Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Aug 16;75(Pt 9):1316–1320. doi: 10.1107/S2056989019011253

The fumarate salts of the N-isopropyl-N-methyl derivatives of DMT and psilocin

Andrew R Chadeayne a,*, Duyen N K Pham b, James A Golen b, David R Manke b
PMCID: PMC6727059  PMID: 31523457

The crystal structures of the fumarate salts of the psychomimetics MiPT and 4-HO-MiPT are reported. The extended structure of both compounds feature two-dimensional networks of ions connected through N—H⋯O and O—H⋯O hydrogen bonds.

Keywords: crystal structure, tryptamines, hydrogen bonding

Abstract

The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyl­tryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate}, C14H21N2 +·C4H3O4 , and 4-hy­droxy-N-isopropyl-N-methyl­tryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate monohydrate}, C14H21N2O+·C4H3O4 ·H2O, are reported. Both salts possess a proton­ated tryptammonium cation and a 3-carb­oxy­acrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water mol­ecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks.

Chemical context  

N,N-di­methyl­tryptamine (DMT) and its derivatives have been used by humans for centuries because of their psychoactive, entheogenic, or hallucinogenic effects, or combinations thereof (Cameron & Olson, 2018). Psilocybin, the 4-phosphate variant of DMT, is arguably its most studied derivative. Psilocybin is one of several naturally occurring psychoactive tryptamines found in ‘magic’ mushrooms. When consumed by humans, psilocybin serves as a prodrug of psilocin. Upon digestion, psilocybin hydrolyses to generate psilocin, the 4-hy­droxy derivative of DMT. Psilocin is a potent seratonin 2a-agonist, which is responsible for its psychoactive properties (Dinis-Oliveira, 2017; Nichols, 2012). Psychoactive tryptamines like DMT and psilocin have garnered significant inter­est recently because of their potential for treating mood disorders, including depression, anxiety, addiction, and post-traumatic stress disorder (PTSD) (Johnson & Griffiths, 2017; Carhart-Harris & Goodwin, 2017).

Altering the chemical structure within this class of compounds can dramatically influence the potency and action of the drugs. For example, merely changing the N,N-dialkyl groups on DMT can modify its psychoactive properties: increasing the chain length of the two alkyl groups of the tryptamine to larger than n-butyl dramatically reduces or eliminates the psychoactive effects (Bradley & Johnston, 1970).

The synthesis of N-methyl-N-iso­propyl­tryptamine (MiPT) was reported in 1981 (Repke et al., 1981). In 1985, Repke and co-workers reported that of the compounds in the series of N,N-dialkyl-4-hy­droxy­tryptamines, the N-methyl-N-isopropyl derivative (4-HO-MiPT) is the most potent based upon qualitative effects on humans (Repke et al., 1985). Later qu­an­ti­tative studies showed the N-methyl-N-isopropyl deriv­atives of DMT and psilocin to be more potent as seratonin-1A, −2A and −2B receptors compared to the analogous dimethyl compounds (McKenna et al., 1990).graphic file with name e-75-01316-scheme1.jpg

Improving our understanding of how these drugs inter­act with particular biological receptors requires a complete understanding of their chemical structures. Given their therapeutic potential and the significant structure–activity relationship between them, further studies would benefit from better understanding of their chemical structures. Responding to this unmet need, we report the crystal structures of the fumarate salts of MiPT and 4-HO-MiPT herein.

Structural commentary  

The mol­ecular structure of MiPT fumarate is shown on the left of Fig. 1. The asymmetric unit contains one N-methyl-N-iso­propyl­tryptammonium (C14H21N2 +) cation and one 3-carb­oxy­acrylate (C4H3O4 ) anion. The indole ring system of the cation is near planar with an r.m.s. deviation from planarity of 0.006 Å. The singly protonated fumarate anion is in the trans configuration and is slightly distorted from planarity with an r.m.s. deviation of 0.133 Å and a carboxyl­ate twist angle of 18.370 (5)°. The N-methyl-N-iso­propyl­ammonium group is disordered over two orientations in a 0.630 (3):0.370 (3) ratio.

Figure 1.

Figure 1

The mol­ecular structure of MiPT fumarate (left) and HO-MiPT fumarate (right), showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate a disordered component in the structures. Hydrogen bonds are shown as dashed lines.

The mol­ecular structure of 4-HO-MiPT fumarate monohydrate is shown on the right of Fig. 1. The asymmetric unit contains one 4-hy­droxy-N-methyl-N-iso­propyl­trypt­ammo­nium (C14H21N2O+) cation, one 3-carb­oxy­acrylate anion and one water mol­ecule of crystallization. The indole ring system of the cation is close to planar with an r.m.s. deviation of 0.021 Å. The singly protonated fumarate anion is also near planar with an r.m.s. deviation of 0.049 Å. The N-methyl-N-iso­propyl­ammonium group shows a similar disorder to the MiPT structure over two orientations in a 0.775 (5):0.225 (5) ratio.

Supra­molecular features  

In the extended structure of MiPT fumarate, the N-methyl-N-iso­propyl­amine and fumarate ions are linked into infinite two-dimensional networks lying parallel to the (010) plane through N—H⋯O and O—H⋯O hydrogen bonds (Table 1). The proton of the ammonium cation forms a hydrogen bond with one of the oxygen atoms of the deprotonated –CO2 group of the 3-carb­oxy­acrylate ion. The carb­oxy­lic acid proton forms a hydrogen bond with an oxygen atom of an adjacent 3-carb­oxy­acrylate anion. The N—H grouping of the indole ring also hydrogen bonds to one of the oxygen atoms of the 3-carb­oxy­acrylate anion. The hydrogen bonding is shown on the left in Fig. 2, and the packing of MiPT fumarate is shown on the left in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °) for MiPT .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.87 (1) 1.66 (1) 2.5316 (18) 176 (3)
N1—H1⋯O1ii 0.87 (1) 2.04 (1) 2.874 (2) 160 (2)
N2—H2⋯O2 0.88 (1) 1.79 (1) 2.667 (3) 173 (3)
N2A—H2A⋯O2 0.88 (1) 1.81 (2) 2.670 (5) 167 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The hydrogen bonding of the fumarate ion in the structure of MiPT (left) and HO-MiPT (right). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of the amine disorder is shown. Symmetry codes: (i) x, Inline graphic − y, −Inline graphic + z (ii) x, Inline graphic − y, Inline graphic + z (iii) −1 + x, Inline graphic − y, −Inline graphic + z (iv) Inline graphic − x, Inline graphic − y, 1 − z (v) x, −1 + y, z (vi) 1 − x, 2 − y, −z.

Figure 3.

Figure 3

The crystal packing of MiPT fumarate (left), viewed along the a axis, and the crystal packing of HO-MiPT fumarate (right), viewed along the b axis. The hydrogen bonds (Tables 1 and 2) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of the amine disorder is shown.

In the structure of 4-HO-MiPT fumarate, there are N—H⋯O and O—H⋯O hydrogen bonds that link together the cations and anions as well as the water mol­ecules of crystallization (Table 2). The result is a two-dimensional network lying parallel to the (Inline graphic01) plane. The proton of the ammonium cation forms a bifurcated N—H⋯(O,O) hydrogen bond with the deprotonated –CO2 group of the 3-carb­oxy­acrylate ion. The hydrogen of the hy­droxy group also hydrogen bonds to the same oxygen atom of the anion. The carb­oxy­lic acid proton hydrogen bonds with a water mol­ecule in the structure. Two other water mol­ecules form hydrogen bonds with two different oxygen atoms of the anion. The hydrogen bonding is shown on the right in Fig. 2, and the packing of 4-HO-MiPT fumarate is shown on the right in Fig. 3.

Table 2. Hydrogen-bond geometry (Å, °) for 4-HO-MiPT .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 (1) 2.51 (2) 3.085 (2) 124 (2)
N2—H2⋯O3i 0.88 (1) 1.89 (1) 2.775 (2) 178 (2)
N2A—H2A⋯O3i 0.87 (1) 1.85 (2) 2.717 (6) 172 (8)
O1—H1⋯O3 0.87 (2) 1.79 (3) 2.6512 (17) 172 (2)
O4—H4A⋯O1W 0.93 (3) 1.66 (3) 2.579 (2) 167 (3)
O1W—H1WA⋯O5ii 0.84 (3) 1.98 (3) 2.779 (2) 160 (2)
O1W—H1WB⋯O2iii 0.87 (3) 1.74 (3) 2.599 (2) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

The MiPT structure described above is a derivative of DMT (N,N-di­methyl­tryptamine), which has been structurally characterized (Falkenberg, 1972), as well as its close derivative MPT, N-methyl-N-propyl­tryptamine (Chadeayne et al. 2019b ). In both cases, these were crystallized as free bases, while MiPT is the fumarate salt. In the case of 4-HO-MiPT, the most closely related mol­ecule is psilocin, which has been structurally characterized (Petcher & Weber, 1974), as well as psilocybin (Weber & Petcher, 1974). Psilocin was reported as the free base and psilocybin was reported as a zwitterionic mol­ecule, while the structure of 4-HO-MiPT reported here is the hydrated fumarate salt. Two different ionic structures of the 4-acet­oxy derivative of DMT have been reported as fumarate salts (Chadeayne et al. 2019a ,c ). The metrical parameters of the tryptammonium cations for MiPT and 4-HO-MiPT are consistent with those of the other tryptammonium structures reported.

Synthesis and crystallization  

Single crystals suitable for X-ray analysis were obtained from the slow evaporation of aqueous solutions of commercial samples of N-methyl-N-iso­propyl­tryptammonium fumarate and 4-hy­droxy-N-methyl-N-iso­propyl­tryptammonium fumarate (The Indole Shop).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). The following restraints were applied: C—N = 1.54±0.01, N—H = 0.87±0.01, O—H = 0.86±0.01 Å. N- and O-bound H atoms were refined with U iso(H) = 1.5U eq(N,O). In the MiPT fumarate, the N-methyl-N-iso­propyl­aminium group is disordered. It is modeled as two components: N2 and C11–C14 with an occupancy of 0.630 (3) and N2A and C11A–C14A with an occupancy of 0.370 (3). 4-HO MiPT fumarate exhibits a similar disorder of the N-methyl-N-iso­propyl­aminium group that is modeled as two components: N2, C11--C14 with an occupancy of 0.775 (5) and N2A, C11A–C14A with an occupancy of 0.225 (5).

Table 3. Experimental details.

  MiPT 4-HO-MiPT
Crystal data
Chemical formula C14H21N2 +·C4H3O4 C14H21N2O+·C4H3O4 ·H2O
M r 332.39 366.41
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 200 200
a, b, c (Å) 9.852 (2), 12.789 (2), 14.875 (3) 29.507 (3), 8.7445 (8), 17.3659 (18)
β (°) 106.932 (7) 123.389 (3)
V3) 1793.0 (6) 3741.2 (7)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.20 × 0.18 × 0.05 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.687, 0.745 0.719, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 36899, 3297, 2605 70395, 3458, 2978
R int 0.052 0.041
(sin θ/λ)max−1) 0.604 0.604
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.127, 1.06 0.041, 0.096, 1.08
No. of reflections 3297 3458
No. of parameters 240 320
No. of restraints 8 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.26 0.22, −0.20

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) MiPT, 4-HO-MiPT, I. DOI: 10.1107/S2056989019011253/hb7844sup1.cif

e-75-01316-sup1.cif (3.1MB, cif)

Structure factors: contains datablock(s) MiPT. DOI: 10.1107/S2056989019011253/hb7844MiPTsup2.hkl

e-75-01316-MiPTsup2.hkl (263.3KB, hkl)

Structure factors: contains datablock(s) 4-HO-MiPT. DOI: 10.1107/S2056989019011253/hb78444-HO-MiPTsup3.hkl

Supporting information file. DOI: 10.1107/S2056989019011253/hb7844MiPTsup4.cml

Supporting information file. DOI: 10.1107/S2056989019011253/hb78444-HO-MiPTsup5.cml

CCDC references: 1946718, 1946717

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial statements and conflict of inter­est: This study was funded by CaaMTech, LLC. ARC reports an ownership inter­est in CaaMTech, LLC, which has filed patent applications covering compositions of psilocybin derivatives.

supplementary crystallographic information

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Crystal data

C14H21N2+·C4H3O4 F(000) = 712
Mr = 332.39 Dx = 1.231 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.852 (2) Å Cell parameters from 9752 reflections
b = 12.789 (2) Å θ = 3.0–25.3°
c = 14.875 (3) Å µ = 0.09 mm1
β = 106.932 (7)° T = 200 K
V = 1793.0 (6) Å3 BLOCK, colourless
Z = 4 0.20 × 0.18 × 0.05 mm

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Data collection

Bruker D8 Venture CMOS diffractometer 2605 reflections with I > 2σ(I)
φ and ω scans Rint = 0.052
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.4°, θmin = 3.0°
Tmin = 0.687, Tmax = 0.745 h = −11→11
36899 measured reflections k = −15→15
3297 independent reflections l = −17→17

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.0971P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.26 e Å3
3297 reflections Δρmin = −0.25 e Å3
240 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraints Extinction coefficient: 0.039 (3)

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.17442 (15) 0.78060 (11) 0.58471 (8) 0.0395 (4)
O2 0.21577 (18) 0.61007 (12) 0.58250 (9) 0.0521 (4)
O3 0.19484 (17) 0.72434 (11) 0.25829 (9) 0.0442 (4)
H3A 0.184 (3) 0.724 (2) 0.1982 (8) 0.066*
O4 0.1592 (2) 0.55393 (12) 0.24156 (11) 0.0731 (6)
N1 0.88917 (17) 0.64452 (13) 1.00719 (12) 0.0382 (4)
H1 0.9809 (11) 0.6526 (17) 1.0259 (15) 0.046*
N2 0.3185 (3) 0.5163 (2) 0.74864 (18) 0.0303 (7) 0.630 (3)
H2 0.281 (3) 0.551 (2) 0.6962 (14) 0.036* 0.630 (3)
C11 0.3410 (4) 0.4055 (3) 0.7190 (2) 0.0443 (4) 0.630 (3)
H11 0.3829 0.3640 0.7775 0.053* 0.630 (3)
C12 0.2020 (4) 0.3543 (3) 0.6666 (3) 0.0443 (4) 0.630 (3)
H12A 0.2210 0.2905 0.6359 0.066* 0.630 (3)
H12B 0.1459 0.4027 0.6191 0.066* 0.630 (3)
H12C 0.1490 0.3365 0.7110 0.066* 0.630 (3)
C13 0.4553 (5) 0.4179 (4) 0.6694 (3) 0.0443 (4) 0.630 (3)
H13A 0.5401 0.4493 0.7127 0.066* 0.630 (3)
H13B 0.4200 0.4631 0.6143 0.066* 0.630 (3)
H13C 0.4794 0.3491 0.6493 0.066* 0.630 (3)
C14 0.2176 (6) 0.5221 (4) 0.8107 (4) 0.0443 (4) 0.630 (3)
H14A 0.2112 0.5946 0.8304 0.066* 0.630 (3)
H14B 0.2545 0.4779 0.8664 0.066* 0.630 (3)
H14C 0.1232 0.4974 0.7749 0.066* 0.630 (3)
N2A 0.3757 (5) 0.4914 (4) 0.7207 (3) 0.0342 (11) 0.370 (3)
H2A 0.336 (6) 0.533 (4) 0.674 (3) 0.041* 0.370 (3)
C11A 0.2757 (6) 0.4302 (5) 0.7616 (4) 0.0443 (4) 0.370 (3)
H11A 0.3302 0.3822 0.8124 0.053* 0.370 (3)
C12A 0.1685 (8) 0.3698 (6) 0.6867 (5) 0.0443 (4) 0.370 (3)
H12D 0.2131 0.3066 0.6710 0.066* 0.370 (3)
H12E 0.1341 0.4134 0.6305 0.066* 0.370 (3)
H12F 0.0887 0.3500 0.7099 0.066* 0.370 (3)
C13A 0.4250 (8) 0.4028 (6) 0.6507 (5) 0.0443 (4) 0.370 (3)
H13D 0.5166 0.4234 0.6426 0.066* 0.370 (3)
H13E 0.3532 0.4006 0.5892 0.066* 0.370 (3)
H13F 0.4336 0.3335 0.6800 0.066* 0.370 (3)
C14A 0.1952 (10) 0.5037 (7) 0.7980 (7) 0.0443 (4) 0.370 (3)
H14D 0.1334 0.4659 0.8279 0.066* 0.370 (3)
H14E 0.1373 0.5467 0.7465 0.066* 0.370 (3)
H14F 0.2601 0.5487 0.8445 0.066* 0.370 (3)
C1 0.8135 (2) 0.57049 (15) 0.94651 (13) 0.0380 (5)
H1A 0.8536 0.5193 0.9156 0.046*
C2 0.7970 (2) 0.70501 (14) 1.03799 (13) 0.0333 (4)
C3 0.8232 (2) 0.78851 (15) 1.10072 (14) 0.0411 (5)
H3 0.9169 0.8130 1.1293 0.049*
C4 0.7083 (2) 0.83418 (16) 1.11972 (16) 0.0475 (5)
H4 0.7230 0.8911 1.1625 0.057*
C5 0.5702 (2) 0.79874 (17) 1.07743 (16) 0.0468 (5)
H5 0.4929 0.8323 1.0916 0.056*
C6 0.5444 (2) 0.71618 (15) 1.01564 (14) 0.0392 (5)
H6 0.4501 0.6926 0.9874 0.047*
C7 0.6584 (2) 0.66727 (14) 0.99481 (12) 0.0317 (4)
C8 0.6725 (2) 0.58089 (14) 0.93698 (12) 0.0343 (4)
C9 0.5561 (2) 0.51227 (15) 0.87944 (13) 0.0410 (5)
H9A 0.4972 0.4877 0.9190 0.049*
H9B 0.5982 0.4502 0.8581 0.049*
C10 0.4622 (2) 0.56961 (15) 0.79425 (13) 0.0413 (5)
H10A 0.5141 0.5759 0.7466 0.050* 0.630 (3)
H10B 0.4446 0.6412 0.8135 0.050* 0.630 (3)
H10C 0.5221 0.6129 0.7657 0.050* 0.370 (3)
H10D 0.3967 0.6167 0.8143 0.050* 0.370 (3)
C15 0.19062 (19) 0.69693 (15) 0.54455 (12) 0.0311 (4)
C16 0.17850 (19) 0.70575 (15) 0.44231 (12) 0.0314 (4)
H16 0.1595 0.7725 0.4133 0.038*
C17 0.1928 (2) 0.62619 (16) 0.39115 (13) 0.0379 (5)
H17 0.2124 0.5600 0.4212 0.045*
C18 0.1807 (2) 0.63118 (15) 0.28967 (13) 0.0366 (5)

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0506 (8) 0.0474 (8) 0.0207 (6) 0.0070 (6) 0.0106 (6) −0.0012 (6)
O2 0.0820 (12) 0.0477 (9) 0.0241 (7) 0.0098 (8) 0.0117 (7) 0.0083 (6)
O3 0.0714 (10) 0.0420 (8) 0.0197 (7) −0.0031 (7) 0.0143 (7) −0.0007 (6)
O4 0.1495 (19) 0.0411 (9) 0.0324 (8) −0.0018 (10) 0.0323 (10) −0.0061 (7)
N1 0.0326 (9) 0.0421 (9) 0.0379 (9) −0.0025 (7) 0.0068 (7) −0.0066 (7)
N2 0.0357 (16) 0.0298 (14) 0.0220 (14) −0.0031 (12) 0.0034 (12) −0.0004 (11)
C11 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C12 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C13 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C14 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
N2A 0.040 (3) 0.033 (3) 0.025 (2) −0.002 (2) 0.002 (2) 0.000 (2)
C11A 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C12A 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C13A 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C14A 0.0445 (12) 0.0460 (10) 0.0386 (10) −0.0045 (7) 0.0064 (7) −0.0135 (8)
C1 0.0453 (12) 0.0365 (10) 0.0305 (10) 0.0001 (9) 0.0084 (9) −0.0056 (8)
C2 0.0369 (10) 0.0314 (9) 0.0296 (9) −0.0035 (8) 0.0066 (8) −0.0005 (7)
C3 0.0431 (11) 0.0376 (11) 0.0385 (11) −0.0104 (9) 0.0055 (9) −0.0081 (9)
C4 0.0602 (14) 0.0360 (11) 0.0467 (12) −0.0029 (10) 0.0159 (11) −0.0117 (9)
C5 0.0477 (13) 0.0433 (12) 0.0514 (13) 0.0043 (10) 0.0175 (10) −0.0052 (10)
C6 0.0346 (10) 0.0393 (11) 0.0409 (11) −0.0028 (8) 0.0069 (9) 0.0015 (9)
C7 0.0360 (10) 0.0288 (9) 0.0264 (9) −0.0031 (7) 0.0029 (8) 0.0020 (7)
C8 0.0419 (11) 0.0313 (9) 0.0252 (9) −0.0041 (8) 0.0025 (8) −0.0006 (7)
C9 0.0505 (12) 0.0342 (10) 0.0288 (10) −0.0102 (9) −0.0033 (9) 0.0004 (8)
C10 0.0500 (12) 0.0360 (10) 0.0291 (10) −0.0150 (9) −0.0025 (9) 0.0034 (8)
C15 0.0283 (9) 0.0436 (11) 0.0201 (9) 0.0028 (8) 0.0049 (7) 0.0025 (8)
C16 0.0340 (10) 0.0384 (10) 0.0208 (9) 0.0026 (8) 0.0063 (7) 0.0036 (7)
C17 0.0505 (12) 0.0392 (10) 0.0237 (9) 0.0066 (9) 0.0104 (8) 0.0038 (8)
C18 0.0478 (12) 0.0392 (11) 0.0232 (9) 0.0067 (9) 0.0108 (8) −0.0008 (8)

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Geometric parameters (Å, º)

O1—C15 1.258 (2) C12A—H12F 0.9800
O2—C15 1.238 (2) C13A—H13D 0.9800
O3—H3A 0.869 (10) C13A—H13E 0.9800
O3—C18 1.302 (2) C13A—H13F 0.9800
O4—C18 1.202 (2) C14A—H14D 0.9800
N1—H1 0.870 (10) C14A—H14E 0.9800
N1—C1 1.369 (2) C14A—H14F 0.9800
N1—C2 1.369 (3) C1—H1A 0.9500
N2—H2 0.880 (10) C1—C8 1.361 (3)
N2—C11 1.518 (4) C2—C3 1.392 (3)
N2—C14 1.543 (7) C2—C7 1.414 (3)
N2—C10 1.540 (3) C3—H3 0.9500
C11—H11 1.0000 C3—C4 1.375 (3)
C11—C12 1.513 (5) C4—H4 0.9500
C11—C13 1.523 (6) C4—C5 1.397 (3)
C12—H12A 0.9800 C5—H5 0.9500
C12—H12B 0.9800 C5—C6 1.374 (3)
C12—H12C 0.9800 C6—H6 0.9500
C13—H13A 0.9800 C6—C7 1.397 (3)
C13—H13B 0.9800 C7—C8 1.432 (3)
C13—H13C 0.9800 C8—C9 1.499 (3)
C14—H14A 0.9800 C9—H9A 0.9900
C14—H14B 0.9800 C9—H9B 0.9900
C14—H14C 0.9800 C9—C10 1.522 (3)
N2A—H2A 0.876 (10) C10—H10A 0.9900
N2A—C11A 1.518 (6) C10—H10B 0.9900
N2A—C13A 1.702 (10) C10—H10C 0.9900
N2A—C10 1.543 (4) C10—H10D 0.9900
C11A—H11A 1.0000 C15—C16 1.495 (2)
C11A—C12A 1.506 (9) C16—H16 0.9500
C11A—C14A 1.433 (12) C16—C17 1.303 (3)
C12A—H12D 0.9800 C17—H17 0.9500
C12A—H12E 0.9800 C17—C18 1.481 (3)
C18—O3—H3A 111.8 (17) C11A—C14A—H14E 109.5
C1—N1—H1 127.4 (15) C11A—C14A—H14F 109.5
C2—N1—H1 123.6 (15) H14D—C14A—H14E 109.5
C2—N1—C1 108.93 (16) H14D—C14A—H14F 109.5
C11—N2—H2 106 (2) H14E—C14A—H14F 109.5
C11—N2—C14 113.1 (3) N1—C1—H1A 124.9
C11—N2—C10 110.3 (3) C8—C1—N1 110.14 (17)
C14—N2—H2 109 (2) C8—C1—H1A 124.9
C10—N2—H2 105 (2) N1—C2—C3 130.27 (18)
C10—N2—C14 112.6 (2) N1—C2—C7 107.58 (16)
N2—C11—H11 107.5 C3—C2—C7 122.15 (18)
N2—C11—C13 103.6 (3) C2—C3—H3 121.3
C12—C11—N2 111.5 (3) C4—C3—C2 117.45 (19)
C12—C11—H11 107.5 C4—C3—H3 121.3
C12—C11—C13 118.8 (3) C3—C4—H4 119.3
C13—C11—H11 107.5 C3—C4—C5 121.44 (19)
C11—C12—H12A 109.5 C5—C4—H4 119.3
C11—C12—H12B 109.5 C4—C5—H5 119.4
C11—C12—H12C 109.5 C6—C5—C4 121.1 (2)
H12A—C12—H12B 109.5 C6—C5—H5 119.4
H12A—C12—H12C 109.5 C5—C6—H6 120.4
H12B—C12—H12C 109.5 C5—C6—C7 119.22 (19)
C11—C13—H13A 109.5 C7—C6—H6 120.4
C11—C13—H13B 109.5 C2—C7—C8 106.62 (17)
C11—C13—H13C 109.5 C6—C7—C2 118.61 (17)
H13A—C13—H13B 109.5 C6—C7—C8 134.76 (18)
H13A—C13—H13C 109.5 C1—C8—C7 106.73 (16)
H13B—C13—H13C 109.5 C1—C8—C9 126.19 (18)
N2—C14—H14A 109.5 C7—C8—C9 127.05 (18)
N2—C14—H14B 109.5 C8—C9—H9A 109.3
N2—C14—H14C 109.5 C8—C9—H9B 109.3
H14A—C14—H14B 109.5 C8—C9—C10 111.81 (16)
H14A—C14—H14C 109.5 H9A—C9—H9B 107.9
H14B—C14—H14C 109.5 C10—C9—H9A 109.3
C11A—N2A—H2A 116 (4) C10—C9—H9B 109.3
C11A—N2A—C13A 103.7 (4) N2—C10—H10A 108.7
C11A—N2A—C10 109.8 (4) N2—C10—H10B 108.7
C13A—N2A—H2A 94 (4) N2A—C10—H10C 109.5
C10—N2A—H2A 101 (4) N2A—C10—H10D 109.5
C10—N2A—C13A 131.9 (5) C9—C10—N2 114.26 (17)
N2A—C11A—H11A 110.5 C9—C10—N2A 110.7 (2)
C12A—C11A—N2A 111.4 (5) C9—C10—H10A 108.7
C12A—C11A—H11A 110.5 C9—C10—H10B 108.7
C14A—C11A—N2A 107.9 (6) C9—C10—H10C 109.5
C14A—C11A—H11A 110.5 C9—C10—H10D 109.5
C14A—C11A—C12A 105.7 (5) H10A—C10—H10B 107.6
C11A—C12A—H12D 109.5 H10C—C10—H10D 108.1
C11A—C12A—H12E 109.5 O1—C15—C16 115.80 (16)
C11A—C12A—H12F 109.5 O2—C15—O1 125.66 (16)
H12D—C12A—H12E 109.5 O2—C15—C16 118.53 (17)
H12D—C12A—H12F 109.5 C15—C16—H16 118.5
H12E—C12A—H12F 109.5 C17—C16—C15 123.04 (17)
N2A—C13A—H13D 109.5 C17—C16—H16 118.5
N2A—C13A—H13E 109.5 C16—C17—H17 117.6
N2A—C13A—H13F 109.5 C16—C17—C18 124.86 (18)
H13D—C13A—H13E 109.5 C18—C17—H17 117.6
H13D—C13A—H13F 109.5 O3—C18—C17 114.82 (16)
H13E—C13A—H13F 109.5 O4—C18—O3 123.88 (17)
C11A—C14A—H14D 109.5 O4—C18—C17 121.30 (18)
O1—C15—C16—C17 179.92 (19) C2—C7—C8—C9 177.68 (18)
O2—C15—C16—C17 0.2 (3) C3—C2—C7—C6 0.4 (3)
N1—C1—C8—C7 0.4 (2) C3—C2—C7—C8 −178.93 (18)
N1—C1—C8—C9 −177.70 (17) C3—C4—C5—C6 0.5 (3)
N1—C2—C3—C4 −179.1 (2) C4—C5—C6—C7 −0.2 (3)
N1—C2—C7—C6 179.60 (16) C5—C6—C7—C2 −0.3 (3)
N1—C2—C7—C8 0.2 (2) C5—C6—C7—C8 178.9 (2)
C11—N2—C10—C9 −57.8 (3) C6—C7—C8—C1 −179.6 (2)
C14—N2—C11—C12 57.6 (4) C6—C7—C8—C9 −1.5 (3)
C14—N2—C11—C13 −173.6 (3) C7—C2—C3—C4 −0.1 (3)
C14—N2—C10—C9 69.7 (3) C7—C8—C9—C10 71.3 (3)
C11A—N2A—C10—C9 63.3 (5) C8—C9—C10—N2 −163.3 (2)
C13A—N2A—C11A—C12A −47.0 (6) C8—C9—C10—N2A 162.0 (3)
C13A—N2A—C11A—C14A −162.6 (6) C10—N2—C11—C12 −175.2 (3)
C13A—N2A—C10—C9 −68.0 (6) C10—N2—C11—C13 −46.4 (3)
C1—N1—C2—C3 179.1 (2) C10—N2A—C11A—C12A 168.1 (4)
C1—N1—C2—C7 0.0 (2) C10—N2A—C11A—C14A 52.4 (6)
C1—C8—C9—C10 −111.0 (2) C15—C16—C17—C18 179.57 (18)
C2—N1—C1—C8 −0.2 (2) C16—C17—C18—O3 18.9 (3)
C2—C3—C4—C5 −0.3 (3) C16—C17—C18—O4 −160.9 (2)
C2—C7—C8—C1 −0.4 (2)

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O1i 0.87 (1) 1.66 (1) 2.5316 (18) 176 (3)
N1—H1···O1ii 0.87 (1) 2.04 (1) 2.874 (2) 160 (2)
N2—H2···O2 0.88 (1) 1.79 (1) 2.667 (3) 173 (3)
N2A—H2A···O2 0.88 (1) 1.81 (2) 2.670 (5) 167 (6)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2.

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Crystal data

C14H21N2O+·C4H3O4·H2O F(000) = 1568
Mr = 366.41 Dx = 1.301 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 29.507 (3) Å Cell parameters from 9718 reflections
b = 8.7445 (8) Å θ = 2.9–25.3°
c = 17.3659 (18) Å µ = 0.10 mm1
β = 123.389 (3)° T = 200 K
V = 3741.2 (7) Å3 BLOCK, colourless
Z = 8 0.30 × 0.25 × 0.20 mm

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Data collection

Bruker D8 Venture CMOS diffractometer 2978 reflections with I > 2σ(I)
φ and ω scans Rint = 0.041
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 25.4°, θmin = 3.1°
Tmin = 0.719, Tmax = 0.745 h = −35→35
70395 measured reflections k = −10→10
3458 independent reflections l = −20→20

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0299P)2 + 3.9177P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.22 e Å3
3458 reflections Δρmin = −0.20 e Å3
320 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraints Extinction coefficient: 0.0081 (4)

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.69858 (5) 0.51214 (13) 0.50306 (8) 0.0369 (3)
O1W 0.52724 (8) 1.07404 (17) 0.09877 (11) 0.0664 (5)
O2 0.56158 (8) 0.24517 (15) 0.24314 (9) 0.0786 (6)
O3 0.61162 (5) 0.35608 (13) 0.37801 (7) 0.0421 (3)
O4 0.54759 (7) 0.80247 (15) 0.16809 (9) 0.0621 (4)
O5 0.49277 (7) 0.70299 (16) 0.03041 (9) 0.0718 (5)
N1 0.77812 (6) 0.83838 (17) 0.75125 (10) 0.0411 (4)
C1 0.73684 (6) 0.67519 (16) 0.63265 (10) 0.0277 (3)
C2 0.69254 (6) 0.58832 (17) 0.56519 (10) 0.0304 (3)
C3 0.64541 (7) 0.58566 (19) 0.56435 (11) 0.0376 (4)
H3 0.6153 0.5269 0.5191 0.045*
C4 0.64171 (7) 0.6688 (2) 0.62958 (12) 0.0420 (4)
H4 0.6088 0.6650 0.6274 0.050*
C5 0.68368 (7) 0.7552 (2) 0.69635 (12) 0.0410 (4)
H5 0.6807 0.8105 0.7405 0.049*
C6 0.73117 (7) 0.75834 (18) 0.69665 (10) 0.0337 (4)
C7 0.81267 (7) 0.81061 (19) 0.72352 (11) 0.0376 (4)
H7 0.8477 0.8547 0.7507 0.045*
C8 0.78980 (6) 0.71090 (17) 0.65144 (10) 0.0303 (3)
C9 0.81461 (7) 0.65950 (17) 0.60004 (11) 0.0327 (4)
H9A 0.8449 0.7289 0.6150 0.039*
H9B 0.7871 0.6673 0.5330 0.039*
C10 0.83576 (7) 0.49632 (18) 0.62290 (11) 0.0319 (4)
H10A 0.8586 0.4839 0.6907 0.038* 0.775 (5)
H10B 0.8046 0.4253 0.5984 0.038* 0.775 (5)
H10C 0.810 (3) 0.427 (9) 0.621 (5) 0.038* 0.225 (5)
H10D 0.868 (3) 0.486 (9) 0.684 (5) 0.038* 0.225 (5)
N2 0.86881 (10) 0.4538 (2) 0.58322 (14) 0.0299 (6) 0.775 (5)
H2 0.8759 (9) 0.3557 (13) 0.5963 (16) 0.036* 0.775 (5)
C11 0.83717 (10) 0.4648 (2) 0.47872 (14) 0.0347 (7) 0.775 (5)
H11 0.8309 0.5755 0.4615 0.042* 0.775 (5)
C12 0.8709 (2) 0.3979 (9) 0.4448 (4) 0.0500 (13) 0.775 (5)
H12A 0.9040 0.4584 0.4692 0.075* 0.775 (5)
H12B 0.8497 0.4003 0.3772 0.075* 0.775 (5)
H12C 0.8806 0.2919 0.4661 0.075* 0.775 (5)
C13 0.7823 (3) 0.3875 (9) 0.4349 (4) 0.0421 (12) 0.775 (5)
H13A 0.7633 0.3916 0.3676 0.063* 0.775 (5)
H13B 0.7607 0.4403 0.4539 0.063* 0.775 (5)
H13C 0.7874 0.2805 0.4549 0.063* 0.775 (5)
C14 0.92160 (18) 0.5366 (7) 0.6263 (3) 0.0410 (10) 0.775 (5)
H14A 0.9364 0.5538 0.6918 0.062* 0.775 (5)
H14B 0.9158 0.6352 0.5954 0.062* 0.775 (5)
H14C 0.9472 0.4752 0.6201 0.062* 0.775 (5)
N2A 0.8395 (3) 0.4167 (7) 0.5478 (5) 0.032 (2) 0.225 (5)
H2A 0.855 (3) 0.327 (4) 0.567 (5) 0.038* 0.225 (5)
C11A 0.8776 (3) 0.5046 (8) 0.5319 (6) 0.038 (2) 0.225 (5)
H11A 0.8584 0.5998 0.4974 0.046* 0.225 (5)
C12A 0.8893 (9) 0.410 (3) 0.4699 (16) 0.063 (6) 0.225 (5)
H12D 0.9164 0.4626 0.4635 0.094* 0.225 (5)
H12E 0.8558 0.3970 0.4089 0.094* 0.225 (5)
H12F 0.9033 0.3089 0.4978 0.094* 0.225 (5)
C13A 0.9288 (7) 0.554 (3) 0.6248 (13) 0.080 (8) 0.225 (5)
H13D 0.9558 0.5949 0.6140 0.120* 0.225 (5)
H13E 0.9440 0.4655 0.6660 0.120* 0.225 (5)
H13F 0.9190 0.6331 0.6532 0.120* 0.225 (5)
C14A 0.7888 (8) 0.371 (3) 0.4588 (10) 0.041 (4) 0.225 (5)
H14D 0.7606 0.3451 0.4699 0.061* 0.225 (5)
H14E 0.7963 0.2819 0.4332 0.061* 0.225 (5)
H14F 0.7764 0.4561 0.4150 0.061* 0.225 (5)
C15 0.57935 (7) 0.36013 (18) 0.29127 (11) 0.0373 (4)
C16 0.56391 (6) 0.51453 (18) 0.24727 (11) 0.0348 (4)
H16 0.5762 0.6017 0.2864 0.042*
C17 0.53429 (7) 0.53709 (19) 0.15761 (11) 0.0380 (4)
H17 0.5193 0.4499 0.1188 0.046*
C18 0.52272 (7) 0.68853 (19) 0.11306 (11) 0.0378 (4)
H1A 0.7846 (8) 0.902 (3) 0.7946 (15) 0.061 (6)*
H1WA 0.5221 (10) 1.123 (3) 0.0534 (18) 0.075 (8)*
H1WB 0.5371 (10) 1.140 (3) 0.1427 (18) 0.073 (7)*
H1 0.6684 (10) 0.469 (3) 0.4607 (17) 0.076 (8)*
H4A 0.5378 (13) 0.894 (4) 0.135 (2) 0.125 (11)*

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0456 (7) 0.0314 (6) 0.0333 (6) −0.0030 (5) 0.0214 (6) −0.0072 (5)
O1W 0.1121 (14) 0.0383 (8) 0.0472 (9) −0.0134 (8) 0.0428 (9) −0.0065 (7)
O2 0.1293 (14) 0.0301 (7) 0.0322 (7) 0.0008 (8) 0.0165 (8) −0.0033 (6)
O3 0.0499 (7) 0.0332 (6) 0.0275 (6) 0.0026 (5) 0.0113 (5) 0.0022 (5)
O4 0.0913 (11) 0.0326 (7) 0.0362 (7) −0.0040 (7) 0.0184 (7) 0.0013 (6)
O5 0.0944 (11) 0.0447 (8) 0.0316 (7) −0.0044 (8) 0.0063 (7) 0.0075 (6)
N1 0.0512 (9) 0.0411 (8) 0.0336 (7) −0.0029 (7) 0.0251 (7) −0.0114 (6)
C1 0.0364 (8) 0.0237 (7) 0.0244 (7) 0.0042 (6) 0.0176 (6) 0.0041 (6)
C2 0.0403 (9) 0.0228 (7) 0.0280 (7) 0.0045 (6) 0.0188 (7) 0.0062 (6)
C3 0.0365 (9) 0.0355 (9) 0.0369 (9) 0.0011 (7) 0.0178 (7) 0.0061 (7)
C4 0.0406 (9) 0.0463 (10) 0.0458 (10) 0.0100 (8) 0.0281 (8) 0.0130 (8)
C5 0.0519 (10) 0.0441 (10) 0.0381 (9) 0.0115 (8) 0.0318 (9) 0.0051 (8)
C6 0.0442 (9) 0.0309 (8) 0.0281 (8) 0.0057 (7) 0.0212 (7) 0.0028 (6)
C7 0.0390 (9) 0.0385 (9) 0.0351 (8) −0.0027 (7) 0.0202 (7) −0.0034 (7)
C8 0.0371 (8) 0.0264 (8) 0.0282 (7) 0.0030 (6) 0.0183 (7) 0.0022 (6)
C9 0.0404 (9) 0.0301 (8) 0.0328 (8) 0.0045 (7) 0.0234 (7) 0.0043 (6)
C10 0.0418 (9) 0.0312 (8) 0.0288 (8) 0.0047 (7) 0.0233 (7) 0.0045 (6)
N2 0.0369 (13) 0.0259 (10) 0.0279 (11) 0.0045 (9) 0.0186 (10) 0.0037 (8)
C11 0.0512 (17) 0.0285 (11) 0.0276 (12) 0.0075 (10) 0.0237 (12) 0.0049 (9)
C12 0.070 (3) 0.048 (2) 0.048 (3) 0.005 (2) 0.043 (3) 0.0000 (18)
C13 0.045 (2) 0.037 (2) 0.029 (2) 0.006 (2) 0.0113 (18) 0.001 (2)
C14 0.043 (2) 0.0354 (18) 0.048 (2) −0.0057 (17) 0.0271 (19) −0.0075 (14)
N2A 0.037 (4) 0.026 (4) 0.030 (4) 0.010 (3) 0.018 (4) 0.005 (3)
C11A 0.045 (5) 0.035 (4) 0.039 (5) 0.004 (4) 0.027 (5) 0.004 (3)
C12A 0.090 (15) 0.071 (10) 0.056 (12) 0.002 (11) 0.058 (12) −0.009 (9)
C13A 0.039 (8) 0.090 (14) 0.068 (12) −0.036 (7) 0.002 (8) 0.003 (10)
C14A 0.033 (6) 0.046 (8) 0.025 (8) 0.016 (5) 0.005 (5) 0.014 (7)
C15 0.0455 (9) 0.0306 (8) 0.0286 (8) 0.0031 (7) 0.0159 (7) −0.0008 (7)
C16 0.0399 (9) 0.0279 (8) 0.0311 (8) −0.0002 (7) 0.0161 (7) −0.0021 (6)
C17 0.0415 (9) 0.0301 (8) 0.0303 (8) 0.0006 (7) 0.0121 (7) −0.0014 (7)
C18 0.0395 (9) 0.0344 (9) 0.0293 (8) 0.0016 (7) 0.0125 (7) 0.0008 (7)

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Geometric parameters (Å, º)

O1—C2 1.3606 (18) N2—C11 1.520 (3)
O1—H1 0.87 (2) N2—C14 1.493 (5)
O1W—H1WA 0.84 (3) C11—H11 1.0000
O1W—H1WB 0.87 (3) C11—C12 1.524 (5)
O2—C15 1.225 (2) C11—C13 1.518 (6)
O3—C15 1.2642 (19) C12—H12A 0.9800
O4—C18 1.293 (2) C12—H12B 0.9800
O4—H4A 0.93 (3) C12—H12C 0.9800
O5—C18 1.209 (2) C13—H13A 0.9800
N1—C6 1.365 (2) C13—H13B 0.9800
N1—C7 1.368 (2) C13—H13C 0.9800
N1—H1A 0.87 (2) C14—H14A 0.9800
C1—C2 1.404 (2) C14—H14B 0.9800
C1—C6 1.413 (2) C14—H14C 0.9800
C1—C8 1.444 (2) N2A—H2A 0.872 (10)
C2—C3 1.383 (2) N2A—C11A 1.507 (8)
C3—H3 0.9500 N2A—C14A 1.497 (10)
C3—C4 1.400 (2) C11A—H11A 1.0000
C4—H4 0.9500 C11A—C12A 1.543 (10)
C4—C5 1.367 (3) C11A—C13A 1.545 (10)
C5—H5 0.9500 C12A—H12D 0.9800
C5—C6 1.398 (2) C12A—H12E 0.9800
C7—H7 0.9500 C12A—H12F 0.9800
C7—C8 1.361 (2) C13A—H13D 0.9800
C8—C9 1.501 (2) C13A—H13E 0.9800
C9—H9A 0.9900 C13A—H13F 0.9800
C9—H9B 0.9900 C14A—H14D 0.9800
C9—C10 1.520 (2) C14A—H14E 0.9800
C10—H10A 0.9900 C14A—H14F 0.9800
C10—H10B 0.9900 C15—C16 1.494 (2)
C10—H10C 0.97 (8) C16—H16 0.9500
C10—H10D 0.96 (8) C16—C17 1.315 (2)
C10—N2 1.518 (2) C17—H17 0.9500
C10—N2A 1.536 (6) C17—C18 1.476 (2)
N2—H2 0.882 (10)
C2—O1—H1 111.3 (16) C11—C12—H12A 109.5
H1WA—O1W—H1WB 106 (2) C11—C12—H12B 109.5
C18—O4—H4A 110 (2) C11—C12—H12C 109.5
C6—N1—C7 109.43 (14) H12A—C12—H12B 109.5
C6—N1—H1A 125.7 (14) H12A—C12—H12C 109.5
C7—N1—H1A 124.7 (14) H12B—C12—H12C 109.5
C2—C1—C6 118.41 (14) C11—C13—H13A 109.5
C2—C1—C8 134.44 (14) C11—C13—H13B 109.5
C6—C1—C8 107.03 (13) C11—C13—H13C 109.5
O1—C2—C1 117.29 (14) H13A—C13—H13B 109.5
O1—C2—C3 123.58 (15) H13A—C13—H13C 109.5
C3—C2—C1 119.13 (14) H13B—C13—H13C 109.5
C2—C3—H3 119.7 N2—C14—H14A 109.5
C2—C3—C4 120.57 (16) N2—C14—H14B 109.5
C4—C3—H3 119.7 N2—C14—H14C 109.5
C3—C4—H4 118.8 H14A—C14—H14B 109.5
C5—C4—C3 122.39 (16) H14A—C14—H14C 109.5
C5—C4—H4 118.8 H14B—C14—H14C 109.5
C4—C5—H5 121.6 C10—N2A—H2A 110 (6)
C4—C5—C6 116.89 (15) C11A—N2A—C10 109.5 (6)
C6—C5—H5 121.6 C11A—N2A—H2A 104 (6)
N1—C6—C1 107.22 (14) C14A—N2A—C10 120.0 (13)
N1—C6—C5 130.14 (15) C14A—N2A—H2A 100 (5)
C5—C6—C1 122.61 (15) C14A—N2A—C11A 111.7 (11)
N1—C7—H7 124.8 N2A—C11A—H11A 107.5
C8—C7—N1 110.45 (15) N2A—C11A—C12A 109.2 (12)
C8—C7—H7 124.8 N2A—C11A—C13A 110.6 (13)
C1—C8—C9 128.47 (14) C12A—C11A—H11A 107.5
C7—C8—C1 105.86 (13) C12A—C11A—C13A 114.4 (14)
C7—C8—C9 125.56 (15) C13A—C11A—H11A 107.5
C8—C9—H9A 109.0 C11A—C12A—H12D 109.5
C8—C9—H9B 109.0 C11A—C12A—H12E 109.5
C8—C9—C10 112.98 (12) C11A—C12A—H12F 109.5
H9A—C9—H9B 107.8 H12D—C12A—H12E 109.5
C10—C9—H9A 109.0 H12D—C12A—H12F 109.5
C10—C9—H9B 109.0 H12E—C12A—H12F 109.5
C9—C10—H10A 109.1 C11A—C13A—H13D 109.5
C9—C10—H10B 109.1 C11A—C13A—H13E 109.5
C9—C10—H10C 112 (4) C11A—C13A—H13F 109.5
C9—C10—H10D 113 (5) H13D—C13A—H13E 109.5
C9—C10—N2A 114.5 (3) H13D—C13A—H13F 109.5
H10A—C10—H10B 107.8 H13E—C13A—H13F 109.5
H10C—C10—H10D 105 (6) N2A—C14A—H14D 109.5
N2—C10—C9 112.69 (13) N2A—C14A—H14E 109.5
N2—C10—H10A 109.1 N2A—C14A—H14F 109.5
N2—C10—H10B 109.1 H14D—C14A—H14E 109.5
N2A—C10—H10C 97 (4) H14D—C14A—H14F 109.5
N2A—C10—H10D 114 (5) H14E—C14A—H14F 109.5
C10—N2—H2 104.1 (17) O2—C15—O3 123.28 (15)
C10—N2—C11 113.62 (18) O2—C15—C16 119.80 (14)
C11—N2—H2 105.8 (16) O3—C15—C16 116.91 (14)
C14—N2—C10 114.0 (2) C15—C16—H16 118.0
C14—N2—H2 107.9 (16) C17—C16—C15 123.93 (15)
C14—N2—C11 110.7 (3) C17—C16—H16 118.0
N2—C11—H11 108.0 C16—C17—H17 117.7
N2—C11—C12 109.5 (3) C16—C17—C18 124.51 (15)
C12—C11—H11 108.0 C18—C17—H17 117.7
C13—C11—N2 110.8 (3) O4—C18—C17 115.49 (14)
C13—C11—H11 108.0 O5—C18—O4 122.93 (16)
C13—C11—C12 112.2 (4) O5—C18—C17 121.56 (15)
O1—C2—C3—C4 −178.98 (14) C7—C8—C9—C10 106.26 (18)
O2—C15—C16—C17 −4.2 (3) C8—C1—C2—O1 3.2 (2)
O3—C15—C16—C17 174.39 (17) C8—C1—C2—C3 −176.09 (16)
N1—C7—C8—C1 0.49 (18) C8—C1—C6—N1 −0.47 (17)
N1—C7—C8—C9 176.96 (14) C8—C1—C6—C5 177.70 (14)
C1—C2—C3—C4 0.2 (2) C8—C9—C10—N2 −170.62 (16)
C1—C8—C9—C10 −78.1 (2) C8—C9—C10—N2A 156.1 (4)
C2—C1—C6—N1 −177.00 (13) C9—C10—N2—C11 −60.2 (2)
C2—C1—C6—C5 1.2 (2) C9—C10—N2—C14 67.9 (3)
C2—C1—C8—C7 175.72 (16) C9—C10—N2A—C11A 60.3 (6)
C2—C1—C8—C9 −0.6 (3) C9—C10—N2A—C14A −70.7 (12)
C2—C3—C4—C5 −0.1 (3) C10—N2—C11—C12 −171.7 (4)
C3—C4—C5—C6 0.4 (2) C10—N2—C11—C13 −47.3 (4)
C4—C5—C6—N1 176.71 (17) C10—N2A—C11A—C12A 169.9 (12)
C4—C5—C6—C1 −1.0 (2) C10—N2A—C11A—C13A 43.1 (13)
C6—N1—C7—C8 −0.81 (19) C14—N2—C11—C12 58.5 (4)
C6—C1—C2—O1 178.51 (13) C14—N2—C11—C13 −177.2 (4)
C6—C1—C2—C3 −0.7 (2) C14A—N2A—C11A—C12A −54.8 (18)
C6—C1—C8—C7 −0.01 (17) C14A—N2A—C11A—C13A 178.4 (18)
C6—C1—C8—C9 −176.34 (14) C15—C16—C17—C18 −174.40 (16)
C7—N1—C6—C1 0.78 (18) C16—C17—C18—O4 5.5 (3)
C7—N1—C6—C5 −177.20 (16) C16—C17—C18—O5 −175.90 (19)

[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.88 (1) 2.51 (2) 3.085 (2) 124 (2)
N2—H2···O3i 0.88 (1) 1.89 (1) 2.775 (2) 178 (2)
N2A—H2A···O3i 0.87 (1) 1.85 (2) 2.717 (6) 172 (8)
O1—H1···O3 0.87 (2) 1.79 (3) 2.6512 (17) 172 (2)
O4—H4A···O1W 0.93 (3) 1.66 (3) 2.579 (2) 167 (3)
O1W—H1WA···O5ii 0.84 (3) 1.98 (3) 2.779 (2) 160 (2)
O1W—H1WB···O2iii 0.87 (3) 1.74 (3) 2.599 (2) 170 (2)

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+1, −y+2, −z; (iii) x, y+1, z.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1429086.

References

  1. Bradley, R. J. & Johnston, V. S. (1970). Origin and Mechanism of Hallucinations, edited by W. Keup, pp. 333–344. New York: Plenum Press.
  2. Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344–2357. [DOI] [PubMed]
  4. Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105–2113. [DOI] [PMC free article] [PubMed]
  5. Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. [DOI] [PMC free article] [PubMed]
  6. Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.
  7. Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview. com/the-crystal-structure-of-4-aco-dmt-fumarate/
  8. Dinis-Oliveira, R. J. (2017). Drug Metab. Rev. 49, 84–91. [DOI] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083.
  11. Johnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics 14, 734–740. [DOI] [PMC free article] [PubMed]
  12. McKenna, D. J., Repke, D. B., Lo, L. & Peroutka, S. J. (1990). Neuropharmacology, 29, 193–198. [DOI] [PubMed]
  13. Nichols, D. E. (2012). WIREs Membr. Transp. Signal. 1, 559–579.
  14. Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.
  15. Repke, D. B., Ferguson, W. J. & Bates, D. K. (1981). J. Heterocycl. Chem. 18, 175–179.
  16. Repke, D. B., Grotjahn, D. B. & Shulgin, A. T. (1985). J. Med. Chem. 28, 892–896. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) MiPT, 4-HO-MiPT, I. DOI: 10.1107/S2056989019011253/hb7844sup1.cif

e-75-01316-sup1.cif (3.1MB, cif)

Structure factors: contains datablock(s) MiPT. DOI: 10.1107/S2056989019011253/hb7844MiPTsup2.hkl

e-75-01316-MiPTsup2.hkl (263.3KB, hkl)

Structure factors: contains datablock(s) 4-HO-MiPT. DOI: 10.1107/S2056989019011253/hb78444-HO-MiPTsup3.hkl

Supporting information file. DOI: 10.1107/S2056989019011253/hb7844MiPTsup4.cml

Supporting information file. DOI: 10.1107/S2056989019011253/hb78444-HO-MiPTsup5.cml

CCDC references: 1946718, 1946717

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES