Abstract
Variation in global estimates of the prevalence of injecting or opioid use from recent reports are partly explained by use of alternative information sources and value given to unreferenced country estimates; but also highlights a prevailing problem with the reporting and robustness of prevalence estimates. Unfortunately, there is no quick solution: we need investment both in ongoing information or surveillance of drug related harms and clinical and other interventions and in the implementation of more refined statistical methods to estimate prevalence.
Addiction presents the latest global statistics on alcohol, tobacco and illicit drug use and highlighted discrepancies in relation to injecting drug use between the 2017 World Drug Report led by the United Nations Office on Drugs and Crime and the most recent 2017 systematic review led by the global consortium (1). As highlighted by the systematic review, evidence on the prevalence of injecting drug use has increased and improved over the past decade. Evidence of injecting was identified from 179 countries covering 99% of the global population and the latest review synthesising information from multiple sources for 83 countries covering 83% of the global population (1–3).
The estimates of global injecting prevalence overlap substantially between the 2017 World Drug Report (estimate 0.25%; range 0.18, 0.36) and the 2017 systematic review (0.33%; 0.21, 0.49). However, there are more marked differences by country and region (see table below or link), including Latin America (estimate ranges 1,392,000 to 2,380,000 vs. 380,000 to 1,340,000), Central Asia (189,500 to 416,500 vs. 400,000 to 510,000), and South Asia (783,500 to 1,263,000 vs. 290,000 to 300,000).
Table 1.
Comparing global estimates of prevalence of injecting drug use by country and source: Global Consortium and WDR.
Global consortium | World Drug Report 2018 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | Prevalence (%) | Prevalence (#) | Prevalence (%) | Prevalence (#) | ||||||||
Country | low | mid | high | low | mid | high | low | mid | high | low | mid | high |
OCEANIA | 98,000 | 138,000 | 181,500 | 0.47 | 0.61 | 0.75 | 120,000 | 160,000 | 190,000 | |||
Australasia/Oceania (UNODC) | 0.42 | 0.6 | 0.75 | 83000 | 115500 | 148000 | 0.47 | 0.61 | 0.75 | 120,000 | 160,000 | 190,000 |
Australia | 0.43 | 0.60 | 0.76 | 68,000 | 93,000 | 118,000 | 0.44 | 0.60 | 0.76 | 68,000 | 93,000 | 118,000 |
New Zealand | 0.49 | 0.73 | 0.97 | 15,031 | 22,393 | 29,755 | 0.68 | 20,000 | ||||
Pacific Island States and Territories/Oceania (UNODC) | 0.22 | 0.33 | 0.49 | 15,000 | 22,500 | 33,500 | 0.47 | 0.61 | 0.75 | 120,000 | 160,000 | 190,000 |
American Samoa | NE | |||||||||||
Fed. States of Micronesia | NE | |||||||||||
Fiji | NE | |||||||||||
French Polynesia | NE | |||||||||||
Guam | NE | |||||||||||
Kiribati | NE | |||||||||||
Marshall Islands | NE | |||||||||||
Nauru | NE | |||||||||||
New Caledonia | NE | |||||||||||
Northern Mariana Islands | NE | |||||||||||
Palau | NE | |||||||||||
Papua New Guinea | NE | |||||||||||
Samoa | NE | |||||||||||
Solomon Islands | NE | |||||||||||
Tonga | NE | |||||||||||
Tuvalu | NE | |||||||||||
Vanuatu | NE | |||||||||||
AMERICA | 2,943,500 | 4,459,500 | 6,926,000 | 0.33 | 0.42 | 0.57 | 2,180,000 | 2,790,000 | 3,730,000 | |||
North America | 0.62 | 1.06 | 1.83 | 1,498,500 | 2,557,000 | 4,428,000 | 0.56 | 0.65 | 0.75 | 1,800,000 | 2,080,000 | 2,390,000 |
Canada | 1.04 | 1.22 | 1.40 | 262,109 | 308,198 | 354,286 | 1.00 | 1.30 | 1.70 | 220,690 | 286,987 | 375,173 |
United States | 0.57 | 1.04 | 1.88 | 1,236,391 | 2,248,583 | 4,073,771 | 0.65 | 0.74 | 0.84 | 1,316,703 | 1,520,054 | 1,723,405 |
Caribbean/Latin America & the Caribbean (UNODC) | 0.30 | 0.44 | 0.66 | 53,000 | 79,500 | 118,000 | 0.11 | 0.21 | 0.39 | 380,000 | 700,000 | 1,340,000 |
Antigua & Barbuda | NE | |||||||||||
Bahamas | NE | |||||||||||
Barbados | NE | |||||||||||
Bermuda | NE | |||||||||||
Commonwealth of Puerto Rico | 1.15 | 18,964 | 28,234 | 41,931 | 1.50 | NK | ||||||
Cuba | NE | |||||||||||
Dominica | NE | |||||||||||
Dominican Republic | NE | |||||||||||
Grenada | NE | |||||||||||
Haiti | NE | |||||||||||
Jamaica | NE | |||||||||||
Saint Kitts & Nevis | NE | |||||||||||
Saint Lucia | NE | |||||||||||
Saint Vincent & Grenadines | NE | |||||||||||
Trinidad & Tobago | NE | |||||||||||
Latin America/Latin America & the Caribbean (UNODC) | 0.35 | 0.46 | 0.60 | 1,392,000 | 1,823,000 | 2,380,000 | 0.11 | 0.21 | 0.39 | 380,000 | 700,000 | 1,340,000 |
Argentina | 0.29 | 0.29 | 0.30 | 79,115 | 80,745 | 82,375 | 0.39 | NK | ||||
Belize | NE | |||||||||||
Bolivia | NE | |||||||||||
Brazil | 0.67 | 734,658 | 962,069 | 1,256,232 | 0.10 | 0.21 | 0.43 | 107,639 | 227,253 | 462,847 | ||
Chile | 0.38 | 35,858 | 46,958 | 61,316 | 0.18 | 16,257 | ||||||
Colombia | 0.10 | 14,893 | ||||||||||
Costa Rica | 0.12 | 3,845 | ||||||||||
Ecuador | NE | |||||||||||
El Salvador | 0.17 | 6,532 | ||||||||||
Guatemala | 0.03 | 2,500 | ||||||||||
Guyana | NE | |||||||||||
Honduras | NE | |||||||||||
Mexico | 0.12 | 0.18 | 0.25 | 100,487 | 150,731 | 209,348 | 0.21 | 164,157 | ||||
Nicaragua | NE | |||||||||||
Panama | NE | |||||||||||
Paraguay | 0.14 | 5,714 | ||||||||||
Peru | NE | |||||||||||
Suriname | NE | |||||||||||
Uruguay | 0.10 | 0.30 | 0.87 | 2,201 | 6,604 | 19,152 | 0.03 | 443 | ||||
Venezuela | NE | |||||||||||
ASIA | 4,014,000 | 5,294,000 | 6,634,500 | 0.12 | 0.16 | 0.20 | 3,480,000 | 4,700,000 | 5,970,000 | |||
Central Asia | 0.43 | 0.63 | 0.94 | 189,500 | 281,500 | 416,500 | 0.71 | 0.79 | 0.90 | 400,000 | 440,000 | 510,000 |
Kazakhstan | 0.96 | 75,468 | 112,358 | 166,867 | 1.09 | 127,800 | ||||||
