Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Aug 23;75(Pt 9):1352–1356. doi: 10.1107/S2056989019011551

Crystal structure and Hirshfeld surface analysis of 4-(4-methyl­benz­yl)-6-phenyl­pyridazin-3(2H)-one

Said Daoui a,*, Emine Berrin Cinar b, Fouad El Kalai a, Rafik Saddik c, Khalid Karrouchi d, Noureddine Benchat a, Cemile Baydere b, Necmi Dege b
PMCID: PMC6727051  PMID: 31523465

In the title compound, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network.

Keywords: crystal structure, Hirshfeld surface analysis, pyridazine, pyridazine derivative, pyridazinone

Abstract

In this paper, we describe the synthesis of a new di­hydro-2H-pyridazin-3-one derivative. The mol­ecule, C18H16N2O, is not planar; the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.47 (2)°, and the toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯N contacts. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R 2 2(8) ring motif. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional (2D) fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (56.6%), H⋯C/C⋯H (22.6%), O⋯H/H⋯O (10.0%) and N⋯C/C⋯N (3.5%) inter­actions.

Chemical context  

Pyridazines are an important family of six-membered aromatic heterocycles containing two N atoms. Pyridazinone is an important pharmacophore possessing a wide range of biological applications (Asif, 2014; Akhtar et al., 2016). The chemistry of pyridazinones has been an inter­esting field of study for decades and this nitro­gen heterocycle has become a scaffold of choice for the development of potential drug candidates (Dubey & Bhosle, 2015; Thakur et al., 2010). A review of the literature has revealed that substituted pyridazinones have received a lot of attention in recent years because of their significant potential as anti­microbial (Sönmez et al., 2006), anti­depressant (Boukharsa et al., 2016), anti-inflammatory (Barberot et al., 2018), anti­hypertensive (Siddiqui et al., 2011), analgesic (Gökçe et al., 2009), anti-HIV (Livermore et al., 1993), anti­convulsant (Partap et al., 2018; Sharma et al., 2014), cardiotonic (Wang et al., 2008), anti­histaminic (Tao et al., 2012), glucan synthase inhibitors (Zhou et al., 2011), phospho­diesterase (PDE) inhibitors (Ochiai et al., 2012) and herbicidal agents (Asif, 2013). In continuation of our work in this field (El Kali et al., 2019; Chkirate et al., 2019a ,b ; Karrouchi et al., 2015, 2016a ,b ), we report the synthesis and the crystal and mol­ecular structures of the title compound, as well as an analysis of its Hirshfeld surface.

Structural commentary  

In the title mol­ecule (Fig. 1), the C10=O1 bond length is 1.241 (3) Å while the N1—N2 and C11=N2 bond lengths are 1.347 (3) and 1.311 (4) Å, respectively (Table 1). The C9—C8—C5 bond angle is 113.7 (2)°, while the C4—C5—C8—C9, C6—C5—C8—C9 and C10—C9—C8—C5 torsion angles are 90.0 (3), −87.1 (3) and 169.1 (3)°, respectively. The mol­ecule is not planar as the benzene and pyridazine rings are twisted with respect to each other, making a dihedral angle of 11.469 (2)°. The toluene ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 89.624 (1)°.graphic file with name e-75-01352-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement elipsoids are drawn at the 20% probability level.

Table 1. Selected geometric parameters (Å, °).

O1—C10 1.241 (3) N1—C10 1.352 (4)
N1—N2 1.347 (3) N2—C11 1.311 (4)
       
O1—C10—N1 120.9 (3) C10—C9—C8 117.5 (2)
O1—C10—C9 123.9 (3) C9—C8—C5 113.7 (2)
       
N1—N2—C11—C13 177.4 (3) C4—C5—C8—C9 90.3 (4)
C10—C9—C8—C5 169.2 (3) C6—C5—C8—C9 −86.8 (4)

Supra­molecular features  

The mol­ecules are connected two-by-two through N1—H1⋯O1 hydrogen bonds (Table 2), with a Inline graphic(8) graph-set motif (Bernstein et al., 1995), and form inversion dimers (Fig. 2 a). Weak C—H⋯O hydrogen bonds and weak off-set π-stacking stabilize the packing. In the crystal, hydrogen bonds link the chains into a two-dimensional (2D) network parallel to (011) (Fig. 2 b and Table 2). The stacking occurs between the pyridazine rings of inversion-related mol­ecules [Cg1⋯Cg3 (at x − 1, y, z)], with a centroid-to-centroid distance of 3.8333 (18) Å and a slippage of 1.460 Å (Cg1 is the centroid of the C9–C11/N1/N2 ring and Cg3 is the centroid of the C13–C18 ring) (Fig. 2 a).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.836 (3) 175
C14—H14⋯N2 0.93 2.43 2.764 (3) 101

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

(a) A view along the c-axis direction of the title structure. Red dashed lines denote N—H⋯O hydrogen bonds. (b) A view along the a-axis direction of the title compound (Xu et al., 2005).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) using 4-ethyl-6-methyl­pyridazin-3(2H)-one (see A in Scheme) as the main skeleton revealed the presence of two structures containing the pyridazine moiety with different substituents similar to the title compound in this study. The structures are 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (CSD refcode YOT­VIN; Oubair et al., 2009) and 4-aryl-2,5-dioxo-8-phenyl­pyrido[2,3-d]pyridazines (BARQUG; Pita et al., 2000). In YOTVIN, the mol­ecules are connected two-by-two through N—H⋯O hydrogen bonds, with an Inline graphic(8) graph-set motif, building a pseudo-dimer arranged around the inversion centre. Weak C—H⋯O hydrogen bonds and weak off-set π–π stacking stabilize the packing. In BARQUG, the dihedral angle between the least-squares planes of the substituted phenyl and pyridone rings is 79.78 (2)° and between the pyridazinone ring and the unsubstitued phenyl ring is 57.37 (2)°.

Hirshfeld surface (HS) analysis  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated 2D fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface was calculated using a standard (high) surface resolution with the three-dimensional (3D) d norm surface plotted over a fixed colour scale of −0.6048 (red) to 1.4188 a.u. (blue). The 3D d norm surface of the title complex is illustrated in Figs. 3(a) and 4. The pale-red spots symbolize short contacts and negative d norm values on the surface correspond to the N—H⋯O inter­actions (Table 2). The overall 2D fingerprint plot and the 2D fingerprint plots for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and N⋯C/C⋯N contacts are shown in Fig. 5 (McKinnon et al., 2007), respectively, associated with their relative contributions to the Hirshfeld surface. The largest inter­action is H⋯H, contributing 56.6% to the overall crystal packing. In the fingerprint plot representing H⋯H contacts, the 56.6% contribution to the overall crystal packing, is reflected by widely scattered points of high density due to the large hydrogen content of the mol­ecule. The single spike in the centre at d e = d i = 0.936 Å in Fig. 5(b) is due to short inter­atomic H⋯H contacts. In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings in the fingerprint plot representing H⋯C/C⋯H contacts (22.6% contribution to the HS) have a symmetrical distribution of points (Fig. 5 c), with the tips at d e + d i = 2.797 Å. The O⋯H (Fig. 5 d) contacts contribute 10% to the HS and have a symmetrical distribution of points, with the tips at d e + d i = 1.853 Å. The contribution of the other contact to the Hirshfeld surface is N⋯C/C⋯N (3.5%). The Hirshfeld surface representations with the function d norm plotted on the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H inter­actions in Figs. 6. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 3.

Figure 3

(a) d norm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions; (b) shape-index map; (c) curvedness map of the title compound.

Figure 4.

Figure 4

d norm mapped on the Hirshfeld surface for visualizing the inter­molecular inter­actions and showing the dimer formed by inversion-related N—H⋯O hydrogen bonds.

Figure 5.

Figure 5

(a) The overall 2D fingerprint plot and (b) H⋯H, (c) C⋯H, (d) O⋯H and (e) N⋯C inter­actions are shown.

Figure 6.

Figure 6

Hirshfeld surface representation with the function d norm plotted on the surface for H⋯H, C⋯H, O⋯H and N⋯C inter­actions.

A shape-index map of the title compound was generated in the range −1 to 1 Å (Fig. 3 b). The convex blue regions on the shape-index symbolize hydrogen-donor groups and the concave red regions symbolize hydrogen-acceptor groups. The π–π inter­actions on the shape-index map of the Hirshfeld surface are generally indicated by adjacent red and blue triangles.

A curvedness map of the title compound was generated in the range −4 to 0.4 Å (Fig. 3 c). This shows large regions of green indicating a relatively flat surface area (planar), while the blue regions indicate areas of curvature. The presence of π–π stacking inter­actions is also evident in the flat regions around the rings on the Hirshfeld surface plotted over curvedness (see the Supra­molecular features section above).

Synthesis and crystallization  

To a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one and (0.12 g, 1 mmol) of 4-methyl­benz­aldehyde in ethanol (30 ml), sodium hydroxide (10%, 0.5 g, 3.5 mmol) was added. The solvent was evaporated under vacuum and the residue was purified through silica-gel column chromatography using hexa­ne/ethyl acetate (7:3 v/v). Slow evaporation at room temperature leads to single crystals.

Refinement  

H atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and U iso(H) = 1.5U eq(C) for methyl, C—H = 0.96 Å and U iso(H) = 1.2U eq(C) for methyl­ene, C—H = 0.93 Å and U iso(H) = 1.2U eq(C) for aromatic and C—H = 0.98 Å and U iso(H) = 1.2U eq(C) for methine H atoms. Crystal data, data collection and structure refinement details are summarized in Table 3.

Table 3. Experimental details.

Crystal data
Chemical formula C18H16N2O
M r 276.33
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 5.8479 (5), 8.5738 (7), 15.2439 (12)
α, β, γ (°) 80.693 (6), 83.147 (7), 78.164 (7)
V3) 735.27 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.27 × 0.20 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.966, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 9453, 2887, 1471
R int 0.086
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.068, 0.208, 1.05
No. of reflections 2887
No. of parameters 191
No. of restraints 84
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.32

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXT2017 (Sheldrick, 2015a ), Mercury (Macrae et al., 2008), SHELXL2018 (Sheldrick, 2015b ), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019011551/mw2146sup1.cif

e-75-01352-sup1.cif (478.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019011551/mw2146Isup3.hkl

e-75-01352-Isup3.hkl (230.7KB, hkl)

CCDC reference: 1947718

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

C18H16N2O Z = 2
Mr = 276.33 F(000) = 292
Triclinic, P1 Dx = 1.248 Mg m3
a = 5.8479 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5738 (7) Å Cell parameters from 8216 reflections
c = 15.2439 (12) Å θ = 2.5–30.7°
α = 80.693 (6)° µ = 0.08 mm1
β = 83.147 (7)° T = 296 K
γ = 78.164 (7)° Prism, colorless
V = 735.27 (11) Å3 0.27 × 0.20 × 0.06 mm

