Abstract
Splitting of general positions in crystals into subsets of equivalent sites under homogeneous stress has previously been given for all centrosymmetric space groups; the tabulation is here completed for all space groups by listing the results for noncentrosymmetric space groups.
1. Introduction
The present paper presents results analogous to those previously submitted for centrosymmetric space groups [1]1 and for point groups [2]; these previous papers should be consulted for detailed discussion.
It is assumed that the symmetry elements possessed by a homogeneously stressed crystal will be those common to the crystal and to the macroscopic state of stress. Application of stress either leaves a space group unaltered or lowers it to a subgroup. Such lowering can always be considered to take place in successive steps each of which leaves no group which is both a stress-induced subgroup of the initial group and a supergroup of the final group, and which is distinct from both. Each such step can be accomplished by a uniaxial stress; for the noncentrosymmetric space groups all but two of the symmetry reductions consisting; of two or more successive steps can also be accomplished by uniaxial stress. These two require biaxial stress [2]. More general stress states are, however, consistent with many of the steps of symmetry lowering; we list the most general state of stress (in terms of the modified stress ellipsoid [1]) consistent with each step. The same stress is appropriate for all space-group-to-space-group transformations associated with a given point-group-to-point-group transformation. There are 25 of the latter which are minimum steps of symmetry lowering for noncentrosymmetric point groups so that the results for the noncentrosymmetric space groups are collected into 25 corresponding tables.
A set of points all of which are equivalent in the unstressed crystal frequently splits into two or more subsets under stress. For each space group all possibilities are taken into account by considering the behavior of the general position because the behavior of each special position can be derived by specializing the general position. This process of specialization in space groups has been discussed and a technique for visualizing it in terms of stereograms of point groups has been described [2].
2. Results
2.1. Behavior of General Position
The splitting of the general position (set of equivalent sites having no symmetry) into subsets is listed in tables 1 through 25. Each table is headed by a point-group transformation which is a minimum step of symmetry lowering. Each of the space groups associated with the initial point group is listed in the table together with the coordinates of a set of sites making up a general position. The latter are collected into subsets; all of the sites in a subset remain equivalent after symmetry reduction to the final space group which is also listed. For some of the point-group reductions the final point group can occur in two or three non-equivalent orientations. These may correspond to different final space groups; in table 12, for example, one orientation corresponds to the caption at the top of the table and the other to the caption at the bottom. The stress is described by giving conditions on the axes X, Y, Z of the stress ellipsoid [1] to the crystal axes x, y, z; the stress described is the most general (i.e., least lestricted) consistent with the symmetry reduction. In many of the tables a single stress specification suffices for all space groups, but in some (table 10, for example) the stress must be specified for each space group because it is customary to choose the axes in different orientations with respect to the point group.
Table 1.
Reduction from to
Space group of unstrained crystal, order 24 per lattice point | If stressed so that X=Y; z∥Z | Space group of strained crystal, order 8 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
215 | P3m | ( x, y, z) ( y, x, z) | ( y, z, x) ( z, y, x) | ( z, x, y) ( x, z, y) | 111 | P2m |
( , x, ) ( , y, ) | ( , y, ) ( , z, ) | ( , z, ) ( , x, ) | ||||
( , , z) ( , , z) | ( , , x) ( , , x) | ( , , y) ( , , y) | ||||
( y, , ) ( x, , ) | ( z, , ) ( y, , ) | ( x, , ) ( z, , ) | ||||
216 | F3m | ( x, y, z) ( y, x, z) | ( y, x, z) ( z, y, x) | ( z, x, y) ( x, z, y) | 119 | Im2 |
( , x, ) ( , y, ) | ( , y, ) ( , z, ) | ( , z, ) ( , x, ) | ||||
( , , z) ( , , z) | ( , , x) ( , , x) | ( , , y) ( , , y) | ||||
( y, , ) ( x, , ) | 5 z, , ) ( y, , ) | ( x, , ) ( z, , ) | ||||
217 | I3m |
( x, y, z) ( y, x, z) | ( y, z, x) ( z, y, x) | ( z, x, y) ( x, z, y) | 121 | I2m |
( , x, ) ( , y, ) | ( , y, ) ( , z, ) | ( , z, ) ( , x, ) | ||||
( , , z) ( , , z) | ( , , x) ( , , x) | ( , , y) ( , , y) | ||||
( y, , ) ( x, , ) | ( z, , ) ( y, , ) | ( x, , ) ( z, , ) | ||||
218 | P3n |
( x, y, z) (½+y,½+x,½+z) | ( y, z, x) (½+z,½+y,½+x) | ( z, x, y) (½+x,½+z,½+y) | 112 | P2c |
(½−y,½+x ½−z) ( , y, ) | (½−z,½+y,½−x) ( , z, ) | (½−x,½+z,½−y) ( , x, ) | ||||
( , , z) (½−y,½−x,½+z) | ( , , x) (½−z,½−y,½+x) | ( , , y) (½−x,½−z,½+y) | ||||
(½+z,½−x,½−y) ( x, , ) | (½+z,½−y,½−x) ( y, , ) | (½+x,½−z,½−y) ( z, , ) | ||||
219 | F3c | ( x, y, z) ( y, x,½+z) | ( y, z, x) ( z, y,½+x) | ( z, x, y) ( x, z,½+y) | 120 | Ic2 |
( , x,½−z) ( , y, ) | ( , y,½−x) ( . z, ) | ( , z,½−y) ( , x, ) | ||||
( , , z) ( . ,½+z) | ( , , x) ( , ,½+x) | ( , , y) ( , ,½+y) | ||||
( y, ,½−z) ( x, , ) | ( z, ,½−x) ( y, , ) | ( x, ,½+y) ( z, , ) | ||||
220 | I3d | ( x, y, z) (¼+y,¼+x,¼+z) | ( y, z, x) (¼+z,¼+y,¼+x) | ( z, x, y) (¼+x,¼+z,¼+y) | 122 | I2d |
(¾−y,¾+ x,¼− z) ( ,½+y, ½−z) | (¾−z,¾+y,¼−x) ( ,½+z,½−x) | (¾−x,¾+z,¼−y) ( ,½+x,½−y) | ||||
(½−x, ,½+z) (¼−y, ¾−x,¾+z) | (½−y, ,½+x) (¼−z,¾−y, ¾+x) | (½−z, ,½+y) (¼−x,¾−z,¾+y) | ||||
(¾+y, ¼−x, ¾−z) (½+x,½−y, ) | (¾+z,¼−y,¾−x) (½+y,½−z, ) | (¾+x,¼−z,¾−y) (½+z,½−x, ) |
Table 2.
Reduction from to 3m
Space group of Wlstrained crystal, order 24 per lattice point | If stressed so that X=Y; [lll]∥Z | Space group of strained crystal, order 6 per lattice point | |||||
---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | 4th Subset | No. | Symbol |
215 | P3m |
( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 160 | R3m |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( y, x, z) | ( , x, ) | ( y, , ) | ( , , z) | ||||
( z, y, x) | ( , , x) | ( , y, ) | ( z, , ) | ||||
( x, z, y) | ( x, , ) | ( , , y) | ( , z, ) | ||||
216 | F3m | ( x, y, z) | ( x, , ) | ( . y, ) | ( , , z) | 160 | R3m |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( y, x, z) | ( , x, ) | ( y, , ) | ( , , z) | ||||
( z, y, x) | ( , , x) | ( , y, ) | ( z, , ) | ||||
( x, z, y) | ( x, , ) | ( , , y) | ( , z, ) | ||||
217 | I3m | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 160 | R3m |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( y, x, z) | ( , x, ) | ( y, , ) | ( , , z) | ||||
( z, y, x) | ( , , x) | ( , y, ) | ( z, , ) | ||||
( x, z, y) | ( x, , ) | ( , , y) | ( , z, ) | ||||
218 | P3n | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 161 | R3c |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
(½+y, ½+x, ½+z) | (½−y, ½+x, ½−z) | (½+y, ½−x, ½−z) | (½−y, ½−x, ½+z) | ||||
(½+z, ½+y, ½+x) | (½−z, ½−y, ½+x) | (½−z, ½+y, ½−x) | (½+z, ½−y, ½−x) | ||||
(½+x, ½+z, ½+y) | (½+x, ½−z, ½−y) | (½−x, ½−z, ½+y) | (½−x, ½+z, ½−y) | ||||
219 | F3c | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 161 | R3c |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( y, x,½+z) | ( , x,½−z) | ( y, ,½−z) | ( , ,½+z) | ||||
( z, y, ½+x) | ( , ,½+x) | ( , y,½−x) | ( z, ,½−x) | ||||
( x, z,½+y) | ( x, ,½−y) | ( .,½+y) | ( , z,½−y) | ||||
220 | I3d | ( x, y, z) | (½+x,½−y, ) | ( ,½+y,½−z) | (½−x, ,½+z) | 161 | R3c |
( y, z, x) | (½−y, ,½+x) | (½+y,½−z, ) | ( ,½+z,½−x) | ||||
( z, x, y) | ( ,½+x,½−y) | (½−z, ,½+y) | (½+z,½−x, ) | ||||
(¼+y,¼+x,¼+z) | (¾−y,¾+x,¼−z) | (¾+y,¼−x,¾−z) | (¼−y,¾−x,¾+z) | ||||
(¼+z,¼+y,¼+x) | (¼−z,¼−y,¾+x) | (¾−z,¾+y, ¼−x) | (¾+z,¼−y,¾−x) | ||||
(¼+x,¼+z,¼+y) | (¾+x,¼−z,¾−y) | (¼−x,¾−z,¾+y) | (¾−x,¾+z,¼−y) |
Table 3.
Reduction from 432 to 422
Space group of unstrained crystal, order 24 per lattice point | If stressed so that X=Y; z∥Z | Space group of strained crystal, order 8 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crysta | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
207 | P432 | ( x, y, z) ( y, x, ) | ( y, z, x) ( z, y, ) | ( z, x, y) ( x, z, ) | 89 | P422 |
( , x, z) ( , y, ) | ( , y, x) ( , z, ) | ( , z, y) ( y, x, z) | ||||
( , , z) ( , , ) | ( , , x) ( , , ) | ( , , y) ( , , ) | ||||
( y, , z) ( x, , ) | ( z, , x) ( y, , ) | ( x, , y) ( z, , ) | ||||
208 | P4232 | ( x, y, z) (½+y,½+x,½−z) | ( y, z, x) (½+z,½+y,½−x) | ( z, x, y) (½+x,½+z,½−y) | 93 | P4222 |
(½−y,½+x,½+z) ( , y, ) | (½−z,½+y,½+x) ( . z, ) | (½−x,½+z,½+y) ( , x, ) | ||||
( , , z) (½−y,½−x,½−z) | ( , , x) (½−z,½−y,½−x) | ( , , y) (½−x,½−z,½−y) | ||||
(½+y,½−x,½+z) ( x, , ) | (½+z,½−y,½+x) ( y, , ) | (½+x,½−z,½+y) ( z, , ) | ||||
209 | F432 | ( x, y, z) ( y, x, ) | ( y, z, x) ( z, y, ) | ( z, x, y) ( x, z, ) | 97 | I422 |
( , x, z) ( , y, ) | ( , y, x) ( , z, ) | ( , z, y) ( , x, ) | ||||
( , , z) ( , , ) | ( , , x) ( , , ) | ( , , y) ( , , ) | ||||
( y, , z) ( x, , ) | ( z, , x) ( y, , ) | ( x, , y) ( z, , ) | ||||
210 | F4132 | ( x, y, z) (¼+y,¼+x,¼−z) | ( y, z, x) (¼+z,¼+y,¼−x) | ( z, x, y) (¼+x,¼+z,¼−y) | 98 | I4122 |
(¼−y,¼+x,¼+z) ( , y, ) | (¼−z,¼+y,¼+x) ( , z, ) | (¼−x,¼+z,¼+y) ( , x, y) | ||||
( , , z) (¼−y,¼−x,¼−z) | ( , , x) (¼−z,¼−y,¼−x) | ( , , y) (¼+x,¼−z,¼−y) | ||||
(¼+y,¼−x,¼+z) ( x, , ) | (¼+z,¼−y,¼+x) ( y, , ) | (¼+x,¼−z,¼+y) ( z, , ) | ||||
211 | I432 | ( x, y, z) ( y, x, ) | ( y, z, x) ( z, y, ) | ( z, x, y) ( x, z, ) | 97 | I422 |
( , x, z) ( , y, ) | ( , y, x) ( y, x, z) | ( , z, y) ( , x, ) | ||||
( , , z) ( , , ) | ( , , x) ( , , x) | ( , , y) ( , , ) | ||||
( y, , z) ( x, , ) | ( z, , x) ( y, , ) | ( x, , y) ( z, , ) | ||||
212 | P4332 | ( x, y, z) (¼+y,¾+x,¾−z) | ( y, z, x) (¼+z,¾+y,¾−x) | ( z, x, y) (¼+x,¾+z,¾−y) | 96 | P43212 |
(¾−y,¼+x,¾+z) ( ,½+y,½−z) | (¾−z,¼+y,¾+x) ( ,½+z,½−x) | (¾−x,¼+z,¾+y) ( ,½+x,½−y) | ||||
(½−x, ,½+z) (¼−y,¼−x,¼−z) | (½−y, ,½+x) (¼−z,¼−y,¼−x) | (½−z, ,½+y) (¼−x,¼−z,¼−y) | ||||
(¾+y,¾−x,¼+z) (½+x,½−y, ) | (¾+z,¾−y,¼+x) (½+y,½−z, ) | (¾+x,¾−z,¼+y) (½+z,½−x, ) | ||||
213 | P4132 | ( x, y, z) (¾+y,¾+x,¼−z) | ( y, z, x) (¾+z,¼+y,¼−x) | ( z, x, y) (¾+x,¼+ z,¼−y) | 92 | P41212 |
(¼−y,¾+x,¼+z) ( ,½+y,½−z) | (¼−z,¾+y,¼+x) ( ,½+z,½−x) | (¼−x,¾+z,¼+y) ( ,½+x,½−y) | ||||
(½−x, ,½+z) (¾−y,¾−x,¾−z) | (½−y, ,½+x) (¾−z,¾−y,¾−x) | (½−z, ,½+y) (¾−x,¾−z,¾−y) | ||||
(¼+y,¼−x,¾+z) (½+x,½−y, ) | (¼+z,¼−y,¾+x) (½+y,½−z, ) | (¼+x,¼−z,¾+y) (½+z,½−x, ) | ||||
214 | I4132 | ( x, y, z) (¼+y,¾+x,¾−z) | ( y, z, x) (¼+z,¾+y,¾−x) | ( z, x, y) (¼+x,¾+z,¾−y) | 98 | I4122 |
(¾−y,¼+x,¾+z) ( ,½+y,½−z) | (¾−z,¼+y,¾+x) ( ,½+z,½−x) | (¾−x,¼+z,¾+y) ( ,½+x,½−y) | ||||
(½−x, ,½+z) (¼−y,¼−x,¼−z) | (½−y, ,½+x) (¼−z,¼−y,¼−x) | (½−z, ,½+y) (¼−x,¼−z,¼−y) | ||||
(¾+y,¾−x,¼+z) (½+x,½−y, ) | (¾+z,¾−y,¼+x) (½+y,½−z, ) | (¾+x,¾−z,¼+y) (½+z,½−x, ) |
Table 4.
. Reduction from 432 to 32
Space group of unstrained crystal order 24 per lattice point | If stressed so that X=Y; [111] ∥ Z | Space group of strained crystal order 6 per lattice point | |||||
---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | 4th Subset | No. | Symbol |
207 | P432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , z) | 155 | R32 |
( , z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
208 | P42,32 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , , ) | ( , , y) | ( z, , ) | ||||
(½-y,½-x,½-z) | (½+y,½-x,½+z) | (½-y,½-x,½+z) | (½+y,½+x,½-z) | ||||
(½-z, ½-y, ½-x) | (½+z, ½+y, ½-x) | (½+z, ½-y, ½+x) | (½-z,½+y,½+x) | ||||
(½-x, ½-z, ½-y) | (½-x,½+z, ½y) | (½+x, ½+z, ½-y) | (½+x, ½-z,½+y) | ||||
209 | F432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, y) | ( , , y) | ( z, , ) | ||||
( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
210 | F4132 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 150 | 1132 |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, x) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
(¼-y,¼-x¼,-z) | (¼+y,¼-x,¼+z) | (¼-y, ¼+x, ¼+z) | (¼+y, ¼+x, ¼-z) | ||||
(¼-z, ¼-y, ¼-x) | (¼+z, ¼+y, ¼-x) | (¼+z, ¼-y, ¼+x) | (¼-z, ¼+y, ¼+x) | ||||
(¼-x, ¼-z, ¼-y) | (¼-x, ¼+z, ¼+y) | (¼+x, ¼ +z, ¼-y) | (¼+x, ¼-z, ¼+y) | ||||
211 | I432 | ( x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 155 | R32 |
( y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
( z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
( , , ) | ( y, , z) | ( , x, z) | ( y, x, ) | ||||
( , , ) | ( z, y, ) | ( z, , x) | ( , y, x) | ||||
( , , ) | ( , z, y) | ( x, z, ) | ( x, , y) | ||||
212 | P4332 | ( x, y, z) | (½+z, ½-y, ) | ( ,½+y,½-z) | (½,-x, , ½+z) | 155 | R32 |
( y, z, x) | (½-y, ,½+x) | ( +y, ½-z, ) | ( , ½+z, ½-x) | ||||
( z, x, y) | ( , ½+x,½-y) | (½-z, , ½+y) | (½+z, ½-x, ) | ||||
(¼-y, ¼-x, ¼-z) | (¾+y,¾-x,¼+z) | (¾-y,¼+x,¾+z) | (¼+y,¾+x,¾-z) | ||||
(¼-z,¼-y,¼-x) | (¼+z, ¾+y, ¾-x) | (¾+z,¾-y,¼+x) | (¾-z,¼+y, ¾+x) | ||||
(¼-x,¼ -z, ¼-y) | (¾-x,¼+z,¾+y) | (¼+x,¾+z,¾-y) | (¾+x,¾-z,¼+V) | ||||
213 | P4132 | ( x, y, z) | (½-x, ½-y, ) | ( ,½+y,½-z) | (½,-x, , ½+z) | 155 | K32 |
( y, z, x) | (½-y, , ½-x) | (½+y,½-z, ) | ( , +z, ½-x) | ||||
( z, x, y) | ( , ½+x, ½-y) | (½-z, ,½-y) | (½+z, ½-x, ) | ||||
(¾-y,¾-x,¾-z) | (¼+y, ¼-x, ¼+z) | (¼-y,¾+x,¼+z) | (¾+y,¼+x,¼-z) | ||||
(¾-z,¾-y,¾-x) | (¾+z,¼+y,¼-x) | (¼+z, ¼-y, ¾+x) | (¼-z,¾+y,¼+x) | ||||
(¾-x, ¾-z, ¾-y) | (¼-x, ¾+z, ¼+y) | (¾+x, ¼+z,¼-y) | (¼+x,¼ -z,¾+y) | ||||
214 | I4132 | ( x, y, z) | (½+x, ½-y, ) | ( ,½+y,½-z) | (½-x, ,½+z) | 155 | R32 |
( y, z, x) | (½-y, , ½+x) | (½+y,½-z, ) | ( ,½+z,½-x) | ||||
( z, x, y) | ( , ½+x, ½-y) | (¾-z, ,½+y) | (½+z,½-x, ) | ||||
(¼-y,¼-x,¼-z) | (¾+y, ¾-x, ¼+z) | (¾-y,¼+x,¾+z) | (¼+y,¾+x,¾-z) | ||||
(¼-z,¼-y,¼-x) | (¼+z, ¾+y, ¾-x) | (¾+z, ¾-y,¼+ x) | (¾-z,+,¼-y,¾+x) | ||||
(¼-x,¼-z,¼-v) | (¾-x, ¼+z,¾+y) | (¼+x,¾+z,¾-y) | (¾+x,¾-z,¼+y) |
Table 5.
Reduction from 23 to 222
Space group of unstrained crystal, order 12 per lattice point | If stressed so that x, y, z ∥X, Y, Z, any permutation | Space group of strained crystal, order 4 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
195 | P23 | ( x, y, z) | ( y, z, x) | ( z, x, y) | 16 | P222 |
( x, , ) | ( y, , ) | ( z, , ) | ||||
( , y, ) | ( , z, ) | ( , x, ) | ||||
( , , z) | ( , , x) | ( , , y) | ||||
196 | F23 | ( x, y, z) | ( y, z, x) | ( z, x, y) | 22 | F222 |
( x, , ) | ( y, , ) | ( z, , ) | ||||
( , y, ) | ( , z, ) | ( , x, ) | ||||
( , , z) | ( , , x) | ( , , y) | ||||
197 | I23 | ( x, y, z) | ( y, z, x) | ( z, x, y) | 23 | I222 |
( x, , ) | ( y, , ) | ( z, , ) | ||||
( , y, ) | ( , z, ) | ( , x, ) | ||||
( , , z) | ( , , x) | ( , , y) | ||||
198 | P213 | ( x, y, z) | ( y, z, x) | ( z, x, y) | 19 | P212121 |
(½+x, ½−y, ) | (½+y, ½−z, ) | (½+z, ½−x, ) | ||||
( , ½+y, ½−z) | ( , ½+z, ½−x) | ( , ½+x, ½−y) | ||||
(½−x, , ½+z) | (½−y, , ½+x) | (½−z, , ½+y) | ||||
199 | 1213 | ( x, y, z) | ( y, z, x) | ( z, x, y) | 24 | I212121 |
(½+x, ½−y, ) | (½+y, ½−z, ) | (½+z, ½−x, ) | ||||
( , ½+y, ½−z) | ( , ½+z, ½−x) | ( , ½+x, ½−y) | ||||
(½−x, , ½+z) | (½−y, , ½+x) | (½−z, , ½+y) |
Table 6.
Reduction from 23 to 3
Space group of unstrained crystal, order 12 per lattice point | If stressed so that X = Y; [111] ∥Z | Space group of strained crystal, order 3 per lattice point | |||||
---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | 4th Subset | No. | Symbol |
195 | P23 | (x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 146 | R3 |
(y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
(z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
196 | F23 | (x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 146 | R3 |
(y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
(z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
197 | I23 | (x, y, z) | ( x, , ) | ( , y, ) | ( , , z) | 146 | R3 |
(y, z, x) | ( , , x) | ( y, , ) | ( , z, ) | ||||
(z, x, y) | ( , x, ) | ( , , y) | ( z, , ) | ||||
198 | P213 | (x, y, z) | (½+x, ½−y, ) | ( , ½+y, ½−z) | (½−x, , ½+z) | 146 | R3 |
(y, z, x) | (½−y, , ½+x) | (½+y, ½−z, ) | ( , ½+z, ½−x) | ||||
(z, x, y) | ( , ½+x, ½−y) | (½−z, , ½+y) | (½+z, ½−x, ) | ||||
199 | I213 | (x, y, z) | (½+x, ½−y, ) | ( , ½+y, ½−z) | (½−x, , ½+z) | 146 | R3 |
(y, z, x) | (½−y, , ½+x) | (½+y, ½−z, ) | ( , ½+z, ½−x) | ||||
(z, x, y) | ( , ½+x, ½−y) | (½−z, , ½+y) | (½+z, ½−x, ) |
Table 7.
Reduction from to mm2
Space group of unstrained crystal, order 12 per lattice point | If stressed so that y and z ∥ any two of X, Y, and Z | Space group of strained crystal, order 4 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
187 | Pm2 | (x, y, z) | (,x-y, z) | (y-x,, z) | 38 | Amm2 |
(x,x—y, z) | (, , z) | (y-x,y, z) | ||||
(x, y, ) | (,x-y, ) | (y-x,, ) | ||||
(x,x—y, ) | (, , ) | (y-x,y, ) | ||||
188 | Pc2 | (x, y, z) | (,x-y, z) | (y-x,, z) | 40 | Ama2 |
(x,x-y,½-z) | (y, , ½-z) | (y-x,y,½-z) | ||||
(x, y, ½-z) | (,x-Y,½-z) | (y-x,,½-z) | ||||
(x,x— y, ) | (, , ) | (y-x,y, ) | ||||
189 | P2m | (x, y, z) | (,x-y, z) | (y-x,, z) | 38 | Amm2 |
(x, y-x, z) | (y, x, z) | (x-y, y, z) | ||||
(x, y, ) | (,x-y, ) | (y-x,, ) | ||||
(,y-x, ) | (y, x, ) | (x-y,, ) | ||||
190 | P2e | (x, y, z) | (, x-y, z) | (y-x,, z) | 40 | Ama2 |
(,y-x,½+z) | (y, x, ½+z) | (x-y, y, ½+z) | ||||
(x, y, ½-z) | (,x-y, ½-z) | (y-x,,½-z) | ||||
(x,y-x, ) | (y, x, ) | (x-y,, ) |
Table 8.
Reduction from 6mm to mm2
Space group of unstraincd crystal, order 12 per lattice point | If stressed so that y and z ∥ any two of X, Y, and Z | Space group of strained crystal, order 4 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
183 | P6mm | (x, y, z) | (,x-y, z) | (y-x,, z) | 35 | Cmm2 |
(x,x-y, z) | (, , z) | (y-x,y, z) | ||||
(, , z) | (y,y-x, z) | (x-y,x, z) | ||||
(,y—x, z) | (y, x, z) | (x-y,, z) | ||||
184 | P6cc | (x, y, z) | (,x-y, z) | (y-x,, z) | 37 | Ccc2 |
(x,x-y,½+z) | (, ,½+z) | (y-x,y,½+z) | ||||
(, , z) | (y,y-x, z) | (x-y,x, z) | ||||
(,y—x,½+z) | (y, x,½+z) | (x-y,,½+z) | ||||
185 | P63cm | (x, y, z) | (,x-y, z) | (y-x,, z) | 36 | Cmc21 |
(x,x-y,½+z) | (, ,½+z) | (y-x,y,½+z) | ||||
(, ,½+z) | (y,y-x,½+z) | (x-y,x,½+z) | ||||
(,y—x, z) | (y, x, z) | (x-y,, z) | ||||
186 | P63mc | (x, y, z) | (,x-y, z) | (y-x,, z) | 36 | Cmc21 |
(x,x—y, z) | (, , z) | (y-x,y, z) | ||||
(, ,½+z) | (y,y-x,½+z) | (x-y,x,½+z) | ||||
(,y—x,½+z) | (y, x,½+z) | (x-y,,½+z) |
Table 9.
Reduction from 622 to 222
Space group of unstrained crystal, order 12 per lattice point | If stressed so that y and z ∥ any two of X, Y, and Z | Space group of strained crystal, order 4 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crysta | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
177 | P622 | (x, y, z) | (,x-y, z) | (y-x,, z) | 21 | C222 |
(x,x-y, ) | (, , ) | (y-x,y, ) | ||||
(, , z) | (y, y -x, z) | (x-y,x, z) | ||||
(, y-x, ) | (y, x, ) | (x- y, , ) | ||||
178 | P6122 | (x, y, z) | (,x-y,⅓+z) | (y-x,,⅔+z) | 20 | C2221 |
(x,x-y,⅙-z) | (, ,⅚-z) | (y-x,y,½-z) | ||||
(, ,½+z) | (y, y -x,⅚+z) | (x-y,x,⅙+z)) | ||||
(, y-x,⅔-z) | (y x,⅓-z) | (x- y, , ) | ||||
179 | P6522 | (x, y, z) | (,x-y,⅔+z) | (y-x,,⅓+z) | 20 | C2221 |
(x,x-y,⅚-z) | (, ,⅙-z) | (y-x,y,½-z) | ||||
(, ,½+z) | (y, y -x,⅙+z) | (x-y,x,⅚+z) | ||||
(, y-x,⅓-z) | (y x,⅔-z) | (x- y, , ) | ||||
180 | P6222 | (x, y, z) | (,x-y,⅔+z) | (y-x,,⅓+z) | 21 | C222 |
(x,x-y,⅓-z) | (, ,⅔-z) | (y-x,y, ) | ||||
(, , z) | (y, y -x,⅔+z) | (x-y,x,⅓+z) | ||||
(, y-x,⅓-z) | (y x,⅔-z) | (x- y, , ) | ||||
181 | P6422 | (x, y, z) | (,x-y,⅓+z) | (y-x,,⅔+z) | 21 | C222 |
(x,x-y,⅔-z) | (, ,⅓-z) | (y-x,y, ) | ||||
(, , z) | (y, y -x,⅓+z) | (x-y,x,⅔+z) | ||||
(, y-x,⅔-z) | (y x,⅓-z) | (x- y, , ) | ||||
182 | P6322 | (x, y, z) | (,x-y, z) | (y-x,, z) | 20 | C2221 |
(x,x-y,½-z) | (, ,½-z) | (y-x,y,½-z) | ||||
(, ,½+z) | (y, y -x,½+z) | (x-y,x,½+z) | ||||
(, y-x, ) | (y, x, ) | (x- y, , ) |
Table 10.
Reduction from to mm2
Space group of unstrained crystal, order 8 per lattice point | If stressed so that | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 4 per lattice point | |||||
---|---|---|---|---|---|---|---|---|
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | |||
111 | P2m | [10],
[110],z ∥ X, Y, Z, any permutation. |
(x, y, z) | ( y, x, z) | ( x, , ) | (y, , ) | 35 | Cmm2 |
(, , z) | (, , z) | ( , y, ) | (, x, ) | |||||
112 | P2c | Do. | (x, y, z) | ( y, x,½+ z) | ( x, ,½-z) | (y, , ) | 37 | Ccc2 |
(, , z) | (, ,½+z) | ( , y,½-z) | (, x, ) | |||||
113 | P21m | Do, | (x, y, z) | (½+y,½+x, z) | (½+x,½-y, ) | (y, , ) | 35 | Cmm2 |
(, , z) | (½-y,½-x, z) | (½-x,½+y, ) | (, x, ) | |||||
114 | P21c | Do, | (x, y, z) | (½+y,½+x,½+ z) | (½+x,½-y,½-z) | (y, , ) | 37 | Ccc2 |
(, , z) | (½-y,½-x,½+z) | (½-x,½+y,½-z) | (, x, ) | |||||
115 | Pm2 | x, y, z ∥. X, Y, Z, any permutation. | (x, y, z) | ( x, , z) | ( y, x, ) | (y, , ) | 25 | Pmm2 |
(, , z) | ( , y, z) | (, , ) | (, x, ) | |||||
116 | Pc2 | Do. | (x, y, z) | ( x, ,½+z) | ( y, x,½-z) | (y, , ) | 27 | Pcc2 |
(, , z) | ( , y,½+z) | (, ,½-z) | (, x, ) | |||||
117 | P4b2 | Do. | (x, y, z) | (½+x,½-y, z) | (½+y,½+x, ) | (y, , ) | 32 | Pba2 |
(, , z) | (½-x,½-y, z) | (½-y,½-x, ) | (, x, ) | |||||
118 | Pn2 | Do. | (x, y, z) | (½+x,½-y,½+z) | (½+y,½+x,½-z) | (y, , ) | 34 | Pnn2 |
(, , z) | (½-x,½+y,½+z) | (½-y,½-x,½-z) | (, x, ) | |||||
119 | Im2 | Do. | (x, y, z) | ( x, , z) | ( y, x, ) | (y, , ) | 44 | Imm2 |
(, , z) | ( , y, z) | (, , ) | (, x, ) | |||||
120 | Ic2 | Do. | (x, y, z) | ( x, ,½+z) | ( y, x,½-z) | (y, , ) | 45 | Iba2 |
(, , z) | ( , y,½+z) | (, ,½-z) | (, x, ) | |||||
121 | I2m | [10]. [110], z ∥ X, Y, Z, any permutation. | (x, y, z) | ( y, x, z) | ( x, , ) | (y, , ) | 42 | Fmm2 |
(, , z) | (, , z) | ( , y, ) | (, x, ) | |||||
122 | I2d | Do. | (x, y, z) | ( y,½+x,¼+ z) | ( x,½-y,¼-z) | (y, , ) | 43 | Fdd2 |
(, , z) | ( ,½-x,¼+ z) | ( ,½+y,¼-) | (, x, ) |
Table 11.
Reduction from to 222
Space group of unstrained crystal, order 8 per lattice point | If stressed so that | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 4 per lattice point | |||||
---|---|---|---|---|---|---|---|---|
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | |||
111 | P2m | x, y, z II X, Y, Z, any permutation. | (x, y, z) | ( x, , ) | ( y, x, z) | (y, , ) | 16 | P222 |
(, , z) | (, y, ) | ( , , z) | (, x, ) | |||||
112 | P2c | Do. | (x, y, z) | ( x, ,½-z) | ( y, x,½+z) | (y, , ) | 16 | P222 |
(, , z) | (, y,½-z) | ( , ,½+z) | (, x, ) | |||||
113 | P21m | Do. | (x, y, z) | (½+x,½-y, ) | (½+y,½+x, z) | (y, , ) | 18 | P21212 |
(, , z) | (½-x,½+y, ) | (½-y,½-x, z) | (, x, ) | |||||
114 | P21C | Do. | (x, y, z) | (½+x,½-y,½-z) | (½+y,½+x,½+z) | (y, , ) | 18 | P21212 |
(, , z) | (½-x,½+y,½-z) | (½-y,½-x,½+z) | (, x, ) | |||||
115 | Pm2 | [10], [110], z ∥ X, Y, Z, any permutation. | (x, y, z) | ( y, x, ) | ( x, , z) | (y, , ) | 21 | C222 |
(, , z) | ( , , ) | (, y, z) | (, x, ) | |||||
116 | Pc2 | Do. | (x, y, z) | ( y, x,½-z) | ( x, ,½+z) | (y, , ) | 21 | C222 |
(, , z) | ( , ,½-z) | (, y,½+z) | (, x, ) | |||||
117 | Pb2 | Do. | (x, y, z) | ( ½+y,½+x, ) | (½+x,½-y, z) | (y, , ) | 21 | C222 |
(, , z) | ( ½-y,½-x, ) | (½-x,½-y, z) | (, x, ) | |||||
118 | Pn2 | Do. | (x, y, z) | ( ½+y,½+x,½-z) | (½+x,½-y,½+z) | (y, , ) | 21 | C222 |
(, , z) | ( ½-y,½-x,½-z) | (½-x,½+y,½+z) | (, x, ) | |||||
119 | 1m2 | Do. | (x, y, z) | ( y, x, ) | ( x, , z) | (y, , ) | 22 | F222 |
(, , z) | ( , , ) | (, y, z) | (, x, ) | |||||
120 | 1c2 | Do. | (x, y, z) | ( y, x,½-z) | ( x, ,½+z) | (y, , ) | 22 | F222 |
(, , z) | ( , ,½-z) | (, y,½+z) | (, x, ) | |||||
121 | I2m | x, y, z ∥ X, Y, Z, any permutation. | (x, y, z) | ( x, , ) | ( y, x, z) | (y, , ) | 23 | I222 |
(, , z) | (, y, ) | ( , , z) | (, x, ) | |||||
122 | I2d | Do. | (x, y, z) | ( x,½-y,¼-z) | ( y,½+x,¼+z) | (y, , ) | 24 | I212121 |
(, , z) | (,½-y,¼-z) | (,½-x,¼+z) | (, x, ) |
Table 12.
Reduction from 4mm to mm2
Space group of unstrained crystal, order 8 per lattice point | If stressed so that x, y, z ∥ X, Y, Z, any permutation | Space group of strained crystal, order 4 per lattice point | |||||||
---|---|---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | ||||
99 | P4mm | (x, y, z) | ( x, , z) | ( y, x, z) | ( y, , z) | 25 | Pmm2 | 35 | Cmm2 |
(, , z) | ( , y, z) | ( , , z) | ( , x, z) | ||||||
100 | P4bm | (x, y, z) | (½+x,½-y, z) | (½+y,½+x, z) | ( y, , z) | 32 | Pba2 | 35 | Cmm2 |
(, , z) | (½-x,½+y, z) | (½-y,½-x, z) | ( , x, z) | ||||||
101 | P42cm | (x, y, z) | ( x, ,½+z) | ( y, x, z) | ( y, ,½+z) | 27 | Pcc2 | 35 | Cmm2 |
(, , z) | ( , y,½+z) | ( , , z) | ( , x,½+z) | ||||||
102 | P42nm | (x, y, z) | (½+x,½-y,½+z) | ( y, x, z) | (½+y,½-x,½+z) | 34 | Pnn2 | 35 | Cmm2 |
(, , z) | (½-x,½-y,½+z) | ( , , z) | (½-y,½+x,½+z) | ||||||
103 | P4cc | (x, y, z) | ( x, ,½+z) | ( y, x,½+z) | ( y, , z) | 27 | Pcc2 | 37 | Ccc2 |
(, , z) | ( , y,½+z) | ( , ,½+z) | ( , x, z) | ||||||
104 | P4nc | (x, y, z) | (½+x,½-y,½+z) | (½+y,½+x,½+z) | ( , x,½+z) | 31 | Pnn2 | 37 | Ccc2 |
(, , z) | (½-x,½-y,½+z) | (½-y,½-x,½+z) | ( , x, z) | ||||||
105 | P42mc | (x, y, z) | ( x, , z) | ( y, x,½+z) | ( y, ,½+z) | 25 | Pmm2 | 37 | Ccc2 |
(, , z) | ( , y, z) | ( , ,½+z) | ( , x,½+z) | ||||||
106 | P42bc | (x, y, z) | (½+x,½-y, z) | (½+y,½+x,½+z) | ( y, ,½+z) | 32 | Pb.2 | 37 | Ccc2 |
(, , z) | (½-x,½+y, z) | (½-y,½-x,½+z) | ( , x,½+z) | ||||||
107 | I4mm | (x, y, z) | ( x, , z) | ( y, x, z) | ( y, , z) | 44 | Imm2 | 42 | Fmm2 |
(, , z)) | ( , y, z) | ( , , z) | ( , x, z) | ||||||
108 | 14cm | (x, y, z) | (½+x,½-y, z) | (½+y,½+y, z) | ( y, , z) | 45 | Iba2 | 42 | Fmm2 |
(, , z) | (½-x,½+y, z) | (½-y,½-y, z) | ( , x, z) | ||||||
109 | I41md | (x, y, z) | ( x, , z) | ( y,½+x,¼+z) | ( y,½-x,¼+z) | 44 | Imm2 | 43 | Fdd2 |
(, , z) | ( , y, z) | ( , ½-x,¼+z) | ( , ½+x,¼+z) | ||||||
110 | I41cd | (x, y, z) | ( x, ,½+z) | ( y,½+x,⅔+z) | ( y,½-x,¼+z) | 45 | Iba2 | 43 | Fdd2 |
(, , z) | ( , y,½+z) | ( , ½-x,⅔+z) | ( , ½+x,¼+z) | ||||||
No. | Symbol | 1st Subset | 2d Subset | 1st Subset | 2d Subset | No, | Symbol | ||
Space group of unstrained crystal, order 8 per lattice point | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 4 per lattice point | |||||||
If stressed so that [l0], [110], z ∥ X,Y, Z, any permutation |
Table 13.
Reduction from 422 to 222
Space group of unstrained crystal. order 8 per lattice point | If stressed so that x, y, z ∥ X, Y, Z, any permutation | Space group of strained crystal. order 4 per lattice point | |||||||
---|---|---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | ||||
89 | P422 | (x,y,
z) (, , z) |
( x, ,
) ( , y, ) |
(y,x, ) (,, ) |
( y, ,
z) ( , x, z) |
16 | P222 | 21 | C222 |
90 | P4212 | (x,y,
z) (, z) |
(½+x,
½-y,) (½-x, ½+y,) |
(y,x, ) (,, ) |
(½+y,
½-x,
z) (½-y, ½+x, z) |
18 | P21212 | 21 | C222 |
91 | P4122 | (x,y, z) (x , ½+ z) |
( x, ,
½-z) ( , y, ) |
(y,x,¾-
z) (,,¼- z) |
( y, ,¾+
z) ( , x,¼+ z) |
17 | P2221 | 20 | C2221 |
92 | P41212 | (x,y,
z) (, ½+ z) |
(½+x, ½-y,
¾-z) (½-x, ½+y, ¼-z) |
(y,x, ) (,, ½-z) |
(½+y, ½-x,
¾-z) (½-y, ½+x, ¼-z) |
19 | P212121 | 20 | C2221 |
93 | P4222 | (x,y,
z) (, z) |
( x, ,
) ( , y, ) |
(y,x,½-z) (,,½-z) |
( y, ,½+z) ( , x,½+z) |
16 | P222 | 21 | C222 |
94 | P42212 | (x,y,
z) (,, z) |
(½+x, ½-y,
½-z) (½-x, ½+y, ½-z) |
(y,x, ) (,, ) |
(½+y, ½-x,
½+z) (½-y, ½+x, ½+z) |
18 | P21212 | 21 | C222 |
95 | P4322 | (x,y,
z) (, ½+ z) |
( x, ,
½-z) ( , y, ) |
(y,x,¾-
z) (,,¼- z) |
( y, ,¼+
z) ( , x,¾+ z) |
17 | P2221 | 20 | C2221 |
96 | P43212 | (x,y,
z) (, ½+ z) |
(½+x, ½-y,
¼-z) (½-x, ½+y, ¾-z) |
(y,x, ) (,,½-z) |
(½+y, ½-x,
¼-z) (½-y, ½+x, ¾-z) |
19 | P212121 | 20 | C2221 |
97 | 1422 | (x,y,
z) (, z) |
( x, ,
) ( , y, ) |
(y,x, ) (,, ) |
( y, ,
z) ( , x, z) |
23 | I222 | 22 | F222 |
98 | 14122 | (x,y,
z) (, z) |
( x,
½-y,
¼-z) ( , ½+y, ¼-z) |
(y,x, ) (,, ) |
( y,
½+x,
¼+z) ( , ½+x, ¼+z) |
24 | I212121 | 22 | F222 |
No. | Symbol | 1st Subset | 2d Subset | 1st Subset | 2d Subset | No. | Symbol | ||
Space group of unstrained crystal, order 8 per lattice point | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 4 per lattice point | |||||||
If stressed so that [10], [110], z ∥ X, Y, Z, any permutation |
Table 14.
Reduction from 6 to 2
Space group of unstrained crystal, order 6 per lattice point | If stressed so that z ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
168 | P6 | (x,y,
z) (, z) |
(,x-y, z) (y,y-x, z) |
(y-x,, z) (x-y,x, z) |
3 | P2 |
169 | P61 | (x,y,
z) (, ½+ z) |
(,x-y,
⅓+ z) (y,y-x,⅚+ z) |
(y-x,,
⅔+z) (x-y,x,⅙+ z) |
4 | P21 |
170 | P65 | (x,y,
z) (, ½+ z) |
(,x-y,⅔+z) (y,y-x,⅙+ z) |
(y-x,,
⅓+
z) (x-y,x,⅚+ z) |
4 | P21 |
171 | P62 | (x,y,
z) (, z) |
(,x-y,
⅔+z) (y,y-x, ⅔+z) |
(y-x,,
⅓+ z) (x-y,x, ⅓+ z) |
3 | P2 |
172 | P64 | (x,y,
z) (, z) |
(,x-y,
⅓+ z) (y,y-x, ⅓+ z) |
(y-x,,
⅔+z) (x-y,x, ⅔+z) |
3 | P2 |
173 | P63 | (x,y,
z) (, ½+ z) |
(,x-y, z) (y,y-x, ½+ z) |
(y-x,, z) (x-y,x, ½+ z) |
4 | P21 |
Table 15.
Reduction from to m
Space group of unstrained crystal, order 6 per lattice point | If stressed so that z ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
174 | P | (x, y,
z) (x, y, z) |
(,
x−y,
z) (, x−y, ) |
(y−x,
,
z) (y−x, , ) |
6 | Pm |
Table 16.
Reduction from 3m to m
Space group of unstrained crystal, order 6 per lattice point | If stressed so that | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 2 per lattice point | ||||
---|---|---|---|---|---|---|---|
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol | |
156 | P3m1 | [110] ǁ X, Y, or Z | (x,y, z) | (y–x, , z) | ( ,x-y, z) | 8 | Cm |
(y,x, z) | ( x,x–y, z) | (y-x, y, z) | |||||
157 | P31m | [10] ǁ X, Y, or Z | (, , z) | (y–x, , z) | ( ,x-y, z) | 8 | Cm |
(x,y, z) | ( ,y-x, z) | (x-y, , z) | |||||
158 | P3c1 | [110] ǁ X, Y, or Z | (x, y, z) | (y–x, , z) | ( ,x-y, z) | 9 | Cc |
(,,½+z) | ( x,x-y, ½ +z) | (y-x, y, ½ +z) | |||||
159 | P31c | [10] ǁ X, Y, or Z | (x, y, z) | (y-x, , z) | ( ,x-y, z) | 9 | Cc |
(y,x, ½+z) | (,y–x, ½+z) | (x-y, , ½ +z) | |||||
160 | R3m hex. axes | [110] ǁ X, Y, or Z | (x,y, z) | (y–x, , z) | ( ,x-y, z) | 8 | Cm |
(,, z) | ( x,x-y, z) | (y-x, y, z) | |||||
161 | R3c hex. axes | [110] ǁ X, Y, or Z | (x, y, z) | (y-x, , z) | ( ,x-y, z) | 9 | Cc |
(,,½+z) | ( x, x-y, ½+z) | (y-x, y, ½ +z) |
Table 17.
Reduction from 32 to 2
Space group of unstrained crystal, order 6 per lattice point | If stressed so that | Coordinates referred to axes of unstrained crystal | Space group of strained crystal, order 2 per lattice point | ||||
---|---|---|---|---|---|---|---|
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol | |
149 | P312 | [10] ǁ X, Y, or Z | (x,y, z) | (,x-y, z) | (y—x, , z) | 5 | C2 |
(, , ) | (y-x, y, ) | ( x,x-y, ) | |||||
150 | P321 | [110] ǁ X, Y, or Z | (x, y, z) | (,x-y, z) | (y—x, , z) | 5 | C2 |
(y,x, ) | (x-y, , z) | (, y-x, z) | |||||
151 | P3112 | [10] ǁ X, Y, or Z | (x.y, z) | (,x-y, ⅓+z) | (-x, , ⅔+z) | 5 | C2 |
(, , ⅔-z) | (y-x, y, ⅓-z) | ( x, x—y, z) | |||||
152 | P3121 | [110] ǁ X, Y, or Z | (x, y, z) | (,x-y,⅓+z) | (y-x, , ⅔+z) | 5 | C2 |
(y,x, z) | (x-y, y, ⅔-z) | ( x,y-x, ⅓-z) | |||||
153 | P3212 | [10 ǁ X, Y, or Z | (x.y, z) | (,x-y, ⅔+z) | (y-x, , ⅓+z) | 5 | C2 |
(, , ⅓-z) | (y-x, y, ⅔-z) | ( x,x-y, z) | |||||
154 | P3221 | [110] ǁ X, Y, or Z | (x, y, z) | (, x-y, ⅔+z) | (y-x, , ⅓+z) | 5 | C2 |
(y,x, ) | (x-y, , ⅓-z) | (,y-x, ⅔-z) | |||||
155 hex. |
R32 axes |
[110] ǁ X, Y, or Z | (x, y, z) | (,x-y, z) | (y-x, , z) | 5 | C2 |
(y,x, z) | (x-y, y, ) | (, y—x, z) |
Table 18.
Reduction from 4 to 2
Space group of unstrained crystal, order 4 per lattice point | If stressed so that z ∥ X, Y, or Z | Space group of strained crystal. order 2 per lattice point | |||
---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
75 | P4 | (x,y, z) | (, x, z) | 3 | P2 |
(, , z) | (y, , z) | ||||
76 | P41 | (x, y, z) | (, x, ¼+z) | 4 | P21 |
(,y, ½+z) | (y, , ¾+z) | ||||
77 | P42 | (x, y, z) | (, x, ½+z) | 3 | P2 |
(x, y, z) | (y, , ½+z) | ||||
78 | P43 | (x, y, z) | (, x, ¾+z) | 4 | P21 |
(x, , ½+z) | (y, , ¼+2) | ||||
79 | 14 | (x, y, z) | (, x, z) | 5 | C2 |
(, ,, z) | (y, , z) | ||||
80 | 141 | (x, y, z) | (, ½+x, ¼+z) | 5 | C2 |
(, , z) | (y, ½-x, ¼+z) |
Table 19.
Reduction from to 2
Space group of unstrained crystal, order 4 per lattice point | If stressed so that z ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point | |||
---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
81 | P | (x, y, z) | (,x, ) | 3 | P2 |
(, , z) | (y, , ) | ||||
82 | I | (x, y, z) | (,x, ) | 5 | C2 |
(, , z) | (y, , ) |
Table 20.
Reduction from mm2 to m
Space group of unstrained crystal, order 4 per lattice point | If stressed so that x ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point | If stressed so that y ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point | |||||
---|---|---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | Coordinates referred to axes of unstrained crystal | ||||||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
25 | Pmm2 | ( x, y, z) | ( x, , z) | 6 | Pm | ( x, y, z) | ( x, y, z) | 6 | Pm |
( , y, z) | ( , , z) | ( x, y, z) | ( x, y, z) | ||||||
26 | Pmc21 | ( x, y, z) | ( x, , ½+z) | 6 | Pm | x, y, z) | ( , y, z) | 7 | Pc |
( , y, z) | ( x, , ½+z) | ( x, , ½+z) | ( , , ½+z) | ||||||
27 | Pcc2 | ( x, y, z) | ( x, , ½+z) | 7 | Pc | ( x, y, z) | ( , y, ½+z) | 7 | Pc |
( , y, ½+z) | ( , , z) | ( x, , ½+z) | ( , , z) | ||||||
28 | Pma2 | ( x, y, z) | (½+x, , z) | 6 | Pm | ( x, y, z) | (½-x, y, z) | 7 | Pc |
(½-x, y, z) | ( , , z) | (½+x, , z) | ( , , z) | ||||||
29 | Pca21 | ( x, y, z) | (½+x, , z) | 7 | Pc | ( x, y, z) | (½-x, y, ½+z) | 7 | Pc |
(½-x, y, ½+z) | ( , , ½+z) | (½+x, , z) | ( , , ½+z) | ||||||
30 | Pnc2 | ( x, y, z) | (, ½-y, ½+z) | 7 | Pc | ( x, y, z) | ( , ½+y, ½+z) | 7 | Pc |
( , ½+y, ½+z) | ( , , z) | ( x, ½-y, ½+z) | ( , , z) | ||||||
31 | Pmn21 | ( x, y, z) | (½+x, , ½+z) | 6 | Pm | ( x, y, z) | ( , y, z) | 7 | Pc |
( x, y, z) | (½-x, , ½+z) | (½+x, , ½+z) | (½-x, , ½+z) | ||||||
32 | Pba2 | ( x, y, z) | (½+x, ½-y, Z) | 7 | Pc | ( x, y, z) | (½-x, ½+y, z) | 7 | Pc |
(½-x, ½+y, z) | ( , , z) | (½+x, ½-y, z) | ( , , z) | ||||||
33 | Pna21 | ( x, y, z) | (½+x, ½-y, z) | 7 | Pc | ( x, y, z) | (½-x, ½+y, ½+z) | 7 | Pc |
(½-x, ½+y, ½+z) | ( , , ½+z) | (½+x, ½-y, Z) | ( , , ½+z) | ||||||
34 | Pnn2 | ( X, y, z) | (½+x, ½-y, ½+z) | 7 | Pc | ( X, y, z) | (½-x, ½+y, ½+z) | 7 | Pc |
(½-x, ½+y,½+z) | ( , , z) | (½+x, ½-y, ½+z) | ( , , z) | ||||||
35 | Cmm2 | ( X, y, z) | ( x, , z) | 8 | Cm | ( x, y, z) | ( , y, z) | 8 | Cm |
( , y, z) | ( , , z) | ( x, , z) | ( , , z) | ||||||
36 | Cmc21 | ( x, y, z) | ( x, , ½+z) | 8 | Cm | ( x, y, z) | ( , y, z) | 9 | Cc |
( , y, z) | ( , , ½+z) | ( x, , ½+z) | ( , , ½+z) | ||||||
37 | Ccc2 | ( x, y, z) | ( x, , ½+z) | 9 | Cc | ( x, y, z) | ( , y, ½+z) | 9 | Cc |
( , y, ½+z) | ( , , z) | ( x, , ½+z) | ( , , z) | ||||||
38 | Amm2 | ( x, y, z) | ( x, , z) | 6 | Pm | ( x, y, z) | ( , y, z) | 8 | Cm |
( , y, z) | ( , , z) | ( x, , z) | ( , , z) | ||||||
39 | Abm2 | ( x, y, z) | ( x, ½-y, z) | 7 | Pc | ( x, y, z) | ( , ½+y, z) | 8 | Cm |
( , ½+y, z) | ( , , z) | ( x, ½-y, z) | ( , , z) | ||||||
40 | Ama2 | ( x, y, z) | (½+x, , z) | 6 | Pm | ( x, y, z) | (½-x, y, z) | 9 | Cc |
(½-x, y, z) | ( , , z) | (½+x, , z) | ( , , z) | ||||||
41 | Aba2 | ( x, y, z) | (½+x, ½-y, z) | 7 | Pc | ( x, y, z) | (½-x, ½+y, z) | 9 | Cc |
(½-x, -+y, z) | ( , , z) | (½+x, ½-y, z) | ( , , z) | ||||||
42 | Fmm2 | ( x, y, z) | ( x, , z) | 8 | Cm | ( x, y, z) | ( , y, z) | 8 | Cm |
( , y, z) | ( , , z) | ( x, , z) | ( , , z) | ||||||
43 | Fdd2 | ( x, y, z) | (¼+x, ¼-y, ¼+z) | 9 | Cc | ( x, y, z) | (¼-x, ¼+y, ¼+z) | 9 | Cc |
(¼-x, ¼+y, ¼+z) | ( , , z) | (¼+x, ¼-y, ¼+z) | ( , , z) | ||||||
44 | Imm2 | ( x, y, z) | ( x, , z) | 8 | Cm | ( x, y, z) | ( , y, z) | 8 | Cm |
( , y, z) | ( , , z) | ( x, , z) | ( , , z) | ||||||
45 | Iba2 | ( x, y, z) | ( x, , ½+z) | 9 | Cc | ( x, y, z) | ( , y, ½+z) | 9 | Cc |
( , y, ½+z) | ( , , z) | ( x, , ½+z) | ( , , z) | ||||||
46 | Ima2 | ( x, y, z) | (½+x, , z) | 8 | Cm | ( x, y, z) | (½-x, y, z) | 9 | Cc |
( ½−x, y, z) | ( , , z) | ( ½+x, , z) | ( , , z) |
Table 21.
Reduction from mm2 to 2
Space group of unstrained crystal, order 4 per lattice point | If ,tressed so that z ∥ X. Y, or Z | Space group of strained crystal, order 2 per lattice point | |||
---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | |||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
25 | Pmm2 | ( x,y,
z) ( ,, z) |
( x,
,
z) ( , y, z) |
3 | P2 |
26 | Pmc21 | ( x,y,
z) ( ,, ½+z) |
(
x, ,
½+z) ( , y, z) |
4 | P21 |
27 | Pcc2 | ( x,y,
z) ( ,, z) |
( x, ,
½+z) ( , y, ½+z) |
3 | P2 |
28 | Pma2 | ( x,y,
z) ( ,, z) |
(½+x, , z)
(½-x, y, z) |
3 | P2 |
29 | Pca21 | ( x,y,
z) ( ,, ½+z) |
(½+x, , z)
(½-x, y, ½+z) |
4 | P21 |
30 | Pnc2 | ( x,y,
z) ( ,, z) |
( x, ½
-y,
½+z) (, ½+-y, ½+z) |
3 | P2 |
31 | Pmn21 | ( x,y,
z) ( x,y, ½+z) |
(½+x, y,
½+z) ( , y, z) |
4 | P21 |
32 | Pba2 | ( x,y,
z) ( ,, z) |
(½+x,½-y,
z) (½-x,½+y, z) |
3 | P2 |
33 | Pna21 | ( x,y,
z) ( ,, ½+z) |
(½+x,½-y,
z) (½-x,½+y, ½+ z) |
4 | P21 |
34 | Pnn2 | ( x,y,
z) ( ,, z) |
(½+x,½-y, ½+
z) (½-x,½+y, ½+ z) |
3 | P2 |
35 | Cmm2 | ( x,y,
z) ( ,, z) |
( x,
,
z) ( , y, z) |
3 | P2 |
36 | Cmc21 | ( x,y,
z) ( ,, ½+z) |
(
x, ,
½+z) ( , y, z) |
4 | P21 |
37 | Ccc2 | ( x,y,
z) ( ,, z) |
(
x, ,
½+z) ( , y, ½+z) |
3 | P2 |
38 | Amm2 | ( x,y,
z) ( ,, z) |
( x,
,
z) ( , y, z) |
5 | C2 |
39 | Abm2 | ( x,y,
z) ( ,, z) |
( x,
½-y,
z) ( , ½+y, z) |
5 | C2 |
40 | Ama2 | ( x,y,
z) ( ,, z) |
(½+x, , z)
(½-x, y, z) |
5 | C2 |
41 | Aba2 | ( x,y,
z) ( ,, z) |
(½+x,½-y,
z) (½-x,½+y, z) |
5 | C2 |
42 | Fmm2 | ( x,y,
z) ( ,, z) |
( x,
,
z) ( , y, z) |
5 | C2 |
43 | Fdd2 | ( x,y,
z) ( ,, z) |
(¼+x, ¼-y, ¼+
z) (¼-x, ¼+y, ¼+ z) |
5 | C2 |
44 | Imm2 | ( x,y,
z) ( ,, z) |
( x,
,
z) ( , y, z) |
5 | C2 |
45 | Iba2 | ( x,y,
z) ( ,, z) |
(
x, ,
½+z) ( , y, ½+z) |
5 | C2 |
46 | Ima2 | ( x,y,
z) ( ,, z) |
(½+x, , z) (½-x, y, z) |
5 | C2 |
Table 22.
Reduction from 222 to 2
Space group of unstrained crystal, order 4 per lattice point |
If stressed so that x ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point |
If stressed so that y ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point |
If stressed so that z ∥ X, Y, or Z | Space group of strained crystal, order 2 per lattice point |
|||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | Coordinates referred to axes of unstrained crystal | Coordinates referred to axes of unstrained crystal | |||||||||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | 1st Subset | 2d Subset | No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
16 | P222 | ( x, y,
z) ( x, , ) |
( , y,
) ( , , z) |
3 | P2 | ( x, y,
z) ( , y, ) |
( x, ,
) ( , , z) |
3 | P2 | ( x,y,
z) ( ,, z) |
( x, ,
) ( , y, ) |
3 | P2 |
17 | P2221 | ( x, y,
z) ( x, , ) |
( , y,
½-
z) ( , , ½+ z) |
3 | P2 | ( x, y,
z) ( , y, ½- z) |
( x, ,
) ( , , ½+ z) |
3 | P2 | ( x,y,
z) ( ,, ½+ z) |
( x, ,
) ( , y, ½- z) |
4 | P21 |
18 | P21212 | ( x, y, z) (½+x, ½-y, ) | (½-x, ½+
y, ) ( , , z) |
4 | P21 | ( x, y,
z) (½-x, ½+y, ) |
(½+x, ½-
y, ) ( , , z) |
4 | P21 | ( x,y,
z) ( ,, z) |
(½+x, ½- y, ) (½-x, ½+ y, ) | 3 | P2 |
19 | P212121 | ( x, y, z) (½+x, ½-y, ) | ( ,
½+ y, ½-
z) (½-x, , ½+ z) |
4 | P21 | ( x, y,
z) ( , ½+y , ½- z) |
(½+x, ½- y, ) (½-x, , ½+ z) | 4 | P21 | ( x,y,
z) (½-x,, ½+z) |
(½+x, ½-
y, ) ( ,½+y, ½- z) |
4 | P21 |
20 | C2221 | ( x, y,
z) ( x, , ) |
( , y,
½-
z) ( , , ½+ z) |
5 | C2 | ( x, y,
z) ( , y, ½- z) |
( x, ,
) ( , , ½+ z) |
5 | C2 | ( x,y,
z) ( ,, ½+ z) |
( x, ,
) ( , y, ½- z) |
4 | P21 |
21 | C222 | ( x, y,
z) ( x, , ) |
( , y,
) ( , , z) |
5 | C2 | ( x, y,
z) ( , y, ) |
( x, ,
) ( , , z) |
5 | C2 | ( x,y,
z) ( ,, z) |
( x, ,
) ( , y, ) |
3 | P2 |
22 | F222 | ( x, y,
z) ( x, , ) |
( , y,
) ( , , z) |
5 | C2 | ( x, y,
z) ( , y, ) |
( x, ,
) ( , , z) |
5 | C2 | ( x,y,
z) ( ,, z) |
( x, ,
) ( , y, ) |
5 | C2 |
23 | I222 | ( x, y,
z) ( x, , ) |
( , y,
) ( , , z) |
5 | C2 | ( x, y,
z) ( , y, ) |
( x, ,
) ( , , z) |
5 | C2 | ( x,y,
z) ( ,, z) |
( x, ,
) ( , y, ) |
5 | C2 |
24 | I212121 | ( x, y, z) (½+x, ½-y, ) | ( ,
½+ y, ½-
z) (½-x, , ½+ z) |
5 | C2 | ( x, y,
z) ( , ½+y , ½+ z) |
(½+x, ½- y, ) (½-x, , ½+ z) | 5 | C2 | ( x,y,
z) (½-x,, ½+z) |
(½+x, ½-
y, ) ( ,½+y, ½- z) |
5 | C2 |
Table 23.
Reduction from 3 to 1
Space group of unstrained crystal, order 3 per lattice point | No specialization of stress | Space group of strained crystal, order 1 per lattice point | ||||
---|---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal | ||||||
No. | Symbol | 1st Subset | 2d Subset | 3d Subset | No. | Symbol |
143 | P3 | (x, y, z) | (,x-y, z) | (y-x,, z) | 1 | P1 |
144 | P31 | (x, y, z) | (,x-y,⅓+ z) | (y-x,, ⅔+z) | 1 | P1 |
145 | P31 | (x, y, z) | (,x-y, ⅔+z) | (y-x,, ⅓+z) | 1 | P1 |
146 | R3 hex. axes | (x, y, z) | (,x-y, z) | (y-x,, z) | 1 | P1 |
Table 24.
Reduction from m to 1
Space group of unstrained crystal, order 2 per lattice point | No specialization of stress | Space group of strained crystal, order 1 per lattice point | |||
---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal (m⊥y) | |||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
6 | Pm | (x, y, z) | (x, , z) | 1 | P1 |
7 | Pc | (x, y, z) | (x, , ½+ z) | 1 | P1 |
8 | Cm | (x, y, z) | (x, , z) | 1 | P1 |
9 | Cc | (x, y, z) | (x, , ½+ z) | 1 | P1 |
Table 25.
Reduction from 2 to 1
Space group of unstrained crystal, order 2 per lattice point | No specialization of stress | Space group of strained crystal, order 1 per lattice point | |||
---|---|---|---|---|---|
Coordinates referred to axes of unstrained crystal (2∥Y) | |||||
No. | Symbol | 1st Subset | 2d Subset | No. | Symbol |
3 | P2 | (x, y, z) | ( , y, ) | 1 | P1 |
4 | P21 | (x, y, z) | ( x,½+ y, ) | 1 | P1 |
5 | C2 | (x, y, z) | ( , y, ) | 1 | P1 |
2.2. Stress Table
The most general stress consistent with each possible step of stress-induced symmetry lowering, minimum or compound, is listed in table 26 for all of of the noncentrosymmetric point groups. The stress conditions for the minimum steps of stress-induced symmetry lowering are equivalent, though not always identical, to those given in tables 1–25.
Table 26.
Most general stress consistent with a reduction of a noncentrosymmetric point group to any one of its stress-induced subgroups
Large square brackets indicate same subgroup in equivalent setting.
3. References
- [1].Wachtman J. B. Jr., and Peiser H. S., Splitting of a set of equivalent sites in centrosymmetric space groups into subsets under homogeneous stress, J. Res. NBS 69A (Phys. and Chem.) No. 2, 193–207 (1965). [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Peiser H. S. and Wachtman J. B. Jr., Reduction of crys-tallographic point groups to subgroups by homogeneous stress, J. Res. NBS 69A (Phys. and Chem.) No. 4, 309–324 (1965). [DOI] [PMC free article] [PubMed] [Google Scholar]