Kyrgyzstan | 0.74 | 19,126 | 28,475 | 42,290 | 0.74 | 25,000 | ||||||
Tajikistan | 0.45 | 15,783 | 23,499 | 34,899 | 0.45 | 23,100 | ||||||
Turkmenistan | NE | |||||||||||
Uzbekistan | 0.47 | 63,225 | 94,130 | 139,796 | 0.47 | 80,000 | ||||||
East and South East Asia | 0.19 | 0.25 | 0.31 | 3,041,000 | 3,989,000 | 4,955,000 | 0.14 | 0.20 | 0.26 | 2,220,000 | 3,180,000 | 4,130,000 |
Brunei Darussalam | NE | |||||||||||
Cambodia | 0.10 | 0.11 | 0.23 | 9,713 | 10,514 | 22,731 | 0.01 | 0.01 | 0.03 | 1,200 | 1,300 | 2,800 |
China | 0.19 | 0.25 | 0.31 | 1,963,844 | 2,563,908 | 3,163,971 | 0.13 | 0.19 | 0.25 | 1,310,000 | 1,930,000 | 2,540,000 |
Hong Kong (China) | 0.04 | 1,907 | ||||||||||
Indonesia | 0.09 | 0.11 | 0.13 | 155,786 | 190,405 | 225,024 | 0.04 | 0.05 | 0.05 | 61,901 | 74,326 | 88,320 |
Japan | 0.47 | 281,566 | 368,670 | 458,832 | 0.47 | 400,000 | ||||||
Lao PDR | 0.03 | 1,317 | ||||||||||
Malaysia | 1.11 | 1.33 | 1.56 | 233,625 | 281,724 | 329,823 | 0.94 | 170,000 | ||||
Mongolia | NE | |||||||||||
Myanmar | 0.32 | 0.48 | 0.65 | 115,710 | 173,565 | 235,036 | 0.23 | 83,000 | ||||
North Korea | NE | |||||||||||
Philippines | 0.03 | 0.04 | 0.05 | 19,175 | 25,566 | 31,958 | 0.04 | 0.09 | 10,000 | 21,700 | ||
Singapore | NE | |||||||||||
South Korea | NE | |||||||||||
Taiwan | NE | |||||||||||
Thailand | 0.03 | 0.11 | 0.18 | 15,813 | 51,491 | 87,169 | 0.15 | 71,000 | ||||
Timor Leste | 0.00 | 0.01 | 0.02 | 6 | 49 | 123 | 0.01 | 53 | ||||
Viet Nam | 0.25 | 122,972 | 161,014 | 200,392 | 0.16 | 0.43 | 0.54 | 100,000 | 271,506 | 335,990 | ||
South Asia | 0.07 | 0.09 | 0.11 | 783,500 | 1,023,500 | 1,263,000 | 0.03 | 0.03 | 0.03 | 290,000 | 290,000 | 300,000 |
South-West Asia (UNODC) | 0.29 | 0.38 | 0.48 | 550,000 | 720,000 | 910,000 | ||||||
Afghanistan | 0.50 | 0.80 | 1.09 | 87,756 | 139,028 | 190,301 | 0.09 | 0.27 | 0.53 | 13,500 | 40,900 | 80,000 |
Bangladesh | 0.06 | 0.07 | 0.07 | 63,348 | 68,627 | 73,906 | 0.02 | 0.03 | 0.03 | 26,186 | 29,626 | 33,067 |
Bhutan | NE | |||||||||||
India | 0.01 | 0.02 | 0.03 | 127,428 | 197,174 | 266,920 | 0.02 | 180,000 | ||||
Iran, Islamic Republic | 0.19 | 0.28 | 0.37 | 107,214 | 157,999 | 208,784 | 0.33 | 0.38 | 0.43 | 183,000 | 208,000 | 238,000 |
Maldives | 0.26 | 0.60 | 0.94 | 648 | 1,483 | 2,318 | 0.32 | 0.37 | 0.42 | 690 | 793 | 896 |
Nepal | 0.19 | 0.20 | 0.21 | 33,299 | 35,237 | 36,998 | 0.32 | 52,174 | ||||
Pakistan | 0.32 | 0.37 | 0.42 | 363,060 | 422,893 | 482,607 | 0.30 | 0.40 | 0.50 | 430,000 | ||
Sri Lanka | 0.00 | 0.00 | 0.00 | 274 | 411 | 411 | 0.01 | 994 | ||||
AFRICA | 823,000 | 1,727,500 | 3,601,500 | 0.05 | 0.10 | 0.33 | 350,000 | 650,000 | 2,160,000 | |||
Middle East and North Africa/Near and Middle East (UNODC) | 0.06 | 0.12 | 0.18 | 177,500 | 349,500 | 521,500 | 0.02 | 0.07 | 0.12 | 20,000 | 70,000 | 130,000 |
Algeria | NE | |||||||||||
Bahrain | NE | |||||||||||
Cyprus | 0.04 | 0.08 | 0.12 | 283 | 526 | 769 | 0.04 | 0.06 | 0.08 | 358 | 465 | 641 |
Egypt | 0.35 | 0.37 | 0.48 | 86,142 | 93,314 | 119,412 | ||||||
Iraq | NE | |||||||||||
Israel | 0.11 | 5,000 | ||||||||||
Jordan | 0.02 | 605 | ||||||||||
Kuwait | NE | |||||||||||
Lebanon | 0.02 | 0.08 | 0.14 | 812 | 3,114 | 5,416 | ||||||
Libyan Arab Jamahiriya | 0.05 | 480 | 1,956 | 4,278 | 0.05 | 1,685 | ||||||
Morocco | 0.07 | 0.13 | 0.20 | 15,388 | 30,341 | 45,317 | 0.01 | 1,500 | ||||
Occupied Palestinian Territories | NE | |||||||||||
Oman | NE | |||||||||||
Qatar | NE | |||||||||||
Saudi Arabia | NE | |||||||||||
South Sudan | NE | |||||||||||
Sudan | NE | |||||||||||
Syrian Arab Republic | NE | |||||||||||
Tunisia | 0.13 | 10,000 | ||||||||||
Turkey | 0.02 | 0.03 | 0.05 | 11,126 | 12,733 | 26,537 | ||||||
United Arab Emirates | NE | |||||||||||
Yemen | NE | |||||||||||
Sub Saharan Africa/Africa (UNODC) | 0.13 | 0.28 | 0.62 | 645,500 | 1,378,000 | 3,080,000 | 0.05 | 0.10 | 0.33 | 350,000 | 650,000 | 2,160,000 |
Angola | NE | |||||||||||
Benin | NE | |||||||||||
Botswana | NE | |||||||||||
Burkina Faso | NE | |||||||||||
Burundi | NE | |||||||||||
Cameroon | NE | |||||||||||
Cape Verde | NE | |||||||||||
Central African Republic | NE | |||||||||||
Chad | NE | |||||||||||
Comoros | NE | |||||||||||
Cote d’Ivoire | 0.00 | 0.01 | 0.01 | 334 | 631 | 928 | NE | |||||
Dem Rep of the Congo | 0.00 | 0.01 | 0.40 | 79 | 3,550 | 157,758 | 0.12 | 44,023 | ||||
Djibouti | NE | |||||||||||
Equatorial Guinea | NE | |||||||||||
Eritrea | NE | |||||||||||
Ethiopia | NE | |||||||||||
Gabon | NE | |||||||||||
Gambia | NE | |||||||||||
Ghana | NE | |||||||||||
Guinea | NE | |||||||||||
Guinea-Bissau | NE | |||||||||||
Kenya | 0.03 | 0.12 | 0.20 | 8,860 | 30,502 | 52,118 | 0.04 | 0.21 | 0.52 | 10,000 | 49,167 | 120,000 |
Lesotho | 0.21 | 2,600 | ||||||||||
Liberia | 0.02 | 457 | ||||||||||
Madagascar | 0.02 | 0.12 | 0.59 | 3,091 | 15,589 | 79,426 | 0.12 | 14,445 | ||||
Malawi | NE | |||||||||||
Mali | NE | |||||||||||
Mauritania | NE | |||||||||||
Mauritius | 0.39 | 0.78 | 1.54 | 3,549 | 7,062 | 13,944 | 1.17 | 1.30 | 1.42 | 10,542 | 11,677 | 12,812 |
Mozambique | 0.00 | 0.20 | 0.41 | - | 28,804 | 59,001 | 0.01 | 1,910 | ||||
Namibia | NE | |||||||||||
Niger | NE | |||||||||||
Nigeria | 0.02 | 18,801 | ||||||||||
Republic of the Congo | NE | |||||||||||
Rwanda | 0.00 | 0.03 | 0.07 | - | 1,956 | 4,564 | 0.00 | 0.02 | 100 | 1,200 | ||
Sao Tome & Principe | NE | |||||||||||
Senegal | 0.02 | 0.02 | 0.02 | 1,281 | 1,324 | 1,367 | ||||||
Seychelles | 1.54 | 2.30 | 3.43 | 1,033 | 1,546 | 2,304 | 2.30 | 1,283 | ||||
Sierra Leone | 0.04 | 0.04 | 0.04 | 1,242 | 1,419 | 1,561 | 0.04 | 1,500 | ||||
Somalia | NE | |||||||||||
South Africa | 0.06 | 0.21 | 0.74 | 21,730 | 76,055 | 268,002 | 0.21 | 75,701 | ||||
Swaziland | NE | |||||||||||
Togo | 0.01 | 0.06 | 0.49 | 241 | 2,330 | 19,684 | 0.06 | 2,289 | ||||
Uganda | NE | |||||||||||
United Republic of Tanzania | 0.72 | 1.24 | 1.76 | 199,892 | 342,838 | 485,784 | 0.08 | 0.12 | 0.17 | 20,000 | 30,000 | 42,500 |
Zambia | 0.03 | 2,281 | ||||||||||
Zimbabwe | NE | |||||||||||
EUROPE | 2,340,000 | 4,029,500 | 6,394,500 | 0.45 | 0.65 | 0.99 | 2,420,000 | 3,510,000 | 5,370,000 | |||
Western Europe | 0.23 | 0.34 | 0.47 | 686,500 | 1,009,500 | 1,386,500 | 0.20 | 0.22 | 0.25 | 640,000 | 700,000 | 780,000 |
Albania | 0.20 | 0.31 | 4,000 | 6,000 | ||||||||
Andorra | NE | |||||||||||
Austria | 0.22 | 0.32 | 0.42 | 12,723 | 18,555 | 24,387 | 0.19 | 0.26 | 11,000 | 15,000 | ||
Belgium | 0.24 | 0.35 | 0.49 | 18,251 | 26,137 | 36,953 | 0.24 | 0.35 | 0.49 | 17,638 | 25,295 | 35,699 |
Croatia | 0.18 | 0.23 | 0.29 | 5,147 | 6,344 | 8,255 | 0.04 | 0.04 | 0.06 | 998 | 1,274 | 1,746 |
Denmark | 0.35 | 0.45 | 0.52 | 12,911 | 16,600 | 19,183 | 0.28 | 0.36 | 0.46 | 10,066 | 13,000 | 16,821 |
England (U.K.) | 0.55 | 0.59 | 0.63 | 196,346 | 210,626 | 224,906 | 0.29 | 0.30 | 0.32 | 117,370 | 122,894 | 131,869 |
Finland | 0.41 | 0.46 | 0.67 | 15,154 | 17,002 | 24,764 | 0.41 | 0.46 | 0.67 | 13,770 | 15,611 | 22,665 |
France | 0.16 | 0.20 | 0.23 | 66,317 | 81,847 | 96,957 | 0.20 | 81,000 | ||||
FYR of Macedonia | 0.68 | 10,200 | ||||||||||
Germany | 0.03 | 0.24 | 0.45 | 14,048 | 131,702 | 249,410 | 0.14 | 0.17 | NK | |||
Greece | 0.06 | 0.07 | 0.09 | 4,137 | 5,048 | 6,240 | 0.06 | 0.07 | 0.09 | 4,209 | 5,120 | 6,303 |
Greenland | NE | |||||||||||
Iceland | 0.17 | 350 | ||||||||||
Ireland | 0.20 | 0.27 | 0.33 | 6,371 | 8,536 | 10,701 | 0.04 | 1,098 | ||||
Italy | 0.83 | 246,176 | 341,708 | 482,438 | 0.38 | NK | ||||||
Liechtenstein | NE | |||||||||||
Luxembourg | 0.45 | 0.57 | 0.69 | 1,748 | 2,187 | 2,637 | 0.45 | 0.57 | 0.69 | 1,524 | 1,907 | 2,301 |
Malta | 0.27 | 744 | ||||||||||
Monaco | NE | |||||||||||
Montenegro | 0.30 | 1,283 | ||||||||||
Netherlands | 0.02 | 0.03 | 0.04 | 2,341 | 3,298 | 4,575 | 0.02 | 0.02 | 0.02 | 2,336 | 2,390 | 2,444 |
Northern Ireland (U.K.) | 0.29 | 0.30 | 0.32 | 117,370 | 122,894 | 131,869 | ||||||
Norway | 0.21 | 0.24 | 0.29 | 7,137 | 8,385 | 10,117 | 0.25 | 8,400 | ||||
Portugal | 0.19 | 0.22 | 0.25 | 13,965 | 15,837 | 17,708 | 0.19 | 0.22 | 0.25 | 12,732 | 14,426 | 16,101 |
San Marino | NE | |||||||||||
Scotland (U.K.) | 0.38 | 0.44 | 0.49 | 13,656 | 15,812 | 17,608 | 0.29 | 0.30 | 0.32 | 117,370 | 122,894 | 131,869 |
Serbia | 0.41 | 0.49 | 0.58 | 23,880 | 29,128 | 34,316 | 0.32 | 0.40 | 0.56 | 16,000 | 20,000 | 28,000 |
Slovenia | 0.30 | 0.42 | 0.55 | 4,115 | 5,881 | 7,661 | 0.52 | 7,310 | ||||
Spain | 0.01 | 0.03 | 0.05 | 3,467 | 10,501 | 17,569 | 0.02 | 0.03 | 0.04 | 7,971 | 9,879 | 11,786 |
Svalbard | ||||||||||||
Sweden | 0.03 | 0.13 | 0.62 | 1,750 | 8,189 | 38,506 | 0.13 | 8,021 | ||||
Switzerland | 0.19 | 0.24 | 0.29 | 10,807 | 13,551 | 16,183 | 0.51 | 0.65 | 0.78 | 24,907 | 31,653 | 38,399 |
United Kingdom | 0.26 | 0.54 | 0.91 | 109,214 | 228,036 | 387,287 | 0.29 | 0.30 | 0.32 | 117,370 | 122,894 | 131,869 |
Wales (U.K.) | 0.29 | 0.30 | 0.32 | 117,370 | 122,894 | 131,869 | ||||||
Eastern Europe | 0.71 | 1.30 | 2.15 | 1,653,500 | 3,020,000 | 5,008,000 | 0.79 | 1.25 | 2.04 | 1,780,000 | 2,810,000 | 4,580,000 |
Armenia | 0.41 | 0.62 | 1.35 | 8,759 | 13,245 | 28,839 | 0.45 | 9,507 | ||||
Azerbaijan | 0.49 | 0.61 | 0.74 | 34,637 | 43,337 | 52,036 | 0.66 | 1.08 | 1.50 | 43,736 | 71,283 | 98,830 |
Belarus | 0.22 | 0.59 | 0.96 | 15,164 | 40,666 | 66,169 | 0.23 | 1.00 | 15,509 | 66,504 | ||
Bosnia & Herzegovina | 0.36 | 0.47 | 0.58 | 9,500 | 12,500 | 15,500 | ||||||
Bulgaria | 0.30 | 0.38 | 0.45 | 14,877 | 18,596 | 22,315 | 0.50 | 24,000 | ||||
Czech Republic | 0.61 | 0.64 | 0.67 | 44,633 | 46,828 | 49,023 | 0.61 | 0.64 | 0.68 | 43,200 | 45,600 | 48,000 |
Estonia | 0.69 | 0.94 | 1.73 | 6,307 | 8,592 | 15,812 | 0.43 | 0.59 | 1.08 | 3,906 | 5,362 | 9,837 |
Georgia | 0.48 | 4.19 | 7.90 | 13,162 | 115,038 | 216,914 | 2.00 | 2.02 | 2.04 | 49,208 | 49,700 | 50,192 |
Hungary | 0.03 | 0.06 | 0.08 | 2,084 | 3,969 | 5,854 | 0.08 | 5,699 | ||||
Latvia | 0.73 | 0.92 | 1.17 | 11,134 | 14,032 | 17,845 | 0.59 | 0.92 | 1.38 | 7,983 | 12,573 | 18,778 |
Lithuania | 0.22 | 2,534 | 4,781 | 7,291 | 0.27 | 5,225 | ||||||
Moldova | 0.25 | 0.40 | 0.54 | 7,504 | 11,970 | 16,436 | 1.23 | 31,562 | ||||
Poland | 0.02 | 0.03 | 0.04 | 4,270 | 7,284 | 10,299 | ||||||
Romania | 0.46 | 0.62 | 0.84 | 60,282 | 81,250 | 110,081 | 0.39 | 0.53 | 0.72 | 4,703 | 6,288 | 8,492 |
Russian Federation | 1.78 | 996,956 | 1,881,062 | 2,868,387 | 1.30 | 2.29 | 4.00 | NK | ||||
Slovakia | 0.35 | 0.49 | 0.89 | 14,470 | 19,854 | 36,190 | 0.35 | 0.49 | 0.89 | 13,732 | 18,841 | 34,343 |
Ukraine | 0.52 | 0.97 | 1.79 | 172,153 | 319,421 | 590,400 | 1.09 | 341,500 | ||||
Global | 0.21 | 0.33 | 0.49 | 10,219,000 | 15,648,000 | 23,737,500 | 0.18 | 0.25 | 0.36 | 8,550,000 | 11,810,000 | 17,420,000 |
There are several potential reasons for this variation. First, the criteria for inclusion of studies differs between the two reports. The World Drug Report uses sources without detail on the origin of the study data, such as estimates reported via its Annual Reports Questionnaire received from member states, which had a range of estimates, the source of which could not be located or obtained. The systematic review excluded new estimates that did not have information on the origin of the source study included. Second, the two reports used different imputation methods in the absence of local data. The systematic review pooled estimates from studies of similar quality to maximise geographic coverage within a country (where possible), whereas the World Drug Report tended to use data from single studies.
An issue that is faced when trying to provide global estimates of this nature is that that many country estimates are based on methods that are likely to be biased, given that the original data used to derive the prevalence estimate are not reported transparently. Estimates of injecting prevalence from the United States (US) are a notable example. These estimates were based on several forms of multipliers across different years, including population and other data for specific areas in the US, and then imputed for the US (4–7). Further, the exact method of generating multipliers and the data on which it is based were confusingly spread across multiple publications (4–7). In Europe, the surveillance of “problem drug use”, including injecting drug use, is moribund – few countries report up to date estimates, with no consistency in methods between countries (e.g. see http://www.emcdda.europa.eu/data/stats2017/pdu_en). Estimates are overly reliant on inherently biased methods (8).
This sorry state of affairs has led the consortium at IHME leading the Global Burden of Disease (GBD) study – which has done so much to raise the profile of addictive behaviours and mental health as key drivers of ill health across the globe (9, 10) – to consider excluding most of the evidence from so called “indirect” estimates, and re-calibrate estimates of the prevalence of opioid and injecting drug use from “direct” population surveys (based on extrapolation from a few countries that have both a “reliable” indirect estimate and a general population survey). If carried through, this action would be both deleterious and retrograde. It is likely that the prevalence estimates for opioid disorders and injecting drug use would be lower than current estimates, down-weighting their public health importance as the modelled contribution to disease burden also would fall (11). Indubitably, the estimates would be wrong, based on the heroically unjustifiable assumptions: that only a few countries have reliable indirect estimates and that the relationship between these and population surveys in these countries can apply to the rest of the world.
Unfortunately, the right approach to fixing the problem is going to take more time. Yet there are several pressing reasons to improve prevalence estimates. Addressing the opioid overdose crisis in North America – where opioid related deaths have increased 3-fold in the last 10 years [https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates] - and HCV elimination targets in many countries - where the majority of new infections are in PWID (12) - would have benefited from better information on the dynamics and size of the population of opioid users and PWID. In order to appropriately scale and monitor impact accurately, we must both scale-up interventions and improve the epidemiological evidence base.
Data used for prevalence estimation need to be reported more transparently – so that the methods can be replicated, and the information be made more readily available for quality assessment and synthesis. Such action could be taken now by academic journals, global agencies and those who fund work to deliver interventions to address injecting drug use and illicit drug harms to prevent unreferenced, opaque estimates being circulated.
However, this is only part of the solution. It is widely acknowledged that population surveys will under-estimate prevalence of comparatively rare, hidden and stigmatised behaviours – such as opioid, cocaine, methamphetamine and injecting drug use (13, 14). Alternative indirect estimates that utilise information on drug related harms, and partial data sets of people in treatment or criminal justice, have been developed, but there has been a lack of investment in critical evaluation – in testing, applying, developing and then implementing the best methods. More importantly, there has been a lack of investment in strengthening the epidemiological data in countries and cities affected by problematic drug use, which is the foundation of any prevalence estimate. Further work is needed to improve the design (e.g. clear definitions of “recent” injecting drug use, inclusion of multiple study sites across different regions, and the collection of samples which permit the accurate assessment of viral infections, e.g. HCV and HIV), implementation and reporting (e.g. clear and transparent reporting of results) of studies to estimate epidemiologic data related to injecting drug use (and its sequalae). As an epidemic of injecting or opioid use matures, the connections between data sources (and potential biases) also become more complex. In such contexts, investment in record linkage between administrative data sources will support better estimates of drug related harm, and more refined statistical approaches to prevalence estimation.
It has been demonstrated that it is feasible to measure drugs consumed by a population in their sewage/wastewater. Disappointingly, there have been few widescale implementations of waste-water monitoring or integration of wastewater data with other epidemiological data to size the drug market or estimate prevalence of drug use in the population(15, 16).
So, let us ask IHME, the UN system and other agencies with an interest in monitoring and preventing drug-related harm to support countries to invest in information systems that better document key harms, and to test and implement the most reliable statistical approaches to estimating disease burden and prevalence.
References
- 1.Degenhardt L, Peacock A, Colledge S, Leung J, Grebely J, Vickerman P et al. Global prevalence of injecting drug use and sociodemographic characteristics and prevalence of HIV, HBV, and HCV in people who inject drugs: a multistage systematic review, Lancet Glob Health 2017: 5: e1192–e1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review, Lancet 2008: 372: 1733–1745. [DOI] [PubMed] [Google Scholar]
- 3.Aceijas C, Stimson GV, Hickman M, Rhodes T Global overview of injecting drug use and HIV infection among injecting drug users, AIDS 2004: 18: 2295–2303. [DOI] [PubMed] [Google Scholar]
- 4.Holmberg SD The estimated prevalence and incidence of HIV in 96 large US metropolitan areas, Am J Public Health 1996: 86: 642–654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Tempalski B, Pouget ER, Cleland CM, Brady JE, Cooper HL, Hall HI et al. Trends in the population prevalence of people who inject drugs in US metropolitan areas 1992–2007, PloS one 2013: 8: e64789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Brady JE, Friedman SR, Cooper HL, Flom PL, Tempalski B, Gostnell K Estimating the prevalence of injection drug users in the U.S. and in large U.S. metropolitan areas from 1992 to 2002, Journal of urban health : bulletin of the New York Academy of Medicine 2008: 85: 323–351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Friedman SR, Tempalski B, Cooper H, Perlis T, Keem M, Friedman R et al. Estimating numbers of injecting drug users in metropolitan areas for structural analyses of community vulnerability and for assessing relative degrees of service provision for injecting drug users, Journal of urban health : bulletin of the New York Academy of Medicine 2004: 81: 377–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Jones HE, Hickman M, Welton NJ, De Angelis D, Harris RJ, Ades AE Recapture or Precapture? Fallibility of Standard Capture-Recapture Methods in the Presence of Referrals Between Sources, Am J Epidemiol 2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet 2012: 380: 2224–2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet 2012: 380: 2197–2223. [DOI] [PubMed] [Google Scholar]
- 11.Degenhardt L, Charlson F, Stanaway J, Larney S, Alexander LT, Hickman M et al. Estimating the burden of disease attributable to injecting drug use as a risk factor for HIV, hepatitis C, and hepatitis B: findings from the Global Burden of Disease Study 2013, The Lancet Infectious Diseases 2016: 16: 1385–1398. [DOI] [PubMed] [Google Scholar]
- 12.Polaris Observatory HCVC Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study, Lancet Gastroenterol Hepatol 2017: 2: 161–176. [DOI] [PubMed] [Google Scholar]
- 13.Larney S, Hickman M, Guy R, Grebely J, Dore GJ, Gray RT et al. Estimating the number of people who inject drugs in Australia, BMC Public Health 2017: 17: 757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hickman M, De AD, Jones H, Harris R, Welton N, Ades AE Multiple parameter evidence synthesis-a potential solution for when information on drug use and harm is in conflict, Addiction 2013. [DOI] [PubMed] [Google Scholar]
- 15.Jones HE, Goulding N, Hickman M Commentary on Lai et al. (2018): Potential and limitations of wastewater-based epidemiology in monitoring substance use, Addiction 2018: 113: 1137–1138. [DOI] [PubMed] [Google Scholar]
- 16.Lai FY, Gartner C, Hall W, Carter S, O’Brien J, Tscharke BJ et al. Measuring spatial and temporal trends of nicotine and alcohol consumption in Australia using wastewater-based epidemiology, Addiction 2018: 113: 1127–1136. [DOI] [PubMed] [Google Scholar]