Data collection

Stoe IPDS 2 diffractometer 2887 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1471 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.086
Detector resolution: 6.67 pixels mm-1 θmax = 26.0°, θmin = 2.5°
rotation method scans h = −7→7
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −10→10
Tmin = 0.966, Tmax = 0.996 l = −18→18
9453 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual space
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0939P)2] where P = (Fo2 + 2Fc2)/3
2887 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.30 e Å3
84 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9692 (4) 0.6487 (3) 0.90252 (15) 0.0776 (7)
N1 0.7762 (4) 0.4423 (3) 0.94429 (17) 0.0653 (7)
H1 0.848007 0.419860 0.992137 0.078*
N2 0.6315 (4) 0.3435 (3) 0.93530 (17) 0.0621 (7)
C10 0.8227 (5) 0.5725 (4) 0.8874 (2) 0.0627 (8)
C13 0.3636 (6) 0.2661 (4) 0.8525 (2) 0.0728 (8)
C11 0.5151 (5) 0.3799 (4) 0.8641 (2) 0.0594 (8)
C5 0.6414 (6) 0.7618 (4) 0.6536 (2) 0.0668 (9)
C9 0.6964 (5) 0.6101 (4) 0.8080 (2) 0.0630 (8)
C12 0.5470 (5) 0.5134 (4) 0.7992 (2) 0.0671 (9)
H12 0.463050 0.535285 0.749060 0.080*
C2 0.4368 (7) 0.7711 (4) 0.4949 (2) 0.0738 (10)
C18 0.2108 (6) 0.2984 (4) 0.7881 (2) 0.0750 (8)
H18 0.200948 0.394224 0.748873 0.090*
C3 0.3212 (7) 0.8506 (5) 0.5622 (3) 0.0806 (11)
H3 0.170292 0.909110 0.555296 0.097*
C17 0.0695 (6) 0.1901 (5) 0.7802 (3) 0.0812 (9)
H17 −0.034226 0.214814 0.736029 0.097*
C8 0.7452 (7) 0.7504 (4) 0.7414 (2) 0.0793 (11)
H8A 0.913650 0.742443 0.729872 0.095*
H8B 0.682622 0.848692 0.766918 0.095*
C16 0.0804 (7) 0.0510 (5) 0.8351 (3) 0.0895 (10)
H16 −0.016404 −0.019967 0.829942 0.107*
C4 0.4200 (7) 0.8474 (4) 0.6402 (2) 0.0770 (10)
H4 0.335386 0.904240 0.684478 0.092*
C6 0.7593 (6) 0.6817 (5) 0.5855 (3) 0.0819 (11)
H6 0.910392 0.623176 0.591920 0.098*
C7 0.6572 (7) 0.6867 (5) 0.5077 (3) 0.0870 (11)
H7 0.741083 0.631025 0.462885 0.104*
C1 0.3250 (8) 0.7769 (6) 0.4096 (3) 0.1041 (14)
H1A 0.164486 0.831458 0.415749 0.156*
H1B 0.330986 0.669253 0.398093 0.156*
H1C 0.408494 0.833710 0.360869 0.156*
C14 0.3757 (8) 0.1221 (5) 0.9057 (3) 0.1055 (11)
H14 0.482967 0.094249 0.948657 0.127*
C15 0.2333 (8) 0.0152 (6) 0.8979 (3) 0.1111 (11)
H15 0.243396 −0.081609 0.936290 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0901 (16) 0.0843 (16) 0.0741 (15) −0.0425 (13) −0.0351 (12) −0.0038 (12)
N1 0.0704 (16) 0.0782 (18) 0.0577 (16) −0.0304 (14) −0.0247 (13) −0.0051 (14)
N2 0.0635 (15) 0.0736 (18) 0.0579 (16) −0.0271 (13) −0.0179 (12) −0.0074 (13)
C10 0.0695 (19) 0.069 (2) 0.059 (2) −0.0260 (16) −0.0192 (15) −0.0100 (16)
C13 0.0799 (18) 0.0761 (18) 0.0732 (19) −0.0356 (16) −0.0284 (15) −0.0002 (15)
C11 0.0597 (18) 0.066 (2) 0.0576 (19) −0.0200 (15) −0.0160 (15) −0.0061 (16)
C5 0.078 (2) 0.0570 (19) 0.073 (2) −0.0278 (17) −0.0288 (18) 0.0040 (17)
C9 0.0674 (19) 0.066 (2) 0.062 (2) −0.0214 (16) −0.0219 (15) −0.0037 (16)
C12 0.0689 (19) 0.074 (2) 0.067 (2) −0.0271 (17) −0.0306 (16) −0.0010 (17)
C2 0.092 (3) 0.077 (2) 0.061 (2) −0.036 (2) −0.0167 (19) −0.0020 (18)
C18 0.0798 (18) 0.0817 (18) 0.0737 (18) −0.0301 (15) −0.0258 (15) −0.0083 (15)
C3 0.078 (2) 0.086 (3) 0.078 (3) −0.008 (2) −0.028 (2) −0.007 (2)
C17 0.0827 (18) 0.093 (2) 0.083 (2) −0.0327 (16) −0.0299 (16) −0.0198 (16)
C8 0.096 (3) 0.079 (2) 0.075 (2) −0.043 (2) −0.034 (2) 0.0059 (19)
C16 0.098 (2) 0.093 (2) 0.095 (2) −0.0501 (18) −0.0263 (17) −0.0138 (17)
C4 0.087 (3) 0.080 (2) 0.068 (2) −0.012 (2) −0.0180 (19) −0.0154 (19)
C6 0.068 (2) 0.083 (3) 0.095 (3) −0.0052 (19) −0.020 (2) −0.015 (2)
C7 0.090 (3) 0.102 (3) 0.073 (3) −0.017 (2) −0.006 (2) −0.026 (2)
C1 0.132 (4) 0.117 (3) 0.077 (3) −0.044 (3) −0.038 (2) −0.006 (2)
C14 0.121 (2) 0.101 (2) 0.110 (2) −0.0590 (19) −0.0567 (19) 0.0217 (18)
C15 0.128 (2) 0.102 (2) 0.119 (2) −0.0644 (19) −0.0481 (19) 0.0192 (19)

Geometric parameters (Å, º)

O1—C10 1.241 (3) C18—H18 0.9300
N1—N2 1.347 (3) C3—C4 1.378 (5)
N1—C10 1.352 (4) C3—H3 0.9300
N1—H1 0.8600 C17—C16 1.336 (5)
N2—C11 1.311 (4) C17—H17 0.9300
C10—C9 1.449 (4) C8—H8A 0.9700
C13—C14 1.357 (5) C8—H8B 0.9700
C13—C18 1.364 (4) C16—C15 1.344 (6)
C13—C11 1.488 (4) C16—H16 0.9300
C11—C12 1.415 (4) C4—H4 0.9300
C5—C4 1.372 (5) C6—C7 1.381 (5)
C5—C6 1.375 (5) C6—H6 0.9300
C5—C8 1.515 (4) C7—H7 0.9300
C9—C12 1.353 (4) C1—H1A 0.9600
C9—C8 1.496 (4) C1—H1B 0.9600
C12—H12 0.9300 C1—H1C 0.9600
C2—C3 1.359 (5) C14—C15 1.386 (5)
C2—C7 1.361 (5) C14—H14 0.9300
C2—C1 1.512 (5) C15—H15 0.9300
C18—C17 1.391 (4)
N2—N1—C10 128.0 (2) C16—C17—H17 119.5
N2—N1—H1 116.0 C18—C17—H17 119.5
C10—N1—H1 116.0 C9—C8—C5 113.7 (2)
C11—N2—N1 116.5 (3) C9—C8—H8A 108.8
O1—C10—N1 120.9 (3) C5—C8—H8A 108.8
O1—C10—C9 123.9 (3) C9—C8—H8B 108.8
N1—C10—C9 115.1 (2) C5—C8—H8B 108.8
C14—C13—C18 116.8 (3) H8A—C8—H8B 107.7
C14—C13—C11 120.7 (3) C17—C16—C15 119.1 (3)
C18—C13—C11 122.5 (3) C17—C16—H16 120.5
N2—C11—C12 121.3 (3) C15—C16—H16 120.5
N2—C11—C13 116.2 (3) C5—C4—C3 121.0 (4)
C12—C11—C13 122.4 (3) C5—C4—H4 119.5
C4—C5—C6 117.0 (3) C3—C4—H4 119.5
C4—C5—C8 121.1 (4) C5—C6—C7 121.1 (4)
C6—C5—C8 121.9 (3) C5—C6—H6 119.4
C12—C9—C10 117.4 (3) C7—C6—H6 119.4
C12—C9—C8 125.0 (3) C2—C7—C6 121.7 (4)
C10—C9—C8 117.5 (2) C2—C7—H7 119.1
C9—C12—C11 121.7 (3) C6—C7—H7 119.1
C9—C12—H12 119.1 C2—C1—H1A 109.5
C11—C12—H12 119.1 C2—C1—H1B 109.5
C3—C2—C7 117.0 (3) H1A—C1—H1B 109.5
C3—C2—C1 121.2 (4) C2—C1—H1C 109.5
C7—C2—C1 121.8 (4) H1A—C1—H1C 109.5
C13—C18—C17 120.9 (4) H1B—C1—H1C 109.5
C13—C18—H18 119.6 C13—C14—C15 122.0 (4)
C17—C18—H18 119.6 C13—C14—H14 119.0
C2—C3—C4 122.2 (4) C15—C14—H14 119.0
C2—C3—H3 118.9 C16—C15—C14 120.1 (4)
C4—C3—H3 118.9 C16—C15—H15 119.9
C16—C17—C18 121.0 (3) C14—C15—H15 119.9
C10—N1—N2—C11 −2.3 (5) C1—C2—C3—C4 −179.7 (4)
N2—N1—C10—O1 −176.7 (3) C13—C18—C17—C16 −0.4 (6)
N2—N1—C10—C9 1.2 (5) C12—C9—C8—C5 −9.4 (6)
N1—N2—C11—C12 1.9 (5) C10—C9—C8—C5 169.2 (3)
N1—N2—C11—C13 177.4 (3) C4—C5—C8—C9 90.3 (4)
C14—C13—C11—N2 −9.6 (5) C6—C5—C8—C9 −86.8 (4)
C18—C13—C11—N2 171.6 (3) C18—C17—C16—C15 −1.0 (7)
C14—C13—C11—C12 165.7 (4) C6—C5—C4—C3 0.7 (5)
C18—C13—C11—C12 −13.0 (5) C8—C5—C4—C3 −176.5 (3)
O1—C10—C9—C12 178.0 (3) C2—C3—C4—C5 −0.5 (6)
N1—C10—C9—C12 0.2 (5) C4—C5—C6—C7 −0.6 (5)
O1—C10—C9—C8 −0.7 (5) C8—C5—C6—C7 176.6 (3)
N1—C10—C9—C8 −178.5 (3) C3—C2—C7—C6 0.0 (6)
C10—C9—C12—C11 −0.4 (5) C1—C2—C7—C6 179.9 (4)
C8—C9—C12—C11 178.2 (3) C5—C6—C7—C2 0.2 (6)
N2—C11—C12—C9 −0.7 (5) C18—C13—C14—C15 −2.7 (7)
C13—C11—C12—C9 −175.9 (3) C11—C13—C14—C15 178.5 (4)
C14—C13—C18—C17 2.2 (6) C17—C16—C15—C14 0.5 (7)
C11—C13—C18—C17 −179.0 (3) C13—C14—C15—C16 1.4 (8)
C7—C2—C3—C4 0.1 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 1.98 2.836 (3) 175
C14—H14···N2 0.93 2.43 2.764 (3) 101

Symmetry code: (i) −x+2, −y+1, −z+2.

References

  1. Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281. [DOI] [PubMed]
  2. Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.
  3. Asif, M. (2014). Mini Rev. Med. Chem. 14, 1093–1103. [DOI] [PubMed]
  4. Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M. & SAPI, J. (2018). Eur. J. Med. Chem. 146, 139–146. [DOI] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J. & Cherrah, Y. (2016). Med. Chem. Res. 25, 494–500.
  7. Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158. [DOI] [PMC free article] [PubMed]
  8. Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. [DOI] [PMC free article] [PubMed]
  9. Dubey, S. & Bhosle, P. A. (2015). Med. Chem. Res. 24, 3579–3598.
  10. El Kali, F., Kansiz, S., Daoui, S., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 650–654. [DOI] [PMC free article] [PubMed]
  11. Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  14. Karrouchi, K., Ansar, M., Radi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o890–o891. [DOI] [PMC free article] [PubMed]
  15. Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016a). Z. Kristallogr. New Cryst. Struct. 231, 883–886.
  16. Karrouchi, K., Radi, S., Ansar, M. H., Taoufik, J., Ghabbour, H. A. & Mabkhot, Y. N. (2016b). Z. Kristallogr. New Cryst. Struct. 231, 839–841.
  17. Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M. & Green, D. (1993). J. Med. Chem. 36, 3784–3794. [DOI] [PubMed]
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K. & Kishi, T. (2012). Bioorg. Med. Chem. 20, 1644–1658. [DOI] [PubMed]
  21. Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351. [DOI] [PMC free article] [PubMed]
  22. Partap, S., Akhtar, M. J., Yar, M. S., Hassan, M. Z. & Siddiqui, A. A. (2018). Bioorg. Chem. 77, 74–83. [DOI] [PubMed]
  23. Pita, B., Sotelo, E., Suarez, M., Ravina, E., Ochoa, E., Verdecia, Y., Novoa, H., Blaton, N., Ranter, C. & Peeters, O. M. (2000). Tetrahedron, 56, 2473–2479.
  24. Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026. [DOI] [PubMed]
  28. Sönmez, M., Berber, İ. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105. [DOI] [PubMed]
  29. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  30. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  31. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  32. Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z. & Lyons, J. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077. [DOI] [PubMed]
  33. Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem. 3, 265–271.
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
  35. Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573. [DOI] [PubMed]
  36. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  37. Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.
  38. Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R. & Zych, A. J. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989019011551/mw2146sup1.cif

e-75-01352-sup1.cif (478.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019011551/mw2146Isup3.hkl

e-75-01352-Isup3.hkl (230.7KB, hkl)

CCDC reference: 1947718

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES