Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2017 Oct 30;32(5):349–356. doi: 10.1007/s12250-017-4073-9

Extracellular vesicles: novel vehicles in herpesvirus infection

Lingzhi Liu 1,2,4, Quan Zhou 3, Yan Xie 1,2,4, Lielian Zuo 1,2,4, Fanxiu Zhu 1,5, Jianhong Lu 1,2,4,
PMCID: PMC6704204  PMID: 29116589

Abstract

Herpesviruses are remarkable pathogens that have evolved multiple mechanisms to evade host immunity, ensuring their proliferation and egress. Among these mechanisms, herpesviruses utilize elaborate extracellular vesicles, including exosomes, for the intricate interplay between infected host and recipient cells. Herpesviruses incorporate genome expression products and direct cellular products into exosomal cargoes. These components alter the content and function of exosomes released from donor cells, thus affecting the downstream signalings of recipient cells. In this way, herpesviruses hijack exosomal pathways to ensure their survival and persistence, and exosomes are emerging as critical mediators for virus infection-associated intercellular communication and microenvironment alteration. In this review, the function and effects of exosomes in herpesvirus infection will be discussed, so that we will have a better understanding about the pathogenesis of herpesviruses. graphic file with name 12250_2017_4073_Fig1_HTML.jpg

Keywords: herpesviruses, extracellular vesicles (EVs), infection, pathogenesis

Acknowledgments

This work was supported by the National Natural Science Foundations of China (81372139, 31670171, 81728011), the National Key Research and Development Program of China (2017YFC1200204), the Hunan Provincial Natural Science Foundation of China (2015JJ2149).

References

  1. Agut H, Bonnafous P, Gautheretdejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28:313–335. doi: 10.1128/CMR.00122-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahmed W, Philip PS, Attoub S, Khan G. Epstein-Barr virus infected cells release Fas-ligand in exosomal fractions and induce apoptosis in recipient cells via the extrinsic pathway. J Gen Virol. 2015;96:3646–3659. doi: 10.1099/jgv.0.000313. [DOI] [PubMed] [Google Scholar]
  3. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113:1–11. doi: 10.1007/s11060-013-1084-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akinyi B, Odhiambo C, Otieno F, Inzaule S, Oswago S, Kerubo E, Ndivo R, Zeh C. Prevalence, incidence and correlates of HSV-2 infection in an HIV incidence adolescent and adult cohort study in western Kenya. PloS One. 2017;12:e0178907. doi: 10.1371/journal.pone.0178907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anderson MR, Kashanchi F, Jacobson S. Exosomes in Viral Disease. Neurotherapeutics. 2016;13:535–546. doi: 10.1007/s13311-016-0450-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arnold N, Messaoudi I. Simian varicella virus causes robust transcriptional changes in T cells that support viral replication. Virus Res. 2017;238:226. doi: 10.1016/j.virusres.2017.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, Léveillé N, Rinkel RN, Hopmans ES, Swaminathan S. Sensing of latent EBV infection through exosomal transfer of 5’pppRNA. Proc Natl Acad Sci U S A. 2016;113:E587–E596. doi: 10.1073/pnas.1518130113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Calistri A, Sette P, Salata C, Cancellotti E, Forghieri C, Comin A, Göttlinger H, Campadellifiume G, Palù G, Parolin C. Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies. J Virol. 2007;81:11468–11478. doi: 10.1128/JVI.01364-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cepeda V, Esteban M, Fraileramos A. Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol. 2010;12:386–404. doi: 10.1111/j.1462-5822.2009.01405.x. [DOI] [PubMed] [Google Scholar]
  10. Chan T, Barra NG, Lee AJ, Ashkar AA. Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J Reprod Immunol. 2011;88:210–218. doi: 10.1016/j.jri.2011.01.001. [DOI] [PubMed] [Google Scholar]
  11. Choi UY, Park A, Jung JU. Double the Trouble When Herpesviruses Join Hands. Cell Host Microbe. 2017;22:5–7. doi: 10.1016/j.chom.2017.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP. Systemically Circulat-ing Viral and Tumor-Derived MicroRNAs in KSHV-Associated Malignancies. PloS Pathog. 2013;9:e1003484. doi: 10.1371/journal.ppat.1003484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crump CM, Yates C, Minson T. Herpes Simplex Virus Type 1 Cytoplasmic Envelopment Requires Functional Vps4. J Virol. 2007;81:7380–7387. doi: 10.1128/JVI.00222-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ding L, Li L, Yang J, Zhou S, Li W, Tang M, Shi Y, Yi W, Cao Y. Latent membrane protein 1 encoded by Epstein-Barr virus induces telomerase activity via p16INK4A/Rb/E2F1 and JNK signaling pathways. J Med Virol. 2010;79:1153–1163. doi: 10.1002/jmv.20896. [DOI] [PubMed] [Google Scholar]
  15. Dolcetti R. Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas. Semin Cancer Biol. 2015;34:58–69. doi: 10.1016/j.semcancer.2015.04.006. [DOI] [PubMed] [Google Scholar]
  16. Dreyfus DH. Herpesviruses and the microbiome. J Allergy Clin Immunol. 2013;132:1278–1286. doi: 10.1016/j.jaci.2013.02.039. [DOI] [PubMed] [Google Scholar]
  17. Duijvesz D, Luider T, Bangma CH, Jenster G. Exosomes as biomarker treasure chests for prostate cancer. Eur Urol. 2011;59:823–831. doi: 10.1016/j.eururo.2010.12.031. [DOI] [PubMed] [Google Scholar]
  18. Fraile-Ramos A, Pelchen-Matthews A, Risco C, Rejas MT, Emery VC, Hassan-Walker AF, Esteban M, Marsh M. The ESCRT machinery is not required for human cytomegalovirus envelopment. Cell Microbiol. 2007;9:2955–2967. doi: 10.1111/j.1462-5822.2007.01024.x. [DOI] [PubMed] [Google Scholar]
  19. Gallo A, Vella S, Miele M, Timoneri F, Di BM, Bosi S, Sciveres M, Conaldi PG. Global profiling of viral and cellular noncoding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett. 2016;388:334–343. doi: 10.1016/j.canlet.2016.12.003. [DOI] [PubMed] [Google Scholar]
