Skip to main content
Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry logoLink to Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry
. 1970 May-Jun;74A(3):319–324. doi: 10.6028/jres.074A.027

A Refinement of the Crystal Structure of Na2CO3 · H2O

B Dickens 1, F A Mauer 1, W E Brown 1,*
PMCID: PMC6728482  PMID: 32523190

Abstract

The crystal structure of synthetic Na2CO3·H2O has been refined using 1231 unique x-ray diffraction data collected by the peak height method on a diffractometer. R = 0.034. The unit cell is a = 6.474(2), b= 10.724(3) and c = 5.259(2) Å with z = 4 and space group P21ab. The calculated density is the same as the observed density, 2.26 g·cm−3. The structure contains sheets of CO32 ions bonded to Na+ ions and water molecules roughly halfway between the sheets. Each CO32 bonds edgewise to both Na+ ions. The Na+ ions have irregular but similar coordinations of seven neighbors. Each water molecule is bonded to both Na+ ions and forms hydrogen bonds to both neighboring CO32 layers.

Keywords: Crystal structure, hydrated carbonates, hydrogen bonding, sodium carbonate, thermonatrite, x-ray diffraction

1. Introduction

The crystal structure of Na 2CO3 · H2O was determined except for the hydrogen positions, by Harper [1]1 in 1936 using qualitative estimates of the x-ray intensities. In our program of studies on coordination in hydrated carbonates [2] and phosphates [3], we have refined Harper’s structure for Na2CO3 · H2O using new x-ray data. Na2CO3 · H2O is the mineral thermonatrite and often occurs with Na2CO3 · 10H2O (natron) and Na2CO3 · NaHCO3 · 2H2O (trona) [4, 5, 6].

2. Determination of the Structure

Formula: Na2 CO3·H2O. Unit cell: Orthorhombic with a = 6.472(2) Å, b = 10.724(3) Å, c = 5.259(2) Å at 24 °C as calculated from three pairs of 2θ values of axial reflections from a single crystal and observed on a diffractometer. The standard deviations of the cell parameters are in parentheses and are estimates based on experience with the technique. Cell volume: 365.1 Å3. Wavelength used: 0.710688 Å (Mo Kα). Filter: 0.025 mm Nb. Space Group: P21ab. Cell contents in formula Wts: 4. Equivalent positions: x, y, z; 1/2 + x, − y, − z; 1/2 + x, 1/2−y, z; x, 1/2 + y, − z. Reciprocal lattice extinctions: h0l, h ≠ 2n; hk0, k ≠ 2n. Observed density: 2.255 g·cm−3 [7]. Calculated density: 2.256 g · cm−3. Habit: Fragment from plate. Size of crystal: ~ 0.35 mm max. ~ 0.05 mm min. Origin: Evaporation of aqueous solution at 60°C. Linear absorption coefficient: 4.37 cm−1. Absorption corrections: None applied. Maximum error in any intensity from absorption is ~ 10 percent. Number of reflections: 2189 were collected from 2 octants and merged into a unique set of 1231 of which 1132 are “observed” reflections and 99 are less than 2σ above background and are “unobserved”. Maximum sin θ/λ for data: 0.904 Å −1. Method used to estimate data: peak height measurement [8] with a single crystal diffractometer [9] and some peak heights standardized against θ/2θ scans. Scattering factors: Na, C, O, for neutral atoms given in reference [10]; H from reference [11]. Least-squares refinements: Full-matrix, with Σ(w|| Fo| −|Fc||)2 minimized. Refinements include unobserved reflections for which the calculated intensities are more than 2σ above background. Least-squares weights: 1/σ2 normalized so that maximum weight is 1. Definitions: counts in peak = I = P − (T/2TB)(BL + BH), σ (I) = (P+ (BL + BH)(T/(2TB))2)1/2,F = ((AF)(LP)(I))1/2, σ(F) = (σ(I)/2)(LP/I)1/2 where P = counts at the peak position, BL and BH= background counts at lower and higher respectively, T= time spent counting peak, TB = time spent counting each background, AF = attenuator · factor, LP = Lorentz polarization correction.

Rw=((wFo||Fc)2/(w|Fo|)2)1/2R=(Fo||Fc)/|Fo|·

Final Rw: 0.029. Final R: 0.032. Average shift/error for last cycle: 0.015. Thermal parameters: anisotropic with form

exp(1/4(a*2B11h2+b*2B22k2+c*2B33l2+2a*b*B12hk+2a*c*B13hl+2b*c*B23kl).

The structure was refined isotropically from Harper’s parameters using the x-ray 67 system [12] of computer programs to Rw= 0.065; the x parameter of Na(l) was fixed at x = 0. The structure was refined anisotropically to Rw = 0.044 and the hydrogens were found unambiguously as the two highest peaks in the difference synthesis in which the coefficients were weighted by the least squares weights. The two next highest peaks were less than 3/4 as high as the peaks assigned to hydrogens and were (a) halfway between C and 0(3) in the CO3 group and (b) 0.7 A from 0(1) of the CO3 group. The hydrogens were included with variable positional parameters and fixed thermal parameters (BH = 1 Å2) in the final refinement to Rw= 0.029. The largest correlation coefficients are ~ 0.25 between the scale factor and the B11 thermal parameters of the two Na ions and ~ 0.15 between these B11 thermal parameters. Most correlation coefficients are less than 0.05.

The atomic parameters are given in table 1. The observed and calculated structure factors are given in table 2. The hydrogen positions obtained from the weighted difference synthesis and from the refinements differ by ~ 0.17 Å. “Calculated” hydrogen positions were derived by applying the geometry of free water (O−H = 0.958 A, ZH−O−H = 104.5°) with the constraint that the O−H … O angles be as near to linear as possible. These hydrogen positions differ from the other positions by about 0.3 Å. The three sets of hydrogen positions are compared in table 3. The distances and angles which involve hydrogen were obtained using the “calculated” hydrogen positions.

Table 1.

Atomic parameters of Na2CO3 · H2O

Atom X y z B11* B22 B33 B12 B13 B23
Na(1) 0.0000 0.1938(1) 0.1398(1) 1.40(3) 1.54(3) 1.36(3) 0.17(3) 0.17(3) 0.08(2)
Na(2) .0651(2) .0020(1) − .3786(2) 1.44(3) 1.19(3) 1.76(3) .31(2) .25(3) .09(3)
C −.2151(3) .2556(2) .6025(3) .45(6) 1.11(6) 1.17(5) −.06(5) −.05(5) −.03(5)
O(1) −.2010(3) .1381(1) .5457(3) 1.56(6) 0.72(5) 2.72(7) .08(5) −.15(6) −.47(4)
O(2) −.2027(3) .3369(1) .4267(2) 1.73(6) 1.27(5) 1.24(5) −.05(5) −.04(5) .47(4)
O(3) − .2398(3) .2876(1) −.1639(2) 1.42(6) 2.14(6) 0.90(4) −.28(5) .25(4) −.32(4)
O(4) .0325(3) −.0296(1) .0683(3) 1.64(7) 1.43(6) 1.92(6) −.21(5) −.25(5) .39(4)

Figures in parentheses are standard errors in last significant figure quoted, and were computed in the final cycle of full-matrix leastsquares refinement.

*

Thermal parameters are in Å2.

Table 2.

Observed and calculated structure factors for Na2CO3·H2Oa

0, K, 0
2 250 237
4 421 462
6 556 561
8 105 113
10 119 119
12 48 45
14 50 60
16 60 52
18 47 40
1, K, 0
2 156 151
4 520 519
6 254 254
8 153 166
10 88 88
12 45 47
14 109 118
16 68 75
18 18 15
2, K, 0
0 39 37
2 843 802
4 542 529
6 283 286
8 128 128
10 311 318
12 30 31
14 34 35
16 44 49
18 35 31
3, K, 0
2 176 171
4 428 415
6 282 281
8 127 127
10 144 146
12 49 49
14 38 43
16 55 59
18 19 19
4, K, 0
2 345 339
4 236 223
6 285 274
8 233 228
10 52 52
12 97 99
14 52 54
16 30 25
18 52 46
5, K, 0
2 101 96
4 171 167
6 29 30
8 115 113
10 24 23
12 37 39
14 113 119
16 60 61
6, K, 0
0 86 76
2 303 296
4 199 192
6 70 68
8 130 129
10 126 125
12 50 52
14 47 48
16 13* 7
7, K, 0
2 87 87
4 143 142
6 127 127
8 52 53
10 86 88
12 25 19
14 12* 2
8, K, 0
0 163 158
2 148 148
4 40 42
6 61 61
8 134 134
10 80 79
12 70 72
14 34 34
9, K, 0
2 28 28
4 37 38
6 33 31
8 50 53
10 16 19
12 46 51
10, K, 0
0 83 88
2 86 90
4 66 68
6 12* 9
8 43 47
10 39 40
11, K, 0
2 36 39
4 29 32
6 43 48
0, K, 1
0 289 274
1 77 74
2 22 19
3 5* 3
4 211 192
5 264 268
6 200 192
7 159 157
8 360 365
9 186 185
10 118 123
11 9* 8
12 188 191
13 9* 9
14 85 88
15 32 36
16 57 55
17 13 9
18 28 31
19 13* 1
1, K, 1
0 5* 0
1 44 39
2 66 66
3 307 314
4 350 350
5 206 204
6 89 86
7 269 273
8 144 147
9 165 166
10 147 151
11 33 31
12 40 43
13 120 122
14 83 85
15 29 26
16 67 69
17 44 44
18 17 7
19 37 36
2, K, 1
0 604 603
1 444 449
2 299 309
3 326 329
4 275 270
5 28 27
6 103 101
7 80 80
8 94 91
9 125 125
10 205 206
11 61 64
12 51 53
13 55 61
14 86 82
15 34 29
16 32 33
17 48 42
18 92 88
19 39 35
3, K, 1
0 5* 0
1 187 184
2 126 125
3 292 291
4 182 177
5 129 127
6 62 61
7 223 224
8 94 97
9 71 70
10 93 96
11 91 94
12 17 14
13 88 88
14 90 93
15 35 38
16 75 78
17 45 43
18 12* 6
4, K, 1
0 368 374
1 61 62
2 28 27
3 25 23
4 125 121
5 128 126
6 183 182
7 105 103
8 194 191
9 111 110
10 116 114
11 28 28
12 130 127
13 16 11
14 61 63
15 16 20
16 55 53
17 33 32
18 13 14
5, K, 1
0 7* 0
1 127 126
2 45 48
3 29 28
4 153 151
5 219 221
6 102 102
7 67 65
8 76 74
9 108 111
10 90 89
11 62 57
12 48 48
13 49 50
14 28 32
15 45 41
17 25 23
6, K, 1
0 189 195
1 166 171
2 98 93
3 113 111
4 125 124
5 38 37
6 74 74
7 93 90
8 29 25
9 70 68
10 144 142
11 47 46
12 27 27
13 19 20
14 39 37
15 12* 8
16 38 41
7, K, 1
0 9* 0
1 108 111
2 54 53
3 46 44
4 41 40
5 110 109
6 69 68
7 62 63
8 23 23
9 12 11
10 20 21
11 67 70
12 32 30
13 12 10
14 51 53
15 39 42
8, K, 1
0 174 183
1 47 49
2 82 84
3 28 31
4 48 46
5 42 42
6 90 89
7 31 31
8 42 41
9 29 29
10 58 58
11 12* 12
12 43 44
13 12* 4
14 33 34
9, K, 1
0 12* 0
1 40 45
2 25 25
3 61 63
4 43 44
5 76 77
6 39 40
7 24 27
8 26 26
9 40 42
10 29 29
11 27 26
12 14 13
10, K, 1
0 67 74
1 44 49
2 35 36
3 35 36
4 52 55
5 24 26
6 16 15
7 47 49
8 46 48
9 42 43
11, K, 1
0 12* 0
1 36 36
2 14 15
3 13* 10
4 17 17
5 32 34
6 39 39
0, K, 2
0 350 337
1 117 135
2 143 141
3 152 166
4 129 125
5 58 56
6 132 132
7 75 72
8 111 115
9 53 54
10 135 141
11 11 17
12 23 24
13 9* 10
14 10* 1
15 74 71
16 19 19
17 106 106
18 26 28
1, K, 2
0 13 0
1 556 601
2 113 113
3 427 440
4 27 20
5 495 504
6 121 123
7 113 113
8 47 49
9 124 123
10 77 82
11 149 149
12 47 48
13 22 16
14 41 43
15 67 68
16 47 50
17 39 36
18 12* 5
2, K, 2
0 133 134
1 319 331
2 174 177
3 222 227
4 228 233
5 167 166
6 72 72
7 206 205
8 36 39
9 267 265
10 74 76
11 74 72
12 37 39
13 41 38
14 30 31
15 26 25
16 21 22
17 35 35
18 13* 15
3, K, 2
0 6 0
1 389 402
2 88 90
3 119 122
4 57 55
5 377 388
6 41 41
7 164 165
8 59 60
9 130 129
10 65 68
11 99 98
12 25 26
13 78 81
14 41 43
15 58 58
16 46 49
17 12* 1
18 12* 0
4, K, 2
0 210 209
1 115 117
2 91 90
3 91 87
4 55 55
5 58 55
6 86 84
7 120 117
8 72 71
9 82 85
10 92 93
11 25 18
12 19 19
13 16 16
14 14 15
15 69 66
16 13 13
17 71 72
5, K, 2
0 7* 0
1 171 178
2 34 34
3 334 340
4 18 19
5 135 134
6 92 92
7 143 141
8 13 14
9 90 89
10 42 45
11 50 52
12 38 38
13 71 72
14 25 27
15 12* 14
16 28 30
17 45 46
6, K, 2
0 61 61
1 139 143
2 74 76
3 85 84
4 81 81
5 80 81
6 24 22
7 65 65
8 27 29
9 137 136
10 46 46
11 49 48
12 23 24
13 55 54
14 24 26
15 27 25
16 17 17
7, K, 2
0 8* 0
1 91 95
2 24 25
3 105 109
4 37 37
5 69 67
6 10* 7
7 127 127
8 35 36
9 58 58
10 35 35
11 11* 10
12 11* 3
13 66 68
14 20 23
15 20 18
8, K, 2
0 97 102
1 32 33
2 33 34
3 41 42
4 13 12
5 35 37
6 36 35
7 98 98
8 24 24
9 51 52
10 33 34
11 42 41
12 12* 10
13 17 17
9, K, 2
0 10* 0
1 19 18
2 10* 5
3 104 107
4 16 14
5 29 31
6 42 43
7 57 57
8 11* 3
9 49 53
10 13 13
11 21 19
10, K, 2
0 30 31
1 66 72
2 30 33
3 37 41
4 22 22
5 40 44
6 12* 10
7 12* 7
8 17 15
9 38 41
11, K, 2
0 12* 0
1 24 25
2 12* 4
3 31 34
4 18 18
5 13* 11
0, K, 3
0 279 278
1 35 35
2 458 469
3 88 86
4 168 170
5 208 214
6 15 13
7 118 121
8 209 203
9 205 205
10 33 27
11 26 30
12 122 120
13 10* 0
14 27 30
15 11* 5
16 21 23
17 53 53
18 41 42
1, K, 3
0 6* 0
1 88 87
2 148 153
3 238 242
4 182 188
5 41 48
6 168 173
7 181 185
8 77 80
9 125 128
10 22 20
11 59 58
12 47 47
13 104 103
14 50 51
15 43 43
16 16 18
17 54 53
18 22 22
2, K, 3
0 211 215
1 120 122
2 179 186
3 146 148
4 70 71
5 10 9
6 120 120
7 157 162
8 153 159
9 35 35
10 36 38
11 17 13
12 20 19
13 53 60
14 90 91
15 50 46
16 36 38
17 67 66
18 30 26
3, K, 3
0 8* 0
1 196 198
2 94 93
3 172 175
4 144 148
5 104 103
6 173 178
7 144 148
8 63 65
9 82 83
10 31 32
11 67 68
12 66 66
13 71 71
14 28 29
15 54 53
16 12* 8
17 45 42
4, K, 3
0 237 237
1 54 54
2 220 220
3 26 22
4 149 153
5 127 131
6 84 86
7 77 77
8 103 99
9 137 136
10 106 109
11 35 38
12 75 72
13 15 12
14 36 37
15 12* 8
16 33 33
17 54 52
5, K, 3
0 7* 0
1 43 43
2 102 106
3 111 111
4 88 89
5 114 119
6 78 79
7 74 75
8 31 31
9 89 92
10 25 26
11 61 57
12 30 31
13 57 57
14 29 32
15 33 32
16 28 31
6, K, 3
0 133 138
1 64 66
2 47 47
3 66 70
4 27 27
5 27 27
6 101 106
7 116 115
8 23 25
9 40 39
10 39 39
11 25 20
12 29 29
13 27 31
14 37 37
15 26 23
7, K, 3
0 9* 0
1 108 111
2 43 45
3 29 27
4 78 80
5 74 75
6 73 74
7 78 78
8 36 38
9 25 23
10 16 15
11 48 52
12 38 40
13 18 14
14 16 15
8, K, 3
0 104 110
1 50 53
2 30 26
3 22 24
4 77 80
5 57 60
6 40 42
7 29 29
8 27 25
9 51 52
10 73 76
11 19 21
12 15 12
9, K, 3
0 11* 0
1 25 27
2 32 33
3 72 72
4 33 34
5 53 55
6 24 25
7 16 14
8 12* 5
9 45 47
10 29 30
10, K, 3
0 33 36
1 20 23
2 20 20
3 30 34
4 22 22
5 23 26
6 37 40
7 56 60
8 23 24
11, K, 3
0 12* 0
1 40 42
2 22 23
0, K, 4
0 495 490
1 18 16
2 54 56
3 81 79
4 283 289
5 14 19
6 150 147
7 168 174
8 23 20
9 13 14
10 142 148
11 10* 5
12 67 64
13 74 79
14 11* 3
15 11* 1
16 69 65
17 38 38
1, K, 4
1 121 120
2 111 116
3 137 140
4 150 152
5 69 74
6 107 109
7 156 165
8 33 32
9 81 86
10 38 40
11 30 31
12 60 63
13 30 28
14 46 47
15 29 28
16 16 17
17 13* 15
2, K, 4
0 205 201
1 163 162
2 177 182
3 49 53
4 82 80
5 107 111
6 214 220
7 26 25
8 74 75
9 54 53
10 138 134
11 91 94
12 21 23
13 35 40
14 69 69
15 11* 3
16 29 37
17 50 51
3, K, 4
1 77 79
2 128 135
3 180 186
4 164 169
5 25 29
6 83 86
7 113 119
8 28 33
9 67 71
10 29 28
11 12 10
12 28 31
13 16 15
14 28 28
15 31 31
16 12* 11
4, K, 4
0 250 246
1 19 19
2 163 168
3 57 60
4 175 178
5 13 16
6 64 62
7 120 123
8 105 103
9 13 11
10 66 70
11 12 9
12 74 73
13 53 56
14 23 20
15 12* 10
16 43 41
5, K, 4
1 87 89
2 24 24
3 30 29
4 61 59
5 68 71
6 52 53
7 98 100
8 43 43
9 48 51
10 41 45
11 28 30
12 42 44
13 24 22
14 51 52
15 13* 13
6, K, 4
0 14 17
1 83 84
2 131 132
3 44 44
4 57 58
5 62 66
6 72 74
7 38 39
8 96 98
9 62 61
10 45 44
11 42 45
12 34 34
13 16 16
14 59 60
7, K, 4
1 37 37
2 57 58
3 102 104
4 80 84
5 11 10
6 51 52
7 41 43
8 25 29
9 29 31
10 18 17
11 12* 10
12 13 9
13 17 16
8, K, 4
0 43 44
1 18 19
2 92 96
3 32 36
4 52 54
5 11* 9
6 36 38
7 55 58
8 66 67
9 12* 12
10 20 17
11 15 12
9, K, 4
1 46 48
2 17 17
3 25 24
4 22 20
5 38 41
6 15 12
7 33 33
8 26 25
9 19 19
10, K, 4
0 49 57
1 30 31
2 44 46
3 23 22
4 38 43
5 28 32
0, K, 5
0 147 146
1 57 44
2 11 12
3 35 38
4 101 102
5 18 15
6 27 28
7 64 61
8 95 89
9 9* 4
10 10* 6
11 57 58
12 87 82
13 17 18
14 12 11
15 29 32
16 41 35
1, K, 5
1 123 127
2 68 73
3 249 249
4 97 101
5 81 82
6 37 38
7 101 99
8 27 25
9 45 45
10 37 35
11 29 34
12 11 15
13 47 50
14 33 34
15 29 27
16 14 13
2, K, 5
0 121 118
1 187 189
2 166 168
3 96 98
4 35 35
5 37 36
6 54 55
7 118 119
8 50 53
9 71 70
10 67 61
11 54 52
12 11* 8
13 21 22
14 73 67
15 12* 1
16 13* 14
3, K, 5
1 71 71
2 32 37
3 170 170
4 52 56
5 50 49
6 11 12
7 111 111
8 42 43
9 17 17
10 20 15
11 73 76
12 25 29
13 47 49
14 38 39
15 25 24
4, K, 5
0 125 124
1 39 37
2 51 51
3 40 43
4 72 73
5 16 14
5 16 14
5 16 14
7 61 61
7 61 61
7 61 61
9 34 34
10 27 26
11 43 44
12 72 68
13 28 27
14 12* 1
15 19 20
5, K, 5
1 107 109
2 48 51
3 120 121
4 59 62
5 112 115
6 41 41
7 15 17
8 10* 6
9 36 37
10 28 27
11 14 12
12 14 10
13 12* 13
14 19 18
6, K, 5
0 95 97
1 98 100
2 65 65
3 46 47
4 56 58
5 32 32
6 46 48
7 55 56
8 18 16
9 34 33
10 63 59
11 47 48
12 18 13
13 29 28
7, K, 5
1 36 37
2 13 14
3 34 36
4 11 9
5 56 56
6 11* 4
7 50 51
8 28 30
9 31 33
10 12* 6
11 51 53
8, K, 5
0 59 60
1 19 19
2 57 59
3 28 30
4 30 32
5 16 17
6 41 42
7 31 33
8 26 23
9 34 34
9, K, 5
1 40 41
2 17 14
3 31 30
4 22 20
5 49 53
6 22 22
6 22 22
0, K, 6
0 27 25
1 95 92
2 78 78
3 54 53
4 9* 4
5 39 37
6 21 25
7 60 62
8 73 70
9 20 21
10 88 82
11 11* 14
12 68 67
13 47 42
14 46 44
15 26 20
1, K, 6
1 93 90
2 55 53
3 13 17
4 29 31
5 124 119
6 74 71
7 63 62
8 58 63
9 51 51
10 48 49
11 79 79
12 34 32
13 33 35
14 38 36
2, K, 6
0 33 28
1 63 59
2 84 78
3 24 24
4 51 53
5 23 20
6 10* 9
7 71 66
8 12 11
9 36 33
10 41 39
11 63 61
12 53 51
13 32 29
14 32 31
3, K, 6
1 62 61
2 16 12
3 108 109
4 22 20
5 82 80
6 53 53
7 31 30
8 57 60
9 54 51
10 35 37
11 55 55
12 32 34
13 28 23
14 44 41
4, K, 6
0 79 77
1 71 68
2 66 66
3 39 37
4 19 13
5 42 40
6 26 26
7 33 34
8 59 56
9 30 30
10 67 62
11 16 12
12 51 51
13 37 34
5, K, 6
1 46 46
2 52 52
3 53 49
4 44 44
5 41 41
6 57 55
7 79 79
8 28 32
9 34 35
10 33 34
11 40 42
12 18 16
6, K, 6
0 25 24
1 34 33
2 56 54
3 37 35
4 24 25
5 15 13
6 13* 8
7 33 32
8 12* 5
9 34 36
10 32 32
11 30 30
7, K, 6
1 11* 8
2 18 15
3 79 79
4 38 39
5 11* 5
6 23 23
7 29 30
8 29 29
9 30 31
8, K, 6
0 77 76
1 28 28
2 40 41
3 16 15
4 20 21
5 30 28
6 19 17
7 18 15
9, K, 6
1 30 31
2 26 27
0, K, 7
0 90 88
1 27 29
2 168 156
3 17 11
4 49 47
5 43 37
6 11* 11
7 50 45
8 69 64
9 41 35
10 11* 1
11 38 34
12 13* 9
13 43 39
1, K, 7
1 43 42
2 56 55
3 59 56
4 55 55
5 39 37
6 69 65
7 56 57
8 11* 7
9 25 21
10 14 12
11 25 24
12 39 39
13 30 27
2, K, 7
0 93 88
1 10* 10
2 51 44
3 20 14
4 33 29
5 42 39
6 44 42
7 33 28
8 62 58
9 29 26
10 39 37
11 38 33
12 25 24
3, K, 7
1 46 46
2 68 67
3 24 24
4 75 74
5 64 63
6 69 65
7 26 26
8 21 21
9 32 31
10 18 15
11 34 34
12 33 29
4, K, 7
0 81 78
1 21 21
2 107 101
3 30 27
4 49 46
5 37 32
6 22 22
7 40 36
8 35 34
9 33 28
10 41 40
11 32 30
5, K, 7
1 32 34
2 20 17
3 42 41
4 11* 4
5 11* 9
6 43 42
7 43 43
8 12* 10
9 13* 12
10 30 25
6, K, 7
0 82 80
1 14 9
2 11* 5
3 24 21
4 16 12
5 39 36
6 48 45
7 28 23
8 19 17
7, K, 7
1 28 27
2 36 37
3 23 24
4 49 48
5 38 37
6 38 37
0, K, 8
0 19 9
1 11* 7
2 11* 4
3 45 40
4 57 53
5 60 57
6 11* 0
7 60 56
8 20 16
9 20 15
10 48 47
1, K, 8
1 11* 9
2 38 38
3 40 39
4 38 38
5 27 26
6 45 41
7 37 36
8 18 19
9 39 38
10 24 22
2, K, 8
0 76 73
1 72 65
2 34 32
3 66 62
4 16 11
5 58 53
6 72 67
7 18 16
8 26 24
9 13* 12
3, K, 8
1 11* 2
2 25 23
3 42 39
4 12* 11
5 25 23
6 39 37
7 38 36
8 15 18
9 31 32
4, K, 8
0 11* 7
1 16 14
2 34 30
3 38 35
4 48 44
5 48 45
6 14 13
7 49 43
8 32 28
5, K, 8
1 16 13
2 27 27
3 26 26
4 38 37
5 33 32
6 25 20
6, K, 8
0 13* 11
1 54 51
2 42 40
3 42 40
0, K, 9
0 70 61
1 22 14
2 13 11
3 21 17
4 84 76
5 28 24
6 19 13
1, K, 9
1 20 16
2 13* 9
3 58 50
4 24 22
5 25 21
6 26 27
2, K, 9
0 21 19
1 44 42
2 68 62
3 13* 6
4 27 24
5 25 23
3, K, 9
1 20 12
15 11
35 31
a

The columns are k, 10Fo, 10Fc, “Unobserved” reflections are marked by · Fo and Fc are on an absolute scale.

Table 3.

The hydrogen positions in Na2CO3·H2O

Atom Weighted difference synthesis Least squares refinements Calculated*
X y Z X y z X y z
H(l) 0.12 −0.07 0.14 0.11 −0.06 0.15 0.134 −0.056 0.190
H(2) −.08 −.08 .14 −.10 −.08 .12 −.077 − .089 .084
*

Assuming the geometry of free water with O—H = 0.958 Å and ∠ H—O—H = 104.5°, and making the O—H … O hydrogen bonds as linear as possible.

3. Description of the Structure

The structure (fig. 1) contains CO3 anions whose planes are almost perpendicular to a and which form sheets at x ~ 0.25 and x ~ 0.75. Because the C atoms lie close to the planes of the a glides, they form columns along a at y= 0.25, z ~ 0.60. Two adjacent CO3 groups in a column are held together by both being ionically bonded to four Na ions and hydrogen bonded by one water molecule. The four Na ions and the water molecule form a pentagon roughly halfway between the CO3 sheets. Adjacent CO3 groups in a given sheet are linked by the Na ions that lie above and below the sheet.

Figure 1.

Figure 1.

A stereoscopic illustration of Na2CO3 · H20 viewed along a. The origin of the unit cell is marked by the asterisk.

3.1. The Carbonate Anion and Invironment

The dimensions in the CO3 anion are given in table 4 and the environment is detailed in table 4 and figure 2. The CO3 group is nearly trigonal. As can be seen in figures 1 and 2, O(2) is the only oxygen which is not hydrogen bonded, being instead ionically bonded to four Na ions. The absence of hydrogen bonding to O(2) may account for the observation that the C—O(2) bond is apparently the shortest of the three. O(1) is coordinated to three Na ions and is the acceptor in the hydrogen bond O(1) … H(l)—O(4) from the water molecule. O(3) is bonded strongly to two Na ions and more weakly (2.822 Å) to a third Na(2). O(3) is the acceptor in the hydrogen bond O(3) … H(2)−O(4) from the water molecule.

Table 4.

The CO3 group

Atoms Distances, Å, or angle, deg.
C, O(l) 1 299(3)
C,O(2) 1.274(2)
C, O(3) 1. 285(2)
O(1), O(2) 2 223(2)
O(1) O(3) 2 229(2)
O(2), O(3) 2 230(2)
O(l), C, O(2) 119.6(2)
O(1), C, O(3) 119.2(2)
O(2), C, O(3) 121.2(2)
O(1), Na(l) 2 570(2)
O(1), Na(2) 2 293(2)
O(1), Na(2′) 2.307(2)
O(1), O(4) 2 907(2)
O(1), H(l) 1 96
O(2), Na(l) 2 521(2)
O(2), Na(l′) 2.468(2)
O(2), Na(2′) 2.508(2)
O(2), Na(2) 2 491(2)
O(3). Na(l) 2 444(2)
O(3), Na(l′) 2.330(2)
O(3), Na(2) 2 822(2)
O(3) O(4) 2. 685(2)
O(3), H(2) 1.74

In all tables of interatomic distances and angles, the quantities in parentheses are standard errors in the last significant figure and were computed from the standard errors in the atomic positional parameters and in the cell parameters. The primes refer to atoms in figure 2.

Figure 2.

Figure 2.

The carbonate group environment in Na2CO3·H2O. The primes refer to atoms in table 4.

Since the planes of the CO3 groups are all essentially perpendicular to a, this is expected to be the direction of lowest refractive index, as was found by Harper [1]. Later workers [13, 14] apparently did not permute the refractive indexes when they permuted the unit cell axes to fit crystallographic convention.

3.2. The Sodium Environments

The two crystallographically distinct Na ions in the structure are in general positions. Their environments are shown in figure 3 and are given in table 5.

Figure 3.

Figure 3.

The water and sodium environments in Na2CO3·H2O. The primes refer to atoms in tables 5 and 6.

Table 5.

The sodium environments

Atoms Distance, Å
Na(l), O(1) 2.570(2) Å
Na(1), O(2) 2.521(2)
Na(l), O(3) 2.444(2)
Na(l), O(4) 2.434(2)
Na(1), O(2′) 2.468(2)
Na(l), O(3′) 2.330(2)
Na(l), O(4′) 3.669(2)
Na(2), O(4) 2.384(2) Å
Na(2), O(1′) 2.293(2)
Na(2), O(1″) 2.307(2)
Na(2), O (2″) 2.508(2)
Na(2), O(2‴) 2.491(2)
Na(2), O(4″) 2.936(2)
Na(2), O(3′) 2.822(2)

The primes refer to the atoms in figure 3.

Na(1) is bonded ionically to five oxygens from CO3 groups, and strongly to one water oxygen. Four of the CO3 oxygens, O(1), O(2′), O(3), O(3′), figure 3, define an approximate square about Na(1), and water oxygen O(4) forms the apex of a square pyramid. The fifth carbonate oxygen, O(2), is in the same CO3 group as O(1); the CO3 group is therefore coordinated edgewise to Na(1). The position of O(2) is such that the coordination about Na(1) cannot be considered octahedral. The next oxygen in the direction of the octahedral apex is the water oxygen O(4′), which is relatively far (3.669 Å) from Na (1).

The coordination of Na(2) is similar to that of Na(1). Na(2) is slightly displaced from the center of an approximate square of carbonate oxygens, O(1′), O(2″), O(1″), O(2″ ′). The displacement is towards the strongly bonded water molecule 0(4), which is the apex of a square based pyramid (base down in figure 3). The coordination of Na(2) is completed by O(4″) (2.936 Å) which is the remaining apex of an approximate octahedron, and by O(3′) which is in the same CO3 group as O(2″). Thus the CO3 group is coordinated edgewise to Na(2) also, this time using O(2) and O(3) instead of O(1) and O(2), which are used to coordinate to Na(1). This edgewise coordination is shown in figure 2. The coordination to Na(2) comprises five carbonate oxygens and two water molecules instead of four carbonate oxygens and two water molecules as suggested by Harper [1] and noted by Wells [15].

3.3. The Water Environment

The water environment is given in table 6 and shown in figure 3. The water molecule is bonded to Na(1) and Na(2) with distances of 2.434 and 2.384 Å respectively, and forms hydrogen bonds to oxygens O(1) and O(3) of neighboring CO3 groups. Na(1), Na(2), O(1), and O(3) are arranged approximately tetrahedrally about the water oxygen. The distortion of this tetrahedron is considerable as can be seen from the angles listed in table 6. The closest H … Na distance is H(1) … Na(2) = 2.42 Å, which is in the normal range.

Table 6.

The water environment

Atom Distance Å or angle, deg.
O(4),Na(1) 2.434(2) Å
O(4),Na(2) 2.384(2)
O(4),Na(2′) 2.936(2)
O(4), O(1) 2.907(2)
O(4). O(3) 2.684(2)
H(1),O(l) 1.96
H(2), O(3) 1.74
Na(l), O(4),Na(2) 91.15(6)°
O(1), O(4),Na(1) 109.70(7)
O(1), O(4),Na(2) 133.83(9)
O(3), O(4),Na(l) 129.28(9)
O(3), O(4),Na(2) 110.29(7)
O(1), O(4), O(3) 88.12(6)
O(4),H(l),O(l) 168.
O(4),H(2), O(3) 167.

The prime refers to an atom in figure 3.

The calculated hydrogen positions in table 3 were obtained using the geometry of free water and imposing the condition that the O—H … O angles both be as linearoas possible. Because H(2) … O(3) is shorter (1.74 Å) than H(1) … O(1) (1.96 Å) it is possible that the hydrogen bond O(4)—H(2) … O(3) is strictly linear. Assuming the same water geometry, the hydrogens would then be ≃0.14 Å away from the positions given in table 3 at 0.145, −0.046, 0.182 for H(1) and −0.065,−0.095,0.102 for H(2). The O(4)—H(1) … O(1) angle would then be 156°, and the H(1) … O(1) and H(2) … O(3) distances would be 2.01 A and 1.73 Å, respectively. The closest H Å Na distance would be H(1) … Na(2)=2.39 Å.

Acknowledgments

Collection of the diffractometer data was made possible through the cooperation of E. C. Prince, The x-ray 67 system of computing programs (J. M. Stewart, University of Maryland, Editor) was used for most calculations. We thank Joy S. Bowen and Pamela B. Kingsbury for technical help.

This investigation was supported in part by research grant DE–00572–09 to the American Dental Association from the National Institute of Dental Research and is part of the dental research program conducted by the National Bureau of Standards, in cooperation with the Council on Dental Research of the American Dental Association; the United States Army Medical Research and Development Command; the Dental Sciences Division of the School of Aerospace Medicine, USAF; the National Institute of Dental Research; and the Veterans Administration.

Footnotes

1

Figures in brackets indicate the literature references at the end of this paper.

References

  • [1].Harper J. P., Crystal structure of sodium carbonate monohydrate, Na2CO3·H2O, Z. Krist. 95, 266–273 (1936). [Google Scholar]
  • [2].Dickens B., and Brown W. E., The crystal structures of CaNa2(CO3)2·5H2O, synthetic gaylussite, and CaNa2(CO3)2 ·2H2O, synthetic pirssonite, Inorg. Chem. 8, 2093–2103 (1969). [Google Scholar]
  • [3].Brown W. E., Crystal structure of octacalcium phosphate; Nature 196, 1048–1050 (1962). [Google Scholar]
  • [4].Brown C. J., Peiser H. S., and Turner-Jones A., The crystal of sodium sesquicarbonate, Acta Cryst. 2, 167–174 (1949). [Google Scholar]
  • [5].Bacon G. E., and Curry N. A., A neutron-diffraction study of sodium sesquicarbonate, Acta Cryst. 2, 82–85 (1956). [Google Scholar]
  • [6].Candlin R., Thermal changes in the structure of sodium sesquicarbonate, Acta Cryst. 9, 545–554 (1956). [Google Scholar]
  • [7].Pabst A., On the hydrates of sodium carbonate, Amer. Min. 15, 69–73 (1930). [Google Scholar]
  • [8].Reimann C. W., Mighell A. D., and Mauer F. A., The crystal and molecular structure of tetra isopyrazole-nickel chloride, Ni(C3H4N2)4Cl2, Acta Cryst. 23, 135–141 (1967). [Google Scholar]
  • [9].Mauer F. A., and Koenig A. L., An automatic diffractometer for off-line operation, American Crystallographic Association, Summer Meeting, Abstract E10, University of Minnesota, Minneapolis, Minn: Aug. 20–25, (1967). [Google Scholar]
  • [10].International Tables for X-ray Crystallography 3, p. 202 (The Kynoch Press, Birmingham, England, 1962). [Google Scholar]
  • [11].McWeeney R., x-ray scattering by aggregates of bonded atoms. I. Analytical approximations in single-atom scattering, Acta Cryst. 4,513–519 (1951). [Google Scholar]
  • [12].Chastain R. V., An algorithm for finding a set of phases directly from sigma two relationships, In, x-ray 67-Program System for x-ray Crystallography, Technical Report 67–58, Ed. Stewart J. M., pp 71–75, University of Maryland, College Park, Md: (1967). [Google Scholar]
  • [13].Palache C., Berman H., and Frondel C., Thermonatrite [Na2CO3 · H2O], The System of Mineralogy of J. D. Dana and E. S. Dana, 7th ed., 2, p. 224 (J. Wiley and Sons, New York, N.Y.,1951). [Google Scholar]
  • [14].Winchell A. N., and Winchell H., The Microscopical Characters of Artifical Inorganic Solid Substances: Optical Properties of Artifical Minerals (Academic Press, New York, 1964). [Google Scholar]
  • [15].Wells A. F., Structural Inorganic Chemistry, 3rd ed. p. 587 (Oxford University Press, London, 1962). [Google Scholar]

Articles from Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry are provided here courtesy of National Institute of Standards and Technology

RESOURCES