Skip to main content
Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry logoLink to Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry
. 1965 Sep-Oct;69A(5):461–479. doi: 10.6028/jres.069A.049

Splitting of Equivalent Points in Noncentrosymmetric Space Groups Into Subsets Under Homogeneous Stress

H S Peiser, J B Wachtman Jr, F A Munley, L C McCleary
PMCID: PMC6716002  PMID: 31927863

Abstract

Splitting of general positions in crystals into subsets of equivalent sites under homogeneous stress has previously been given for all centrosymmetric space groups; the tabulation is here completed for all space groups by listing the results for noncentrosymmetric space groups.

1. Introduction

The present paper presents results analogous to those previously submitted for centrosymmetric space groups [1]1 and for point groups [2]; these previous papers should be consulted for detailed discussion.

It is assumed that the symmetry elements possessed by a homogeneously stressed crystal will be those common to the crystal and to the macroscopic state of stress. Application of stress either leaves a space group unaltered or lowers it to a subgroup. Such lowering can always be considered to take place in successive steps each of which leaves no group which is both a stress-induced subgroup of the initial group and a supergroup of the final group, and which is distinct from both. Each such step can be accomplished by a uniaxial stress; for the noncentrosymmetric space groups all but two of the symmetry reductions consisting; of two or more successive steps can also be accomplished by uniaxial stress. These two require biaxial stress [2]. More general stress states are, however, consistent with many of the steps of symmetry lowering; we list the most general state of stress (in terms of the modified stress ellipsoid [1]) consistent with each step. The same stress is appropriate for all space-group-to-space-group transformations associated with a given point-group-to-point-group transformation. There are 25 of the latter which are minimum steps of symmetry lowering for noncentrosymmetric point groups so that the results for the noncentrosymmetric space groups are collected into 25 corresponding tables.

A set of points all of which are equivalent in the unstressed crystal frequently splits into two or more subsets under stress. For each space group all possibilities are taken into account by considering the behavior of the general position because the behavior of each special position can be derived by specializing the general position. This process of specialization in space groups has been discussed and a technique for visualizing it in terms of stereograms of point groups has been described [2].

2. Results

2.1. Behavior of General Position

The splitting of the general position (set of equivalent sites having no symmetry) into subsets is listed in tables 1 through 25. Each table is headed by a point-group transformation which is a minimum step of symmetry lowering. Each of the space groups associated with the initial point group is listed in the table together with the coordinates of a set of sites making up a general position. The latter are collected into subsets; all of the sites in a subset remain equivalent after symmetry reduction to the final space group which is also listed. For some of the point-group reductions the final point group can occur in two or three non-equivalent orientations. These may correspond to different final space groups; in table 12, for example, one orientation corresponds to the caption at the top of the table and the other to the caption at the bottom. The stress is described by giving conditions on the axes X, Y, Z of the stress ellipsoid [1] to the crystal axes x, y, z; the stress described is the most general (i.e., least lestricted) consistent with the symmetry reduction. In many of the tables a single stress specification suffices for all space groups, but in some (table 10, for example) the stress must be specified for each space group because it is customary to choose the axes in different orientations with respect to the point group.

Table 1.

Reduction from 4¯3m to 4¯2m

Space group of unstrained crystal, order 24 per lattice point If stressed so that X=Y; zZ Space group of strained crystal, order 8 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
215 P4¯3m ( x, y, z) ( y, x, z) ( y, z, x) ( z, y, x) ( z, x, y) ( x, z, y) 111 P4¯2m
( y¯, x, z¯) ( x¯, y, z¯) ( z¯, y, x¯) ( y¯, z, x¯) ( x¯, z, y¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, x¯, z) ( y¯, z¯, x) ( z¯, y¯, x) ( z¯, x¯, y) ( x¯, z¯, y)
( y, x¯, z¯) ( x, y¯, z¯) ( z, y¯, x¯) ( y, z¯, x¯) ( x, z¯, y¯) ( z, x¯, y¯)
216 F4¯3m ( x, y, z) ( y, x, z) ( y, x, z) ( z, y, x) ( z, x, y) ( x, z, y) 119 I4¯m2
( y¯, x, z¯) ( x¯, y, z¯) ( z¯, y, x¯) ( y¯, z, x¯) ( x¯, z, y¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, x¯, z) ( y¯, z¯, x) ( z¯, y¯, x) ( z¯, x¯, y) ( x¯, z¯, y)
( y, x¯, z¯) ( x, y¯, z¯) 5 z, y¯, x¯) ( y, z¯, x¯) ( x, z¯, y¯) ( z, x¯, y¯)
217 I4¯3m
( x, y, z) ( y, x, z) ( y, z, x) ( z, y, x) ( z, x, y) ( x, z, y) 121 I4¯2m
( y¯, x, z¯) ( x¯, y, z¯) ( z¯, y, x¯) ( y¯, z, x¯) ( x¯, z, y¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, x¯, z) ( y¯, z¯, x) ( z¯, y¯, x) ( z¯, x¯, y) ( x¯, z¯, y)
( y, x¯, z¯) ( x, y¯, z¯) ( z, y¯, x¯) ( y, z¯, x¯) ( x, z¯, y¯) ( z, x¯, y¯)
218 P4¯3n
( x, y, z) (½+y,½+x,½+z) ( y, z, x) (½+z,½+y,½+x) ( z, x, y) (½+x,½+z,½+y) 112 P4¯2c
(½−y,½+x ½−z) ( x¯, y, z¯) (½−z,½+y,½−x) ( y¯, z, x¯) (½−x,½+z,½−y) ( z¯, x, y¯)
( x¯, y¯, z) (½−y,½−x,½+z) ( y¯, z¯, x) (½−z,½−y,½+x) ( z¯, x¯, y) (½−x,½−z,½+y)
(½+z,½−x,½−y) ( x, y¯, z¯) (½+z,½−y,½−x) ( y, z¯, x¯) (½+x,½−z,½−y) ( z, x¯, y¯)
219 F4¯3c ( x, y, z) ( y, x,½+z) ( y, z, x) ( z, y,½+x) ( z, x, y) ( x, z,½+y) 120 I4¯c2
( y¯, x,½−z) ( x¯, y, z¯) ( z¯, y,½−x) ( y¯. z, x¯) ( x¯, z,½−y) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯. x¯,½+z) ( y¯, z¯, x) ( z¯, y¯,½+x) ( z¯, x¯, y) ( x¯, z¯,½+y)
( y, x¯,½−z) ( x, y¯, z¯) ( z, y¯,½−x) ( y, z¯, x¯) ( x, z¯,½+y) ( z, x¯, y¯)
220 I4¯3d ( x, y, z) (¼+y,¼+x,¼+z) ( y, z, x) (¼+z,¼+y,¼+x) ( z, x, y) (¼+x,¼+z,¼+y) 122 I4¯2d
(¾−y,¾+ x,¼− z) ( x¯,½+y, ½−z) (¾−z,¾+y,¼−x) ( y¯,½+z,½−x) (¾−x,¾+z,¼−y) ( z¯,½+x,½−y)
(½−x, y¯,½+z) (¼−y, ¾−x,¾+z) (½−y, z¯,½+x) (¼−z,¾−y, ¾+x) (½−z, x¯,½+y) (¼−x,¾−z,¾+y)
(¾+y, ¼−x, ¾−z) (½+x,½−y, z¯) (¾+z,¼−y,¾−x) (½+y,½−z, x¯) (¾+x,¼−z,¾−y) (½+z,½−x, y¯)

Table 2.

Reduction from 4¯3m to 3m

Space group of Wlstrained crystal, order 24 per lattice point If stressed so that X=Y; [lll]∥Z Space group of strained crystal, order 6 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset 4th Subset No. Symbol
215 P4¯3m
( x, y, z) ( x, y¯, x¯) ( x¯, y, z¯) ( x¯, y¯, z) 160 R3m
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y, x, z) ( y¯, x, z¯) ( y, x¯, z¯) ( y¯, x¯, z)
( z, y, x) ( z¯, y¯, x) ( z¯, y, x¯) ( z, y¯, x¯)
( x, z, y) ( x, z¯, y¯) ( x¯, z¯, y) ( x¯, z, y¯)
216 F4¯3m ( x, y, z) ( x, y¯, z¯) ( x¯. y, z¯) ( x¯, y¯, z) 160 R3m
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y, x, z) ( y¯, x, z¯) ( y, x¯, z¯) ( y¯, x¯, z)
( z, y, x) ( z¯, y¯, x) ( z¯, y, x¯) ( z, y¯, x¯)
( x, z, y) ( x, z¯, y¯) ( x¯, z¯, y) ( x¯, z, y¯)
217 I4¯3m ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 160 R3m
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y, x, z) ( y¯, x, z¯) ( y, x¯, z¯) ( y¯, x¯, z)
( z, y, x) ( z¯, y¯, x) ( z¯, y, x¯) ( z, y¯, x¯)
( x, z, y) ( x, z¯, y¯) ( x¯, z¯, y) ( x¯, z, y¯)
218 P4¯3n ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 161 R3c
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
(½+y, ½+x, ½+z) (½−y, ½+x, ½z) (½+y, ½−x, ½−z) y, ½x, ½+z)
(½+z, ½+y, ½+x) (½−z, ½−y, ½+x) (½−z, ½+y, ½−x) (½+z, ½y, ½x)
(½+x, ½+z, ½+y) (½+x, ½z, ½y) x, ½z, ½+y) (½−x, ½+z, ½−y)
219 F4¯3c ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 161 R3c
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y, x,½+z) ( y¯, x,½−z) ( y, x¯,½−z) ( y¯, x¯,½+z)
( z, y, ½+x) ( z¯, y¯,½+x) ( z¯, y,½−x) ( z, y¯,½−x)
( x, z,½+y) ( x, z¯,½−y) ( x¯.z¯,½+y) ( x¯, z,½−y)
220 I4¯3d ( x, y, z) (½+x,½−y, z¯) ( x¯,½+y,½−z) (½−x, y¯,½+z) 161 R3c
( y, z, x) (½−y, z¯,½+x) (½+y,½−z, x¯) ( y¯,½+z,½−x)
( z, x, y) ( z¯,½+x,½−y) (½−z, x¯,½+y) (½+z,½−x, y¯)
(¼+y,¼+x,¼+z) (¾−y,¾+x,¼−z) (¾+y,¼−x,¾−z) (¼−y,¾−x,¾+z)
(¼+z,¼+y,¼+x) (¼−z,¼−y,¾+x) (¾−z,¾+y, ¼−x) (¾+z,¼−y,¾−x)
(¼+x,¼+z,¼+y) (¾+x,¼−z,¾−y) (¼−x,¾−z,¾+y) (¾−x,¾+z,¼−y)

Table 3.

Reduction from 432 to 422

Space group of unstrained crystal, order 24 per lattice point If stressed so that X=Y; z∥Z Space group of strained crystal, order 8 per lattice point
Coordinates referred to axes of unstrained crysta
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
207 P432 ( x, y, z) ( y, x, z¯) ( y, z, x) ( z, y, x¯) ( z, x, y) ( x, z, y¯) 89 P422
( y¯, x, z) ( x¯, y, z¯) ( z¯, y, x) ( y¯, z, x¯) ( x¯, z, y) ( y, x, z)
( x¯, y¯, z) ( y¯, x¯, z¯) ( y¯, z¯, x) ( z¯, y¯, x¯) ( z¯, x¯, y) ( x¯, z¯, y¯)
( y, x¯, z) ( x, y¯, z¯) ( z, y¯, x) ( y, z¯, x¯) ( x, z¯, y) ( z, x¯, y¯)
208 P4232 ( x, y, z) (½+y,½+x,½−z) ( y, z, x) (½+z,½+y,½−x) ( z, x, y) (½+x,½+z,½−y) 93 P4222
(½−y,½+x,½+z) ( x¯, y, z¯) (½−z,½+y,½+x) ( y¯. z, x¯) (½−x,½+z,½+y) ( z¯, x, y¯)
( x¯, y¯, z) (½−y,½−x,½−z) ( y¯, z¯, x) (½−z,½−y,½−x) ( z¯, x¯, y) (½−x,½−z,½−y)
(½+y,½−x,½+z) ( x, y¯, z¯) (½+z,½−y,½+x) ( y, z¯, x¯) (½+x,½−z,½+y) ( z, x¯, y¯)
209 F432 ( x, y, z) ( y, x, z¯) ( y, z, x) ( z, y, x¯) ( z, x, y) ( x, z, y¯) 97 I422
( y¯, x, z) ( x¯, y, z¯) ( z¯, y, x) ( y¯, z, x¯) ( x¯, z, y) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, x¯, z¯) ( y¯, z¯, x) ( z¯, y¯, x¯) ( z¯, x¯, y) ( x¯, z¯, y¯)
( y, x¯, z) ( x, y¯, z¯) ( z, y¯, x) ( y, z¯, x¯) ( x, z¯, y) ( z, x¯, y¯)
210 F4132 ( x, y, z) (¼+y,¼+x,¼−z) ( y, z, x) (¼+z,¼+y,¼−x) ( z, x, y) (¼+x,¼+z,¼−y) 98 I4122
(¼−y,¼+x,¼+z) ( x¯, y, z¯) (¼−z,¼+y,¼+x) ( y¯, z, x¯) (¼−x,¼+z,¼+y) ( z¯, x, y)
( x¯, y¯, z) (¼−y,¼−x,¼−z) ( y¯, z¯, x) (¼−z,¼−y,¼−x) ( z¯, x¯, y) (¼+x,¼−z,¼−y)
(¼+y,¼−x,¼+z) ( x, y¯, z¯) (¼+z,¼−y,¼+x) ( y, z¯, x¯) (¼+x,¼−z,¼+y) ( z, x¯, y¯)
211 I432 ( x, y, z) ( y, x, z¯) ( y, z, x) ( z, y, x¯) ( z, x, y) ( x, z, y¯) 97 I422
( y¯, x, z) ( x¯, y, z¯) ( z¯, y, x) ( y, x, z) ( x¯, z, y) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, x¯, z¯) ( y¯, z¯, x) ( z¯, y¯, x) ( z¯, x¯, y) ( x¯, z¯, y¯)
( y, x¯, z) ( x, y¯, z¯) ( z, y¯, x) ( y, z¯, x¯) ( x, z¯, y) ( z, x¯, y¯)
212 P4332 ( x, y, z) (¼+y,¾+x,¾−z) ( y, z, x) (¼+z,¾+y,¾−x) ( z, x, y) (¼+x,¾+z,¾−y) 96 P43212
(¾−y,¼+x,¾+z) ( x¯,½+y,½−z) (¾−z,¼+y,¾+x) ( y¯,½+z,½−x) (¾−x,¼+z,¾+y) ( z¯,½+x,½−y)
(½−x, y¯,½+z) (¼−y,¼−x,¼−z) (½−y, z¯,½+x) (¼−z,¼−y,¼−x) (½−z, x¯,½+y) (¼−x,¼−z,¼−y)
(¾+y,¾−x,¼+z) (½+x,½−y, z¯) (¾+z,¾−y,¼+x) (½+y,½−z, x¯) (¾+x,¾−z,¼+y) (½+z,½−x, y¯)
213 P4132 ( x, y, z) (¾+y,¾+x,¼−z) ( y, z, x) (¾+z,¼+y,¼−x) ( z, x, y) (¾+x,¼+ z,¼−y) 92 P41212
(¼−y,¾+x,¼+z) ( x¯,½+y,½−z) (¼−z,¾+y,¼+x) ( y¯,½+z,½−x) (¼−x,¾+z,¼+y) ( z¯,½+x,½−y)
(½−x, y¯,½+z) (¾−y,¾−x,¾−z) (½−y, z¯,½+x) (¾−z,¾−y,¾−x) (½−z, x¯,½+y) (¾−x,¾−z,¾−y)
(¼+y,¼−x,¾+z) (½+x,½−y, z¯) (¼+z,¼−y,¾+x) (½+y,½−z, x¯) (¼+x,¼−z,¾+y) (½+z,½−x, y¯)
214 I4132 ( x, y, z) (¼+y,¾+x,¾−z) ( y, z, x) (¼+z,¾+y,¾−x) ( z, x, y) (¼+x,¾+z,¾−y) 98 I4122
(¾−y,¼+x,¾+z) ( x¯,½+y,½−z) (¾−z,¼+y,¾+x) ( y¯,½+z,½−x) (¾−x,¼+z,¾+y) ( z¯,½+x,½−y)
(½−x, y¯,½+z) (¼−y,¼−x,¼−z) (½−y, z¯,½+x) (¼−z,¼−y,¼−x) (½−z, x¯,½+y) (¼−x,¼−z,¼−y)
(¾+y,¾−x,¼+z) (½+x,½−y, z¯) (¾+z,¾−y,¼+x) (½+y,½−z, x¯) (¾+x,¾−z,¼+y) (½+z,½−x, y¯)

Table 4.

. Reduction from 432 to 32

Space group of unstrained crystal order 24 per lattice point If stressed so that X=Y; [111] ∥ Z Space group of strained crystal order 6 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset 4th Subset No. Symbol
207 P432 ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯ y¯, z) 155 R32
( y¯, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y¯, x¯, z¯) ( y, x¯, z) ( y¯, x, z) ( y, x, z¯)
( z¯ , y¯, x¯) ( z, y, x¯) ( z, y¯, x) ( z¯, y, x)
( x¯, z¯, y¯) ( x¯, z, y) ( x, z, y¯) ( x, z¯, y)
208 P42,32 ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 155 R32
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x¯, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
(½-y,½-x,½-z) (½+y,½-x,½+z) (½-y,½-x,½+z) (½+y,½+x,½-z)
(½-z, ½-y, ½-x) (½+z, ½+y, ½-x) (½+z, ½-y, ½+x) (½-z,½+y,½+x)
(½-x, ½-z, ½-y) (½-x,½+z, ½y) (½+x, ½+z, ½-y) (½+x, ½-z,½+y)
209 F432 ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 155 R32
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, y¯)
( z, x, y) ( z¯, x, y) ( z¯, x¯, y) ( z, x¯, y¯)
( y¯, x¯, z¯) ( y, x¯, z) ( y¯, x, z) ( y, x, z¯)
( z¯, y¯, x¯) ( z, y, x¯) ( z, y¯, x) ( z¯, y, x)
( x¯, z¯, y¯) ( x¯, z, y) ( x, z, y¯) ( x, z¯, y)
210 F4132 ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 150 1132
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
(¼-y,¼-x¼,-z) (¼+y,¼-x,¼+z) (¼-y, ¼+x, ¼+z) (¼+y, ¼+x, ¼-z)
(¼-z, ¼-y, ¼-x) (¼+z, ¼+y, ¼-x) (¼+z, ¼-y, ¼+x) (¼-z, ¼+y, ¼+x)
(¼-x, ¼-z, ¼-y) (¼-x, ¼+z, ¼+y) (¼+x, ¼ +z, ¼-y) (¼+x, ¼-z, ¼+y)
211 I432 ( x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 155 R32
( y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
( z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
( y¯, x¯, z¯) ( y, x¯, z) ( y¯, x, z) ( y, x, z¯)
( z¯, y¯, x¯) ( z, y, x¯) ( z, y¯ , x) ( z¯, y, x)
( x¯, z¯, y¯) ( x¯, z, y) ( x, z, y¯) ( x, z¯, y)
212 P4332 ( x, y, z) (½+z, ½-y, z¯) ( x¯,½+y,½-z) (½,-x, y¯, ½+z) 155 R32
( y, z, x) (½-y, z¯,½+x) ( +y, ½-z, x¯) ( y¯, ½+z, ½-x)
( z, x, y) ( z¯, ½+x,½-y) (½-z, x¯, ½+y) (½+z, ½-x, y¯)
(¼-y, ¼-x, ¼-z) (¾+y,¾-x+z) (¾-y,¼+x,¾+z) (¼+y,¾+x,¾-z)
(¼-z,¼-y,¼-x) (¼+z, ¾+y, ¾-x) (¾+z,¾-y,¼+x) (¾-z,¼+y, ¾+x)
(¼-x,¼ -z, ¼-y) (¾-x,¼+z,¾+y) (¼+x,¾+z,¾-y) (¾+x,¾-z,¼+V)
213 P4132 ( x, y, z) (½-x, ½-y, z¯) ( x¯,½+y,½-z) (½,-x, y¯, ½+z) 155 K32
( y, z, x) (½-y, z¯, ½-x) (½+y,½-z, x¯) ( y¯, +z, ½-x)
( z, x, y) ( z¯, ½+x, ½-y) (½-z, x¯,½-y) (½+z, ½-x, y¯)
(¾-y,¾-x,¾-z) (¼+y, ¼-x, ¼+z) (¼-y,¾+x,¼+z) (¾+y,¼+x,¼-z)
(¾-z,¾-y,¾-x) (¾+z,¼+y,¼-x) (¼+z, ¼-y, ¾+x) (¼-z,¾+y,¼+x)
(¾-x, ¾-z, ¾-y) (¼-x, ¾+z, ¼+y) (¾+x, ¼+z,¼-y) (¼+x,¼ -z,¾+y)
214 I4132 ( x, y, z) (½+x, ½-y, z¯) ( x¯,½+y,½-z) (½-x, y¯,½+z) 155 R32
( y, z, x) (½-y, z¯, ½+x) (½+y,½-z, x¯) ( y¯,½+z,½-x)
( z, x, y) ( z¯, ½+x, ½-y) (¾-z, x¯,½+y) (½+z,½-x, y¯)
(¼-y,¼-x,¼-z) +y, ¾-x, ¼+z) (¾-y,¼+x,¾+z) (¼+y,¾+x,¾-z)
(¼-z,¼-y,¼-x) (¼+z, ¾+y, ¾-x) (¾+z, ¾-y,¼+ x) (¾-z,+,¼-y,¾+x)
(¼-x,¼-z,¼-v) (¾-x, ¼+z,¾+y) (¼+x,¾+z,¾-y) (¾+x,¾-z,¼+y)

Table 5.

Reduction from 23 to 222

Space group of unstrained crystal, order 12 per lattice point If stressed so that x, y, zX, Y, Z, any permutation Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
195 P23 ( x, y, z) ( y, z, x) ( z, x, y) 16 P222
( x, y¯, z¯) ( y, z¯, x¯) ( z, x¯, y¯)
( x¯, y, z¯) ( y¯, z, x¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, z¯, x) ( z¯, x¯, y)
196 F23 ( x, y, z) ( y, z, x) ( z, x, y) 22 F222
( x, y¯, z¯) ( y, z¯, x¯) ( z, x¯, y¯)
( x¯, y, z¯) ( y¯, z, x¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, z¯, x) ( z¯, x¯, y)
197 I23 ( x, y, z) ( y, z, x) ( z, x, y) 23 I222
( x, y¯, z¯) ( y, z¯, x¯) ( z, x¯, y¯)
( x¯, y, z¯) ( y¯, z, x¯) ( z¯, x, y¯)
( x¯, y¯, z) ( y¯, z¯, x) ( z¯, x¯, y)
198 P213 ( x, y, z) ( y, z, x) ( z, x, y) 19 P212121
(½+x, ½−y, z¯) (½+y, ½−z, x¯) (½+z, ½−x, y¯)
( x¯, ½+y, ½−z) ( y¯, ½+z, ½−x) ( z¯, ½+x, ½−y)
(½−x, y¯, ½+z) (½−y, z¯, ½+x) (½−z, x¯, ½+y)
199 1213 ( x, y, z) ( y, z, x) ( z, x, y) 24 I212121
(½+x, ½−y, z¯) (½+y, ½−z, x¯) (½+z, ½−x, y¯)
( x¯, ½+y, ½−z) ( y¯, ½+z, ½−x) ( z¯, ½+x, ½−y)
(½−x, y¯, ½+z) (½−y, z¯, ½+x) (½−z, x¯, ½+y)

Table 6.

Reduction from 23 to 3

Space group of unstrained crystal, order 12 per lattice point If stressed so that X = Y; [111] ∥Z Space group of strained crystal, order 3 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset 4th Subset No. Symbol
195 P23 (x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 146 R3
(y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
(z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
196 F23 (x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 146 R3
(y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
(z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
197 I23 (x, y, z) ( x, y¯, z¯) ( x¯, y, z¯) ( x¯, y¯, z) 146 R3
(y, z, x) ( y¯, z¯, x) ( y, z¯, x¯) ( y¯, z, x¯)
(z, x, y) ( z¯, x, y¯) ( z¯, x¯, y) ( z, x¯, y¯)
198 P213 (x, y, z) (½+x, ½−y, z¯) ( x¯, ½+y, ½−z) (½−x, y¯, ½+z) 146 R3
(y, z, x) (½−y, z¯, ½+x) (½+y, ½−z, x¯) ( y¯, ½+z, ½−x)
(z, x, y) ( z¯, ½+x, ½−y) (½−z, x¯, ½+y) (½+z, ½−x, y¯)
199 I213 (x, y, z) (½+x, ½−y, z¯) ( x¯, ½+y, ½−z) (½−x, y¯, ½+z) 146 R3
(y, z, x) (½−y, z¯, ½+x) (½+y, ½−z, x¯) ( y¯, ½+z, ½−x)
(z, x, y) ( z¯, ½+x, ½−y) (½−z, x¯, ½+y) (½+z, ½−x, y¯)

Table 7.

Reduction from 6¯m2 to mm2

Space group of unstrained crystal, order 12 per lattice point If stressed so that y and z ∥ any two of X, Y, and Z Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
187 P6¯m2 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 38 Amm2
(x,x—y, z) (y¯, x¯, z) (y-x,y, z)
(x, y, z¯) (y¯,x-y, z¯) (y-x,x¯, z¯)
(x,x—y, z¯) (y¯, x¯, z¯) (y-x,y, z¯)
188 P6¯c2 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 40 Ama2
(x,x-y,½-z) (y, x¯, ½-z) (y-x,y,½-z)
(x, y, ½-z) (y¯,x-Y,½-z) (y-x,x¯,½-z)
(x,x— y, z¯) (y¯, x¯, z¯) (y-x,y, z¯)
189 P6¯2m (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 38 Amm2
(x, y-x, z) (y, x, z) (x-y, y, z)
(x, y, z¯) (y¯,x-y, z¯) (y-x,x¯, z¯)
(x¯,y-x, z¯) (y, x, z¯) (x-y,y¯, z¯)
190 P6¯2e (x, y, z) (y¯, x-y, z) (y-x,x¯, z) 40 Ama2
(x¯,y-x,½+z) (y, x, ½+z) (x-y, y, ½+z)
(x, y, ½-z) (y¯,x-y, ½-z) (y-x,x¯,½-z)
(x,y-x, z¯) (y, x, z¯) (x-y,y¯, z¯)

Table 8.

Reduction from 6mm to mm2

Space group of unstraincd crystal, order 12 per lattice point If stressed so that y and z ∥ any two of X, Y, and Z Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
183 P6mm (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 35 Cmm2
(x,x-y, z) (y¯, x¯, z) (y-x,y, z)
(x¯, y¯, z) (y,y-x, z) (x-y,x, z)
(x¯,y—x, z) (y, x, z) (x-y,y¯, z)
184 P6cc (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 37 Ccc2
(x,x-y,½+z) (y¯, x¯,½+z) (y-x,y,½+z)
(x¯, y¯, z) (y,y-x, z) (x-y,x, z)
(x¯,y—x,½+z) (y, x,½+z) (x-y,y¯,½+z)
185 P63cm (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 36 Cmc21
(x,x-y,½+z) (y¯, x¯,½+z) (y-x,y,½+z)
(x¯, y¯,½+z) (y,y-x,½+z) (x-y,x,½+z)
(x¯,y—x, z) (y, x, z) (x-y,y¯, z)
186 P63mc (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 36 Cmc21
(x,x—y, z) (y¯, x¯, z) (y-x,y, z)
(x¯, y¯,½+z) (y,y-x,½+z) (x-y,x,½+z)
(x¯,y—x,½+z) (y, x,½+z) (x-y,y¯,½+z)

Table 9.

Reduction from 622 to 222

Space group of unstrained crystal, order 12 per lattice point If stressed so that y and z ∥ any two of X, Y, and Z Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crysta
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
177 P622 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 21 C222
(x,x-y, z¯) (y¯, x¯, z¯) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x, z) (x-y,x, z)
(x¯, y-x, z¯) (y, x, z¯) (x- y, y¯, z¯)
178 P6122 (x, y, z) (y¯,x-y,⅓+z) (y-x,x¯,⅔+z) 20 C2221
(x,x-y,⅙-z) (y¯, x¯,⅚-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,⅚+z) (x-y,x,⅙+z))
(x¯, y-x,⅔-z) (y x,⅓-z) (x- y, y¯, z¯)
179 P6522 (x, y, z) (y¯,x-y,⅔+z) (y-x,x¯,⅓+z) 20 C2221
(x,x-y,⅚-z) (y¯, x¯,⅙-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,⅙+z) (x-y,x,⅚+z)
(x¯, y-x,⅓-z) (y x,⅔-z) (x- y, y¯, z¯)
180 P6222 (x, y, z) (y¯,x-y,⅔+z) (y-x,x¯,⅓+z) 21 C222
(x,x-y,⅓-z) (y¯, x¯,⅔-z) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x,⅔+z) (x-y,x,⅓+z)
(x¯, y-x,⅓-z) (y x,⅔-z) (x- y, y¯, z¯)
181 P6422 (x, y, z) (y¯,x-y,⅓+z) (y-x,x¯,⅔+z) 21 C222
(x,x-y,⅔-z) (y¯, x¯,⅓-z) (y-x,y, z¯)
(x¯, y¯, z) (y, y -x,⅓+z) (x-y,x,⅔+z)
(x¯, y-x,⅔-z) (y x,⅓-z) (x- y, y¯, z¯)
182 P6322 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 20 C2221
(x,x-y,½-z) (y¯, x¯,½-z) (y-x,y,½-z)
(x¯, y¯,½+z) (y, y -x,½+z) (x-y,x,½+z)
(x¯, y-x, z¯) (y, x, z¯) (x- y, y¯, z¯)

Table 10.

Reduction from 4¯2m to mm2

Space group of unstrained crystal, order 8 per lattice point If stressed so that Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 4 per lattice point
No. Symbol 1st Subset 2d Subset No. Symbol
111 P4¯2m [11¯0], [110],zX, Y, Z,
any permutation.
(x, y, z) ( y, x, z) ( x, y¯, z¯) (y, x¯, z¯) 35 Cmm2
(x¯, y¯, z) (y¯, x¯, z) ( x¯, y, z¯) (y¯, x, z¯)
112 P4¯2c Do. (x, y, z) ( y, x,½+ z) ( x, y¯,½-z) (y, x¯, z¯) 37 Ccc2
(x¯, y¯, z) (y¯, x¯,½+z) ( x¯, y,½-z) (y¯, x, z¯)
113 P4¯21m Do, (x, y, z) (½+y,½+x, z) (½+x,½-y, z¯) (y, x¯, z¯) 35 Cmm2
(x¯, y¯, z) (½-y,½-x, z) (½-x,½+y, z¯) (y¯, x, z¯)
114 P4¯21c Do, (x, y, z) (½+y,½+x,½+ z) (½+x,½-y,½-z) (y, x¯, z¯) 37 Ccc2
(x¯, y¯, z) (½-y,½-x,½+z) (½-x,½+y,½-z) (y¯, x, z¯)
115 P4¯m2 x, y, z ∥. X, Y, Z, any permutation. (x, y, z) ( x, y¯, z) ( y, x, z¯) (y, x¯, z¯) 25 Pmm2
(x¯, y¯, z) ( x¯, y, z) (y¯, x¯, z¯) (y¯, x, z¯)
116 P4¯c2 Do. (x, y, z) ( x, y¯,½+z) ( y, x,½-z) (y, x¯, z¯) 27 Pcc2
(x¯, y¯, z) ( x¯, y,½+z) (y¯, x¯,½-z) (y¯, x, z¯)
117 P4b2 Do. (x, y, z) (½+x,½-y, z) (½+y,½+x, z¯) (y, x¯, z¯) 32 Pba2
(x¯, y¯, z) (½-x,½-y, z) (½-y,½-x, z¯) (y¯, x, z¯)
118 P4¯n2 Do. (x, y, z) (½+x,½-y,½+z) (½+y,½+x,½-z) (y, x¯, z¯) 34 Pnn2
(x¯, y¯, z) (½-x,½+y,½+z) (½-y,½-x,½-z) (y¯, x, z¯)
119 I4¯m2 Do. (x, y, z) ( x, y¯, z) ( y, x, z¯) (y, x¯, z¯) 44 Imm2
(x¯, y¯, z) ( x¯, y, z) (y¯, x¯, z¯) (y¯, x, z¯)
120 I4¯c2 Do. (x, y, z) ( x, y¯,½+z) ( y, x,½-z) (y, x¯, z¯) 45 Iba2
(x¯, y¯, z) ( x¯, y,½+z) (y¯, x¯,½-z) (y¯, x, z¯)
121 I4¯2m [11¯0]. [110], z ∥ X, Y, Z, any permutation. (x, y, z) ( y, x, z) ( x, y¯, z¯) (y, x¯, z¯) 42 Fmm2
(x¯, y¯, z) (y¯, x¯, z) ( x¯, y, z¯) (y¯, x, z¯)
122 I4¯2d Do. (x, y, z) ( y,½+x,¼+ z) ( x,½-y,¼-z) (y, x¯, z¯) 43 Fdd2
(x¯, y¯, z) ( y¯,½-x,¼+ z) ( x¯,½+y,¼-z¯) (y¯, x, z¯)

Table 11.

Reduction from 4¯2m to 222

Space group of unstrained crystal, order 8 per lattice point If stressed so that Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 4 per lattice point
No. Symbol 1st Subset 2d Subset No. Symbol
111 P4¯2m x, y, z II X, Y, Z, any permutation. (x, y, z) ( x, y¯, z¯) ( y, x, z) (y, x¯, z¯) 16 P222
(x¯, y¯, z) (x¯, y, z¯) ( y¯, x¯, z) (y¯, x, z¯)
112 P4¯2c Do. (x, y, z) ( x, y¯,½-z) ( y, x,½+z) (y, x¯, z¯) 16 P222
(x¯, y¯, z) (x¯, y,½-z) ( y¯, x¯,½+z) (y¯, x, z¯)
113 P4¯21m Do. (x, y, z) (½+x,½-y, z¯) (½+y,½+x, z) (y, x¯, z¯) 18 P21212
(x¯, y¯, z) (½-x,½+y, z¯) (½-y,½-x, z) (y¯, x, z¯)
114 P4¯21C Do. (x, y, z) (½+x,½-y,½-z) (½+y,½+x,½+z) (y, x¯, z¯) 18 P21212
(x¯, y¯, z) (½-x,½+y,½-z) (½-y,½-x,½+z) (y¯, x, z¯)
115 P4¯m2 [11¯0], [110], z ∥ X, Y, Z, any permutation. (x, y, z) ( y, x, z¯) ( x, y¯, z) (y, x¯, z¯) 21 C222
(x¯, y¯, z) ( y¯, x¯, z¯) (x¯, y, z) (y¯, x, z¯)
116 P4¯c2 Do. (x, y, z) ( y, x,½-z) ( x, y¯,½+z) (y, x¯, z¯) 21 C222
(x¯, y¯, z) ( y¯, x¯,½-z) (x¯, y,½+z) (y¯, x, z¯)
117 P4¯b2 Do. (x, y, z) ( ½+y,½+x, z¯) (½+x,½-y, z) (y, x¯, z¯) 21 C222
(x¯, y¯, z) ( ½-y,½-x, z¯) (½-x,½-y, z) (y¯, x, z¯)
118 P4¯n2 Do. (x, y, z) ( ½+y,½+x,½-z) (½+x,½-y,½+z) (y, x¯, z¯) 21 C222
(x¯, y¯, z) ( ½-y,½-x,½-z) (½-x,½+y,½+z) (y¯, x, z¯)
119 14¯m2 Do. (x, y, z) ( y, x, z¯) ( x, y¯, z) (y, x¯, z¯) 22 F222
(x¯, y¯, z) ( y¯, x¯, z¯) (x¯, y, z) (y¯, x, z¯)
120 14¯c2 Do. (x, y, z) ( y, x,½-z) ( x, y¯,½+z) (y, x¯, z¯) 22 F222
(x¯, y¯, z) ( y¯, x¯,½-z) (x¯, y,½+z) (y¯, x, z¯)
121 I4¯2m x, y, zX, Y, Z, any permutation. (x, y, z) ( x, y¯, z¯) ( y, x, z) (y, x¯, z¯) 23 I222
(x¯, y¯, z) (x¯, y, z¯) ( y¯, x¯, z) (y¯, x, z¯)
122 I4¯2d Do. (x, y, z) ( x,½-y,¼-z) ( y,½+x,¼+z) (y, x¯, z¯) 24 I212121
(x¯, y¯, z) (x¯,½-y,¼-z) (y¯,½-x,¼+z) (y¯, x, z¯)

Table 12.

Reduction from 4mm to mm2

Space group of unstrained crystal, order 8 per lattice point If stressed so that x, y, zX, Y, Z, any permutation Space group of strained crystal, order 4 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol
99 P4mm (x, y, z) ( x, y¯, z) ( y, x, z) ( y, x¯, z) 25 Pmm2 35 Cmm2
(x¯, y¯, z) ( x¯, y, z) ( y¯, x¯, z) ( y¯, x, z)
100 P4bm (x, y, z) (½+x,½-y, z) (½+y,½+x, z) ( y, x¯, z) 32 Pba2 35 Cmm2
(x¯, y¯, z) (½-x,½+y, z) (½-y,½-x, z) ( y¯, x, z)
101 P42cm (x, y, z) ( x, y¯,½+z) ( y, x, z) ( y, x¯,½+z) 27 Pcc2 35 Cmm2
(x¯, y¯, z) ( x¯, y,½+z) ( y¯, x¯, z) ( y¯, x,½+z)
102 P42nm (x, y, z) (½+x,½-y,½+z) ( y, x, z) (½+y,½-x,½+z) 34 Pnn2 35 Cmm2
(x¯, y¯, z) (½-x,½-y,½+z) ( y¯, x¯, z) (½-y,½+x,½+z)
103 P4cc (x, y, z) ( x, y¯,½+z) ( y, x,½+z) ( y, x¯, z) 27 Pcc2 37 Ccc2
(x¯, y¯, z) ( x¯, y,½+z) ( y¯, x¯,½+z) ( y¯, x, z)
104 P4nc (x, y, z) (½+x,½-y,½+z) (½+y,½+x,½+z) ( y¯, x,½+z) 31 Pnn2 37 Ccc2
(x¯, y¯, z) (½-x,½-y,½+z) (½-y,½-x,½+z) ( y¯, x, z)
105 P42mc (x, y, z) ( x, y¯, z) ( y, x,½+z) ( y, x¯,½+z) 25 Pmm2 37 Ccc2
(x¯, y¯, z) ( x¯, y, z) ( y¯, x¯,½+z) ( y¯, x,½+z)
106 P42bc (x, y, z) (½+x,½-y, z) (½+y,½+x,½+z) ( y, x¯,½+z) 32 Pb.2 37 Ccc2
(x¯, y¯, z) (½-x,½+y, z) (½-y,½-x,½+z) ( y¯, x,½+z)
107 I4mm (x, y, z) ( x, y¯, z) ( y, x, z) ( y, x¯, z) 44 Imm2 42 Fmm2
(x¯, y¯, z)) ( x¯, y, z) ( y¯, x¯, z) ( y¯, x, z)
108 14cm (x, y, z) (½+x,½-y, z) (½+y,½+y, z) ( y, x¯, z) 45 Iba2 42 Fmm2
(x¯, y¯, z) (½-x,½+y, z) (½-y,½-y, z) ( y¯, x, z)
109 I41md (x, y, z) ( x, y¯, z) ( y,½+x,¼+z) ( y,½-x,¼+z) 44 Imm2 43 Fdd2
(x¯, y¯, z) ( x¯, y, z) ( y¯, ½-x,¼+z) ( y¯, ½+x,¼+z)
110 I41cd (x, y, z) ( x, y¯,½+z) ( y,½+x,⅔+z) ( y,½-x,¼+z) 45 Iba2 43 Fdd2
(x¯, y¯, z) ( x¯, y,½+z) ( y¯, ½-x,⅔+z) ( y¯, ½+x,¼+z)
No. Symbol 1st Subset 2d Subset 1st Subset 2d Subset No, Symbol
Space group of unstrained crystal, order 8 per lattice point Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 4 per lattice point
If stressed so that [l1¯0], [110], zX,Y, Z, any permutation

Table 13.

Reduction from 422 to 222

Space group of unstrained crystal. order 8 per lattice point If stressed so that x, y, zX, Y, Z, any permutation Space group of strained crystal. order 4 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol
89 P422 (x,y, z)
(x¯, y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
(y,x, z¯)
(y¯,x¯, z¯)
( y, x¯, z)
( y¯, x, z)
16 P222 21 C222
90 P4212 (x,y, z)
(x¯y¯, z)
(½+x, ½-y,z¯)
(½-x, ½+y,z¯)
(y,x, z¯)
(y¯,x¯, z¯)
(½+y, ½-x, z)
(½-y, ½+x, z)
18 P21212 21 C222
91 P4122 (x,y, z)
(x y¯, ½+ z)
( x, y¯, ½-z)
( x¯, y, z¯)
(y,x,¾- z)
(y¯,x¯,¼- z)
( y, x¯+ z)
( y¯, x+ z)
17 P2221 20 C2221
92 P41212 (x,y, z)
(x¯y¯, ½+ z)
(½+x, ½-y, ¾-z)
(½-x, ½+y, ¼-z)
(y,x, z¯)
(y¯,x¯, ½-z)
(½+y, ½-x, ¾-z)
(½-y, ½+x, ¼-z)
19 P212121 20 C2221
93 P4222 (x,y, z)
(x¯y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
(y,x,½-z)
(y¯,x¯,½-z)
( y, x¯,½+z)
( y¯, x,½+z)
16 P222 21 C222
94 P42212 (x,y, z)
(x¯,y¯, z)
(½+x, ½-y, ½-z)
(½-x, ½+y, ½-z)
(y,x, z¯)
(y¯,x¯, z¯)
(½+y, ½-x, ½+z)
(½-y, ½+x, ½+z)
18 P21212 21 C222
95 P4322 (x,y, z)
(x¯y¯, ½+ z)
( x, y¯, ½-z)
( x¯, y, z¯)
(y,x,¾- z)
(y¯,x¯,¼- z)
( y, x¯+ z)
( y¯, x+ z)
17 P2221 20 C2221
96 P43212 (x,y, z)
(x¯y¯, ½+ z)
(½+x, ½-y, ¼-z)
(½-x, ½+y, ¾-z)
(y,x, z¯)
(y¯,x¯,½-z)
(½+y, ½-x, ¼-z)
(½-y, ½+x, ¾-z)
19 P212121 20 C2221
97 1422 (x,y, z)
(x¯y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
(y,x, z¯)
(y¯,x¯, z¯)
( y, x¯, z)
( y¯, x, z)
23 I222 22 F222
98 14122 (x,y, z)
(x¯y¯, z)
( x, ½-y, ¼-z)
( x¯, ½+y, ¼-z)
(y,x, z¯)
(y¯,x¯, z¯)
( y, ½+x, ¼+z)
( y¯, ½+x, ¼+z)
24 I212121 22 F222
No. Symbol 1st Subset 2d Subset 1st Subset 2d Subset No. Symbol
Space group of unstrained crystal, order 8 per lattice point Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 4 per lattice point
If stressed so that [11¯0], [110], zX, Y, Z, any permutation

Table 14.

Reduction from 6 to 2

Space group of unstrained crystal, order 6 per lattice point If stressed so that zX, Y, or Z Space group of strained crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
168 P6 (x,y, z)
(x¯y¯, z)
(y¯,x-y, z)
(y,y-x, z)
(y-x,x¯, z)
(x-y,x, z)
3 P2
169 P61 (x,y, z)
(x¯y¯, ½+ z)
(y¯,x-y, ⅓+ z)
(y,y-x,⅚+ z)
(y-x,x¯, ⅔+z)
(x-y,x,⅙+ z)
4 P21
170 P65 (x,y, z)
(x¯y¯, ½+ z)
(y¯,x-y,⅔+z)
(y,y-x,⅙+ z)
(y-x,x¯, ⅓+ z)
(x-y,x,⅚+ z)
4 P21
171 P62 (x,y, z)
(x¯y¯, z)
(y¯,x-y, ⅔+z)
(y,y-x, ⅔+z)
(y-x,x¯, ⅓+ z)
(x-y,x, ⅓+ z)
3 P2
172 P64 (x,y, z)
(x¯y¯, z)
(y¯,x-y, ⅓+ z)
(y,y-x, ⅓+ z)
(y-x,x¯, ⅔+z)
(x-y,x, ⅔+z)
3 P2
173 P63 (x,y, z)
(x¯y¯, ½+ z)
(y¯,x-y, z)
(y,y-x, ½+ z)
(y-x,x¯, z)
(x-y,x, ½+ z)
4 P21

Table 15.

Reduction from 6¯to m

Space group of unstrained crystal, order 6 per lattice point If stressed so that zX, Y, or Z Space group of strained crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
174 P6¯ (x, y, z)
(x, y, z)
(y¯, xy, z)
(y¯, xy, z¯)
(yx, x¯, z)
(yx, x¯, z¯)
6 Pm

Table 16.

Reduction from 3m to m

Space group of unstrained crystal, order 6 per lattice point If stressed so that Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 2 per lattice point
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
156 P3m1 [110] ǁ X, Y, or Z (x,y, z) (y–x, x¯, z) ( y¯,x-y, z) 8 Cm
(y,x, z) ( x,x–y, z) (y-x, y, z)
157 P31m [11¯0] ǁ X, Y, or Z (y¯, x¯, z) (y–x, x¯, z) ( y¯,x-y, z) 8 Cm
(x,y, z) ( x¯,y-x, z) (x-y, y¯, z)
158 P3c1 [110] ǁ X, Y, or Z (x, y, z) (y–x, x¯, z) ( y¯,x-y, z) 9 Cc
(y¯,x¯+z) ( x,x-y, ½ +z) (y-x, y, ½ +z)
159 P31c [11¯0] ǁ X, Y, or Z (x, y, z) (y-x, x¯, z) ( y¯,x-y, z) 9 Cc
(y,x, ½+z) (x¯,y–x, ½+z) (x-y, y¯, ½ +z)
160 R3m hex. axes [110] ǁ X, Y, or Z (x,y, z) (y–x, x¯, z) ( y¯,x-y, z) 8 Cm
(y¯,x¯, z) ( x,x-y, z) (y-x, y, z)
161 R3c hex. axes [110] ǁ X, Y, or Z (x, y, z) (y-x, x¯, z) ( y¯,x-y, z) 9 Cc
(y¯,x¯+z) ( x, x-y, ½+z) (y-x, y, ½ +z)

Table 17.

Reduction from 32 to 2

Space group of unstrained crystal, order 6 per lattice point If stressed so that Coordinates referred to axes of unstrained crystal Space group of strained crystal, order 2 per lattice point
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
149 P312 [11¯0] ǁ X, Y, or Z (x,y, z) (y¯,x-y, z) (y—x, x¯, z) 5 C2
(y¯, x¯, z¯) (y-x, y, z¯) ( x,x-y, z¯)
150 P321 [110] ǁ X, Y, or Z (x, y, z) (y¯,x-y, z) (y—x, x¯, z) 5 C2
(y,x, z¯) (x-y, y¯, z) (x¯, y-x, z)
151 P3112 [11¯0] ǁ X, Y, or Z (x.y, z) (y¯,x-y, ⅓+z) (y¯-x, x¯, ⅔+z) 5 C2
(y¯, x¯, ⅔-z) (y-x, y, ⅓-z) ( x, x—y, z)
152 P3121 [110] ǁ X, Y, or Z (x, y, z) (y¯,x-y,⅓+z) (y-x, x¯, ⅔+z) 5 C2
(y,x, z) (x-y, y, ⅔-z) ( x,y-x, ⅓-z)
153 P3212 [11¯0 ǁ X, Y, or Z (x.y, z) (y¯,x-y, ⅔+z) (y-x, x¯, ⅓+z) 5 C2
(y¯, x¯, ⅓-z) (y-x, y, ⅔-z) ( x,x-y, z)
154 P3221 [110] ǁ X, Y, or Z (x, y, z) (y¯, x-y, ⅔+z) (y-x, x¯, ⅓+z) 5 C2
(y,x, z¯) (x-y, y¯, ⅓-z) (x¯,y-x, ⅔-z)
155
hex.
R32
axes
[110] ǁ X, Y, or Z (x, y, z) (y¯,x-y, z) (y-x, x¯, z) 5 C2
(y,x, z) (x-y, y, z¯) (x¯, y—x, z)

Table 18.

Reduction from 4 to 2

Space group of unstrained crystal, order 4 per lattice point If stressed so that zX, Y, or Z Space group of strained crystal. order 2 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol
75 P4 (x,y, z) (y¯, x, z) 3 P2
(x¯, y¯, z) (y, x¯, z)
76 P41 (x, y, z) (y¯, x, ¼+z) 4 P21
(x¯,y, ½+z) (y, x¯, ¾+z)
77 P42 (x, y, z) (y¯, x, ½+z) 3 P2
(x, y, z) (y, x¯, ½+z)
78 P43 (x, y, z) (y¯, x, ¾+z) 4 P21
(x, y¯, ½+z) (y, x¯, ¼+2)
79 14 (x, y, z) (y¯, x, z) 5 C2
(x¯, y¯,, z) (y, x¯, z)
80 141 (x, y, z) (y¯, ½+x, ¼+z) 5 C2
(x¯, y¯, z) (y, ½-x, ¼+z)

Table 19.

Reduction from 4¯ to 2

Space group of unstrained crystal, order 4 per lattice point If stressed so that zX, Y, or Z Space group of strained crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol
81 P4¯ (x, y, z) (y¯,x, z¯) 3 P2
(x¯, y¯, z) (y, x¯, z¯)
82 I4¯ (x, y, z) (y¯,x, z¯) 5 C2
(x¯, y¯, z) (y, x¯, z¯)

Table 20.

Reduction from mm2 to m

Space group of unstrained crystal, order 4 per lattice point If stressed so that x ∥ X, Y, or Z Space group of strained crystal, order 2 per lattice point If stressed so that y ∥ X, Y, or Z Space group of strained crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol 1st Subset 2d Subset No. Symbol
25 Pmm2 ( x, y, z) ( x, y¯, z) 6 Pm ( x, y, z) ( x, y, z) 6 Pm
( x¯, y, z) ( x¯, y¯, z) ( x, y, z) ( x, y, z)
26 Pmc21 ( x, y, z) ( x, y¯, ½+z) 6 Pm x, y, z) ( x¯, y, z) 7 Pc
( x¯, y, z) ( x, y¯, ½+z) ( x, y¯, ½+z) ( x¯, y¯, ½+z)
27 Pcc2 ( x, y, z) ( x, y¯, ½+z) 7 Pc ( x, y, z) ( x¯, y, ½+z) 7 Pc
( x¯, y, ½+z) ( x¯, y¯, z) ( x, y¯, ½+z) ( x¯, y¯, z)
28 Pma2 ( x, y, z) (½+x, y¯, z) 6 Pm ( x, y, z) (½-x, y, z) 7 Pc
(½-x, y, z) ( x¯, y¯, z) (½+x, y¯, z) ( x¯, y¯, z)
29 Pca21 ( x, y, z) (½+x, y¯, z) 7 Pc ( x, y, z) (½-x, y, ½+z) 7 Pc
(½-x, y, ½+z) ( x¯, y¯, ½+z) (½+x, y¯, z) ( x¯, y¯, ½+z)
30 Pnc2 ( x, y, z) (x¯, ½-y, ½+z) 7 Pc ( x, y, z) ( x¯, ½+y, ½+z) 7 Pc
( x¯, ½+y, ½+z) ( x¯, y¯, z) ( x, ½-y, ½+z) ( x¯, y¯, z)
31 Pmn21 ( x, y, z) (½+x, y¯, ½+z) 6 Pm ( x, y, z) ( x¯, y, z) 7 Pc
( x, y, z) (½-x, y¯, ½+z) (½+x, y¯, ½+z) (½-x, y¯, ½+z)
32 Pba2 ( x, y, z) (½+x, ½-y, Z) 7 Pc ( x, y, z) (½-x, ½+y, z) 7 Pc
(½-x, ½+y, z) ( x¯, y¯, z) (½+x, ½-y, z) ( x¯, y¯, z)
33 Pna21 ( x, y, z) (½+x, ½-y, z) 7 Pc ( x, y, z) (½-x, ½+y, ½+z) 7 Pc
(½-x, ½+y, ½+z) ( x¯, y¯, ½+z) (½+x, ½-y, Z) ( x¯, y¯, ½+z)
34 Pnn2 ( X, y, z) (½+x, ½-y, ½+z) 7 Pc ( X, y, z) (½-x, ½+y, ½+z) 7 Pc
(½-x, ½+y,½+z) ( x¯, y¯, z) (½+x, ½-y, ½+z) ( x¯, y¯, z)
35 Cmm2 ( X, y, z) ( x, y¯, z) 8 Cm ( x, y, z) ( x¯, y, z) 8 Cm
( x¯, y, z) ( x¯, y¯, z) ( x, y¯, z) ( x¯, y¯, z)
36 Cmc21 ( x, y, z) ( x, y¯, ½+z) 8 Cm ( x, y, z) ( x¯, y, z) 9 Cc
( x¯, y, z) ( x¯, y¯, ½+z) ( x, y¯, ½+z) ( x¯, y¯, ½+z)
37 Ccc2 ( x, y, z) ( x, y¯, ½+z) 9 Cc ( x, y, z) ( x¯, y, ½+z) 9 Cc
( x¯, y, ½+z) ( x¯, y¯, z) ( x, y¯, ½+z) ( x¯, y¯, z)
38 Amm2 ( x, y, z) ( x, y¯, z) 6 Pm ( x, y, z) ( x¯, y, z) 8 Cm
( x¯, y, z) ( x¯, y¯, z) ( x, y¯, z) ( x¯, y¯, z)
39 Abm2 ( x, y, z) ( x, ½-y, z) 7 Pc ( x, y, z) ( x¯, ½+y, z) 8 Cm
( x¯, ½+y, z) ( x¯, y¯, z) ( x, ½-y, z) ( x¯, y¯, z)
40 Ama2 ( x, y, z) (½+x, y¯, z) 6 Pm ( x, y, z) (½-x, y, z) 9 Cc
(½-x, y, z) ( x¯, y¯, z) (½+x, y¯, z) ( x¯, y¯, z)
41 Aba2 ( x, y, z) (½+x, ½-y, z) 7 Pc ( x, y, z) (½-x, ½+y, z) 9 Cc
(½-x, -+y, z) ( x¯, y¯, z) (½+x, ½-y, z) ( x¯, y¯, z)
42 Fmm2 ( x, y, z) ( x, y¯, z) 8 Cm ( x, y, z) ( x¯, y, z) 8 Cm
( x¯, y, z) ( x¯, y¯, z) ( x, y¯, z) ( x¯, y¯, z)
43 Fdd2 ( x, y, z) (¼+x, ¼-y, ¼+z) 9 Cc ( x, y, z) (¼-x, ¼+y, ¼+z) 9 Cc
(¼-x, ¼+y, ¼+z) ( x¯, y¯, z) (¼+x, ¼-y, ¼+z) ( x¯, y¯, z)
44 Imm2 ( x, y, z) ( x, y¯, z) 8 Cm ( x, y, z) ( x¯, y, z) 8 Cm
( x¯, y, z) ( x¯, y¯, z) ( x, y¯, z) ( x¯, y¯, z)
45 Iba2 ( x, y, z) ( x, y¯, ½+z) 9 Cc ( x, y, z) ( x¯, y, ½+z) 9 Cc
( x¯, y, ½+z) ( x¯, y¯, z) ( x, y¯, ½+z) ( x¯, y¯, z)
46 Ima2 ( x, y, z) (½+x, y¯, z) 8 Cm ( x, y, z) (½-x, y, z) 9 Cc
( ½−x, y, z) ( x¯, y¯, z) ( ½+x, y¯, z) ( x¯, y¯, z)

Table 21.

Reduction from mm2 to 2

Space group of unstrained crystal, order 4 per lattice point If ,tressed so that zX. Y, or Z Space group of strained crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol
25 Pmm2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z)
( x¯, y, z)
3 P2
26 Pmc21 ( x,y, z)
( x¯,y¯, ½+z)
( x, y¯, ½+z)
( x¯, y, z)
4 P21
27 Pcc2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, ½+z)
( x¯, y, ½+z)
3 P2
28 Pma2 ( x,y, z)
( x¯,y¯, z)
+x, y¯, z)
(½-x, y, z)
3 P2
29 Pca21 ( x,y, z)
( x¯,y¯, ½+z)
+x, y¯, z)
(½-x, y, ½+z)
4 P21
30 Pnc2 ( x,y, z)
( x¯,y¯, z)
( x, ½ -y, ½+z)
(x¯, ½+-y, ½+z)
3 P2
31 Pmn21 ( x,y, z)
( x,y, ½+z)
+x, y, ½+z)
( x¯, y, z)
4 P21
32 Pba2 ( x,y, z)
( x¯,y¯, z)
+x,½-y, z)
(½-x+y, z)
3 P2
33 Pna21 ( x,y, z)
( x¯,y¯, ½+z)
+x,½-y, z)
(½-x+y, ½+ z)
4 P21
34 Pnn2 ( x,y, z)
( x¯,y¯, z)
+x,½-y, ½+ z)
(½-x+y, ½+ z)
3 P2
35 Cmm2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z)
( x¯, y, z)
3 P2
36 Cmc21 ( x,y, z)
( x¯,y¯, ½+z)
( x, y¯, ½+z)
( x¯, y, z)
4 P21
37 Ccc2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, ½+z)
( x¯, y, ½+z)
3 P2
38 Amm2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z)
( x¯, y, z)
5 C2
39 Abm2 ( x,y, z)
( x¯,y¯, z)
( x, ½-y, z)
( x¯, ½+y, z)
5 C2
40 Ama2 ( x,y, z)
( x¯,y¯, z)
+x, y¯, z)
(½-x, y, z)
5 C2
41 Aba2 ( x,y, z)
( x¯,y¯, z)
+x,½-y, z)
(½-x+y, z)
5 C2
42 Fmm2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z)
( x¯, y, z)
5 C2
43 Fdd2 ( x,y, z)
( x¯,y¯, z)
+x, ¼-y, ¼+ z)
(¼-x, ¼+y, ¼+ z)
5 C2
44 Imm2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z)
( x¯, y, z)
5 C2
45 Iba2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, ½+z)
( x¯, y, ½+z)
5 C2
46 Ima2 ( x,y, z)
( x¯,y¯, z)
+x, y¯, z)
(½-x, y, z)
5 C2

Table 22.

Reduction from 222 to 2

Space group of unstrained
crystal, order 4 per lattice point
If stressed so that xX, Y, or Z Space group of strained
crystal, order 2 per lattice point
If stressed so that yX, Y, or Z Space group of strained
crystal, order 2 per lattice point
If stressed so that zX, Y, or Z Space group of strained
crystal, order 2 per lattice point
Coordinates referred to axes of unstrained crystal Coordinates referred to axes of unstrained crystal Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset No. Symbol 1st Subset 2d Subset No. Symbol 1st Subset 2d Subset No. Symbol
16 P222 ( x, y, z)
( x, y¯, z¯)
( x¯, y, z¯)
( x¯, y¯, z)
3 P2 ( x, y, z)
( x¯, y, z¯)
( x, y¯, z¯)
( x¯, y¯, z)
3 P2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
3 P2
17 P2221 ( x, y, z)
( x, y¯, z¯)
( x¯, y, ½- z)
( x¯, y¯, ½+ z)
3 P2 ( x, y, z)
( x¯, y, ½- z)
( x, y¯, z¯)
( x¯, y¯, ½+ z)
3 P2 ( x,y, z)
( x¯,y¯, ½+ z)
( x, y¯, z¯)
( x¯, y, ½- z)
4 P21
18 P21212 ( x, y, z) (½+x, ½-y, z¯) (½-x, ½+ y, z¯)
( x¯, y¯, z)
4 P21 ( x, y, z)
(½-x, ½+y, z¯)
(½+x, ½- y, z¯)
( x¯, y¯, z)
4 P21 ( x,y, z)
( x¯,y¯, z)
(½+x, ½- y, z¯) (½-x, ½+ y, z¯) 3 P2
19 P212121 ( x, y, z) (½+x, ½-y, z¯) ( x¯, ½+ y, ½- z)
(½-x, y¯, ½+ z)
4 P21 ( x, y, z)
( x¯, ½+y , ½- z)
(½+x, ½- y, z¯) (½-x, y¯, ½+ z) 4 P21 ( x,y, z)
(½-x,y¯, ½+z)
(½+x, ½- y, z¯)
( x¯,½+y, ½- z)
4 P21
20 C2221 ( x, y, z)
( x, y¯, z¯)
( x¯, y, ½- z)
( x¯, y¯, ½+ z)
5 C2 ( x, y, z)
( x¯, y, ½- z)
( x, y¯, z¯)
( x¯, y¯, ½+ z)
5 C2 ( x,y, z)
( x¯,y¯, ½+ z)
( x, y¯, z¯)
( x¯, y, ½- z)
4 P21
21 C222 ( x, y, z)
( x, y¯, z¯)
( x¯, y, z¯)
( x¯, y¯, z)
5 C2 ( x, y, z)
( x¯, y, z¯)
( x, y¯, z¯)
( x¯, y¯, z)
5 C2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
3 P2
22 F222 ( x, y, z)
( x, y¯, z¯)
( x¯, y, z¯)
( x¯, y¯, z)
5 C2 ( x, y, z)
( x¯, y, z¯)
( x, y¯, z¯)
( x¯, y¯, z)
5 C2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
5 C2
23 I222 ( x, y, z)
( x, y¯, z¯)
( x¯, y, z¯)
( x¯, y¯, z)
5 C2 ( x, y, z)
( x¯, y, z¯)
( x, y¯, z¯)
( x¯, y¯, z)
5 C2 ( x,y, z)
( x¯,y¯, z)
( x, y¯, z¯)
( x¯, y, z¯)
5 C2
24 I212121 ( x, y, z) (½+x, ½-y, z¯) ( x¯, ½+ y, ½- z)
(½-x, y¯, ½+ z)
5 C2 ( x, y, z)
( x¯, ½+y , ½+ z)
(½+x, ½- y, z¯) (½-x, y¯, ½+ z) 5 C2 ( x,y, z)
(½-x,y¯, ½+z)
(½+x, ½- y, z¯)
( x¯,½+y, ½- z)
5 C2

Table 23.

Reduction from 3 to 1

Space group of unstrained crystal, order 3 per lattice point No specialization of stress Space group of strained crystal, order 1 per lattice point
Coordinates referred to axes of unstrained crystal
No. Symbol 1st Subset 2d Subset 3d Subset No. Symbol
143 P3 (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 1 P1
144 P31 (x, y, z) (y¯,x-y,⅓+ z) (y-x,x¯, ⅔+z) 1 P1
145 P31 (x, y, z) (y¯,x-y, ⅔+z) (y-x,x¯, ⅓+z) 1 P1
146 R3 hex. axes (x, y, z) (y¯,x-y, z) (y-x,x¯, z) 1 P1

Table 24.

Reduction from m to 1

Space group of unstrained crystal, order 2 per lattice point No specialization of stress Space group of strained crystal, order 1 per lattice point
Coordinates referred to axes of unstrained crystal (m⊥y)
No. Symbol 1st Subset 2d Subset No. Symbol
6 Pm (x, y, z) (x, y¯, z) 1 P1
7 Pc (x, y, z) (x, y¯, ½+ z) 1 P1
8 Cm (x, y, z) (x, y¯, z) 1 P1
9 Cc (x, y, z) (x, y¯, ½+ z) 1 P1

Table 25.

Reduction from 2 to 1

Space group of unstrained crystal, order 2 per lattice point No specialization of stress Space group of strained crystal, order 1 per lattice point
Coordinates referred to axes of unstrained crystal (2∥Y)
No. Symbol 1st Subset 2d Subset No. Symbol
3 P2 (x, y, z) ( x¯, y, z¯ ) 1 P1
4 P21 (x, y, z) ( x¯x+ y, z¯ ) 1 P1
5 C2 (x, y, z) ( x¯, y, z¯ ) 1 P1

2.2. Stress Table

The most general stress consistent with each possible step of stress-induced symmetry lowering, minimum or compound, is listed in table 26 for all of of the noncentrosymmetric point groups. The stress conditions for the minimum steps of stress-induced symmetry lowering are equivalent, though not always identical, to those given in tables 1–25.

Table 26.

Most general stress consistent with a reduction of a noncentrosymmetric point group to any one of its stress-induced subgroups

graphic file with name jres-69A-461-t001.jpg
graphic file with name jres-69A-461-t002.jpg

Large square brackets indicate same subgroup in equivalent setting.

3. References

  • [1].Wachtman J. B. Jr., and Peiser H. S., Splitting of a set of equivalent sites in centrosymmetric space groups into subsets under homogeneous stress, J. Res. NBS 69A (Phys. and Chem.) No. 2, 193–207 (1965). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Peiser H. S. and Wachtman J. B. Jr., Reduction of crys-tallographic point groups to subgroups by homogeneous stress, J. Res. NBS 69A (Phys. and Chem.) No. 4, 309–324 (1965). [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry are provided here courtesy of National Institute of Standards and Technology

RESOURCES