  20. Han Z, Liu X, Chen X, Zhou X, Du T, Roizman B, Zhou G. miR-H28 and miR-H29 expressed late in productive infection are exported and restrict HSV-1 replication and spread in recipient cells. Proc Natl Acad Sci U S A. 2016;113:E894–E901. doi: 10.1073/pnas.1525674113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. 2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hogue IB, Scherer J, Enquist LW. Exocytosis of Alphaherpesvirus Virions, Light Particles, and Glycoproteins Uses Constitutive Secretory Mechanisms. Mbio. 2016;7:e00820–e00816. doi: 10.1128/mBio.00820-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hudson AW. Roseoloviruses and their modulation of host defenses. Curr Opin Virol. 2014;9:178–187. doi: 10.1016/j.coviro.2014.09.009. [DOI] [PubMed] [Google Scholar]
  24. Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34:2398–2407. doi: 10.15252/embj.201592484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG., Jr. CD63 regulates Epstein-Barr virus LMP1 exosomal packaging, enhancement of vesicle production, and non-canonical NF-kB signaling. J Virol. 2016;91(pii):e02251–16. doi: 10.1128/JVI.02251-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Iwakiri D. Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res. 2015;212:30–38. doi: 10.1016/j.virusres.2015.08.007. [DOI] [PubMed] [Google Scholar]
  27. Jia S, Zhai H, Zhao M. MicroRNAs regulate immune system via multiple targets. Discov Med. 2014;18:237–247. [PubMed] [Google Scholar]
  28. Meckes D Jr. Exosomal Communication Goes Viral. J Virol. 2015;89:5200–5203. doi: 10.1128/JVI.02470-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meckes D J, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A. 2013;110:2925–2933. doi: 10.1073/pnas.1303906110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kalamvoki M, Deschamps T. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire. Virol J. 2016;13:1–12. doi: 10.1186/s12985-016-0518-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kalamvoki M, Du T, Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A. 2014;111:E4991–E4996. doi: 10.1073/pnas.1419338111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Knipe DM, Raja P, Lee J. Viral gene products actively promote latent infection by epigenetic silencing mechanisms. Curr Opin Infect Dis. 2017;23:68–74. doi: 10.1016/j.coviro.2017.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, Kim YJ, Lee G, Cohen JI, Venkatesan A. Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. J Virol. 2017;pii:e00640–17. doi: 10.1128/JVI.00640-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lee AJ, Ashkar AA. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis. 2012;25:92–99. doi: 10.1097/QCO.0b013e32834e9a56. [DOI] [PubMed] [Google Scholar]
  35. Lee Y, El AS, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:125–134. doi: 10.1093/hmg/dds317. [DOI] [PubMed] [Google Scholar]
  36. Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scand J Immunol. 2010;71:227–231. doi: 10.1111/j.1365-3083.2010.02383.x. [DOI] [PubMed] [Google Scholar]
  37. Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res. 2007;130:275–280. doi: 10.1016/j.virusres.2007.05.013. [DOI] [PubMed] [Google Scholar]
  38. Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells. J Virol. 2016;90:3469–3479. doi: 10.1128/JVI.02830-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Lo AKF, Dawson CW, Young LS, Lo KW. The role of Metabolic Reprogramming in γ-Herpesvirus-associated Oncogenesis. Int J Cancer. 2017;141:1512–1521. doi: 10.1002/ijc.30795. [DOI] [PubMed] [Google Scholar]
  40. Miettinen JJ, Matikainen S, Nyman TA. Global Secretome Characterization of Herpes Simplex Virus 1-Infected Human Primary Macrophages. J Virol. 2012;86:12770–12778. doi: 10.1128/JVI.01545-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic. 2008;9:1728–1742. doi: 10.1111/j.1600-0854.2008.00796.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Olsson J, Kok E, Adolfsson R, Lövheim H, Elgh F. Herpes virus seroepidemiology in the adult Swedish population. Immun Ageing. 2017;14:10. doi: 10.1186/s12979-017-0093-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ota M, Serada S, Naka T, Mori Y. MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment. Microbiol Immunol. 2014;58:119–125. doi: 10.1111/1348-0421.12121. [DOI] [PubMed] [Google Scholar]
  44. Parra M, Alcala A, Amoros C, Baeza A, Galiana A, Tarragó D G-Q M, Sánchez-Hellín V. Encephalitis associated with human herpesvirus-7 infection in an immunocompetent adult. Virol J. 2017;14:97. doi: 10.1186/s12985-017-0764-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pawliczek T, Crump CM. Herpes Simplex Virus Type 1 Production Requires a Functional ESCRT-III Complex but Is Independent of TSG101 and ALIX Expression. J Virol. 2009;83:11254–11264. doi: 10.1128/JVI.00574-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pegtel DM. Oncogenic herpesviruses sending mixed signals. Proc Natl Acad Sci U S A. 2013;110:12503–12504. doi: 10.1073/pnas.1310928110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. KSHV Genome Replication and Maintenance. Front Microbiol. 2016;7:54. doi: 10.3389/fmicb.2016.00054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Riva N, Franconi I, Meschiari M, Franceschini E, Puzzolante C, Cuomo G, Bianchi A, Cavalleri F, Genovese M, Mussini C. Acute human herpes virus 7 (HHV-7) encephalitis in an immunocompetent adult patient: a case report and review of literature. Infection. 2017;45:1–4. doi: 10.1007/s15010-017-1014-3. [DOI] [PubMed] [Google Scholar]
  49. Sotelo JR, Porter KR. An Electron Microscope Study of the Rat Ovum. J Biophys Biochem Cytol. 1959;5:327–342. doi: 10.1083/jcb.5.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sullivan BM, Coscoy L. The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J Virol. 2010;84:1265–1275. doi: 10.1128/JVI.01775-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Szatanek R, Bajkrzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The Methods of Choice for Extracellular Vesicles (EVs) Characterization. Int J Mol Sci. 2017;18(pii):E1153. doi: 10.3390/ijms18061153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tandon R, Aucoin DP, Mocarski ES. Human Cytomegalovirus Exploits ESCRT Machinery in the Process of Virion Maturation. J Virol. 2009;83:10797–10807. doi: 10.1128/JVI.01093-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Temme S, Eis-Hübinger AM, Mclellan AD, Koch N. The herpes simplex virus-1 encoded glycoprotein B diverts HLADR into the exosome pathway. J Immunol. 2010;184:236–243. doi: 10.4049/jimmunol.0902192. [DOI] [PubMed] [Google Scholar]
  54. Thakker S, Verma SC. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front Microbiol. 2016;7:151. doi: 10.3389/fmicb.2016.00151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164:1226. doi: 10.1016/j.cell.2016.01.043. [DOI] [PubMed] [Google Scholar]
  56. van Diemen FR, Lebbink RJ. Cellular Microbiology. 2016. CRISPR/Cas9, a powerful tool to target human herpesviruses. [DOI] [PubMed] [Google Scholar]
  57. Veettil MV, Bandyopadhyay C, Dutta D, Chandran B. Interaction of KSHV with host cell surface receptors and cell entry. Viruses. 2014;6:4024–4046. doi: 10.3390/v6104024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Walker JD, Maier CL, Pober JS. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol. 2009;182:1548–1559. doi: 10.4049/jimmunol.182.3.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P. Exosomes: A Novel Strategy for Treatment and Prevention of Diseases. Front Pharmacol. 2017;8:300. doi: 10.3389/fphar.2017.00300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS. Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumor Biol. 2016;37:313–321. doi: 10.1007/s13277-015-3769-4. [DOI] [PubMed] [Google Scholar]
  61. Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J. Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PloS Pathog. 2015;11:e1005001. doi: 10.1371/journal.ppat.1005001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83. doi: 10.1186/s13045-015-0181-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zheng H, Li L, Hu D, Deng X, Cao Y. Role of Epstein-Barr Virus Encoded Latent Membrane Protein 1 in the Carcinogenesis of Nasopharyngeal Carcinoma. Cell Mol Immunol. 2007;4:185–196. [PubMed] [Google Scholar]
  64. Zheng Y, Zhang W, Ye Q, Zhou Y, Xiong W, He W, Deng M, Zhou M, Guo X, Chen P. Inhibition of Epstein-Barr Virus Infection by Lactoferrin. J Innate Immun. 2012;4:387–398. doi: 10.1159/000336178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zhu Y, Yan Y, Guo J, Ying D, Ye L, Qiu J, Zeng Z, Wu X, Xing Y, Xiang L. Ex vivo2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget. 2017;8:15267–15282. doi: 10.18632/oncotarget.14840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zuo L, Yu H, Liu L, Tang Y, Wu H, Jing Y, Zhu M, Du S, Lian Z, Li C. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-kB. Oncotarget. 2015;6:41033–41044. doi: 10.18632/oncotarget.5708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zuo L, Yue W, Du S, Xin S, Zhang J, Liu L, Li G, Lu J. An update: Epstein-Barr virus and immune evasion via microRNA regulation. Virol Sin. 2017;32:175–187. doi: 10.1007/s12250-017-3996-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES