 2.833 (2) 179 (2)
N1—H1C···O4 0.89 (2) 1.96 (2) 2.844 (2) 170 (2)
N2—H2A···O2ii 0.88 (2) 1.92 (2) 2.7991 (18) 179 (2)
N2—H2B···O9ii 0.87 (2) 1.94 (2) 2.8090 (19) 175 (2)
N2—H2C···O6 0.90 (2) 1.90 (2) 2.7923 (19) 177 (2)
N3—H3A···O3 0.90 (2) 1.91 (2) 2.7717 (19) 159 (2)
N3—H3B···O5 0.90 (2) 1.89 (2) 2.7752 (19) 172 (2)
N3—H3C···O8i 0.89 (2) 1.90 (2) 2.785 (2) 172 (2)
C39—H39B···O6iii 0.96 2.59 3.423 (3) 145

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1.

References

  1. Başköse, U. C., Bayarı, S. H., Sağlam, S. & Özışık, H. (2012). Open Chem. 10, 395–406.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Hostaš, J., Sigwalt, D., Šekutor, M., Ajani, H., Dubecký, M., Řezáč, J., Zavalij, P. Y., Cao, L., Wohlschlager, C., Mlinarić-Majerski, K., Isaacs, L., Glaser, R. & Hobza, P. (2016). Chem. Eur. J. 22, 17226–17238. [DOI] [PubMed]
  4. Lou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. McInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765–773. [DOI] [PubMed]
  7. Parsons, C. G., Danysz, W., Dekundy, A. & Pulte, I. (2013). Neurotox. Res. 24, 358–369. [DOI] [PMC free article] [PubMed]
  8. Rammes, G., Danysz, W. & Parsons, C. G. (2008). Curr. Neuropharmacol. 6, 55–78. [DOI] [PMC free article] [PubMed]
  9. Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S. & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333–1341. [DOI] [PubMed]
  10. Rigaku (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  14. Tkachev, V. V., Tkacheva, N. S. & Kazachenko, V. P. (2017). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 58, 615–617.
  15. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019009988/fy2137sup1.cif

e-75-01274-sup1.cif (2.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019009988/fy2137Isup2.hkl

e-75-01274-Isup2.hkl (713.7KB, hkl)

TOC graphic. DOI: 10.1107/S2056989019009988/fy2137sup3.tif

Supporting information file. DOI: 10.1107/S2056989019009988/fy2137Isup4.cml

CCDC reference: 1942388

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES