Abstract
This Data in Brief article presents sedimentological and geochemical parameters from a set of sedimentary samples collected in the Saint-Charles River, a tributary of the Saint-Lawrence River flowing in Québec City (QC, Canada). It details the experimental design, methods, materials and results of destructive analyses related to a multi-proxy study of polymetallic contamination in sediments collected within an urban reservoir (Spatial and temporal patterns of metallic pollution in Québec City, Canada: Sources and hazard assessment from reservoir sediment records, https://doi.org/10.1016/j.scitotenv.2019.04.021, (Chassiot et al., 2019)). The present article summarizes the results of relevant parameters on a set of 68 samples: total organic carbon (TOC), sulfur content, grain-size, and concentrations of heavy and trace metals. It also presents the calculation of enrichment factors, geoaccumulation indexes, and metallic pollution index.
Keywords: Urban river, Reservoir sediments, Pollution, Heavy and trace metals
Subject area | Geochemistry and sedimentology |
More specific subject area | Organic carbon, grain-size, heavy and trace metals |
Type of data | Tables and charts |
How data was acquired | CHNS Analyzer (Truspec), Laser Particle Size Analyzer (Horiba LA-950), ICP-AES Varian X |
Data format | Raw and analyzed |
Experimental factors | HCl (CHNS), No pretreatment (grain-size), HNO3 + HCLO4 + HF (ICP-AES) |
Experimental features | Multi-proxy analysis of sediment samples, including sedimentological analyses and geochemical survey (analyses conducted on a set of 68 samples). |
Data source location | Québec City (QC, Canada) |
Data accessibility | Data available in this article |
Related research article | Chassiot, L., Francus, P., De Coninck, A., Lajeunesse, P., Cloutier, D., Labarre, T., Spatial and temporal patterns of metallic pollution in Québec City, Canada: sources and hazard assessment from reservoir sediment records. Sci of the Tot Environ 673, 2019, 136–147.[1] |
Value of the data
|
1. Data
Data presented in this article are related to a multi-proxy study of pollution in the sediments of the Saint-Charles River, a tributary of the Saint-Lawrence River flowing in Québec City [1]. The present article focuses on destructive analyses used to acquire sedimentological and geochemical data, in complement to non-destructive analyses and age-depth model presented in Chassiot et al. [1]. Sedimentological and geochemical data include total organic carbon (TOC), sulfur (S), grain-size, and heavy and trace metals content for silver (Ag), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), molybdenum (Mo), nickel (Ni), tin (Sn), lead (Pb), vanadium (V), and zinc (Zn).
A total of 68 samples is presented. Among them, a first dataset of 39 samples (Table 1) includes 6 surface samples collected at the intersection between the Saint-Charles River and its tributaries (JAU, NEL, LOR, BER, CAR, and LAI), 3 surface samples collected in the downstream section (VER, DRA, and FLE), and 30 samples (A, B, and C) extracted from a series of short-cores collected in the river channel (RSC16-01 to −08, BER16, and FLE17). The second dataset consists in 29 samples extracted from long-core RSC17 (Table 2) to document the historical distribution since the creation of the reservoir in the early 1970s [1].
Table 1.
ID | Ag mg/kg | As mg/kg | Cd mg/kg | Co mg/kg | Cr mg/kg | Cu mg/kg | Mn mg/kg | Mo mg/kg | Ni mg/kg | Pb mg/kg | Sn mg/kg | V mg/kg | Zn mg/kg | Hg ng/g | Ti mg/kg | TOC % | S mg/kg | Silts + clays % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 0.9 | 5 | 0.2 | 2 | 0.5 | 0.8 | 0.3 | 0.8 | 0.6 | 5 | 3 | 0.5 | 1 | 0.03 | 3 | 0.05 | 30 | |
REFERENCE | 0.04 | 4.58 | 0.75 | 14.08 | 25.96 | 9.29 | 474.55 | 2.29 | 13.73 | 12.75 | 2.05 | 68.24 | 207.66 | 62.33 | 4344.02 | 7.90 | 1243 | 55.20 |
JAU | <0.9 | 5.32 | <0.2 | 1.87 | 5.53 | <0.8 | 151.06 | <0.08 | 3.09 | 16.28 | <3 | 10.32 | 45.74 | 1.98 | 788.30 | <0.05 | 22 | 0.00 |
NEL | <0.9 | <5 | <0.2 | 1.71 | 2.32 | <0.8 | 148.99 | <0.08 | 1.41 | 15.81 | <3 | 8.46 | 42.28 | 2.94 | 943.29 | 0.13 | 29 | 0.00 |
LOR | <0.9 | <5 | <0.2 | 2.54 | 10.78 | 8.00 | 188.89 | <0.08 | 5.89 | 10.00 | <3 | 16.11 | 34.44 | 5.31 | 1144.44 | 0.28 | 400 | 0.40 |
BER | <0.9 | <5 | 0.12 | 2.32 | 16.89 | 2.90 | 240.76 | <0.08 | 8.70 | 15.50 | <3 | 16.76 | 51.68 | 5.91 | 1172.27 | <0.05 | 668 | 1.30 |
CAR | <0.9 | <5 | 0.05 | 2.25 | 12.42 | 12.91 | 191.80 | <0.08 | 8.36 | 9.84 | <3 | 13.28 | 36.89 | 4.38 | 888.93 | 0.43 | 541 | 1.50 |
BER16-A | <0.9 | <5 | 0.11 | <0.2 | 10.84 | 3.15 | 172.69 | <0.08 | 5.17 | 14.75 | <3 | 13.87 | 37.82 | 7.23 | 784.03 | 0.53 | 403 | 6.80 |
BER16-B | <0.9 | 3.00 | int. Fe | 5.42 | 28.60 | 5.90 | 335.00 | <0.08 | 13.80 | 13.80 | <3 | 34.90 | 74.10 | 8.86 | 1940.00 | 0.43 | 1130 | 9.80 |
BER16-C | <0.9 | <5 | <0.2 | 3.49 | 14.55 | 2.03 | 219.92 | <0.08 | 6.88 | 16.69 | <3 | 19.29 | 47.37 | 5.00 | 1330.83 | 0.38 | 586 | 30.90 |
VER | <0.9 | 3.04 | int. Fe | 5.78 | 23.31 | 6.49 | 408.45 | <0.08 | 13.07 | 15.30 | <3 | 33.45 | 75.30 | 6.27 | 1743.24 | 0.28 | 882 | 0.80 |
RSC16-01_A | <0.9 | <5 | 0.15 | 2.96 | 10.51 | 1.96 | 255.14 | <0.08 | 4.63 | 15.42 | <3 | 20.89 | 39.25 | 13.65 | 1598.13 | 0.25 | 238 | 10.30 |
RSC16-01_B | <0.9 | <5 | <0.2 | 2.94 | 21.41 | 2.48 | 150.00 | <0.08 | 5.53 | 13.11 | <3 | 20.97 | 34.95 | 7.96 | 1134.47 | 0.50 | 151 | 1.80 |
RSC16-01_C | <0.9 | 3.52 | 0.07 | 4.46 | 8.79 | 1.88 | 394.92 | <0.08 | 5.16 | 14.18 | <3 | 20.39 | 36.33 | 10.30 | 2145.00 | 0.20 | 186 | 0.70 |
DRA | <0.9 | <5 | 0.17 | 9.97 | 21.13 | 6.50 | 486.25 | <0.08 | 8.75 | 13.75 | <3 | 42.50 | 95.88 | 12.93 | 4487.50 | 0.88 | 763 | 24.10 |
RSC16-02_A | <0.9 | <5 | <0.2 | 3.59 | 16.67 | 9.62 | 405.13 | <0.08 | 10.26 | 17.31 | <3 | 28.21 | 64.10 | 9.15 | 1500.00 | 0.28 | 603 | 3.00 |
RSC16-02_B | 2.25 | 6.00 | 1.62 | 13.81 | 68.40 | 63.00 | 783.00 | 1.35 | 33.00 | 190.50 | 4.50 | 90.45 | 415.50 | 317.80 | 4095.00 | 4.54 | 2760 | 63.60 |
RSC16-02_C | 2.72 | 7.09 | 1.19 | 14.12 | 54.33 | 37.80 | 592.91 | 1.54 | 25.98 | 132.28 | 3.43 | 76.54 | 359.06 | 164.44 | 4098.43 | 2.59 | 1772 | 51.20 |
RSC16-03_A | <0.9 | <5 | <0.2 | 3.73 | 14.52 | 3.36 | 276.00 | <0.08 | 7.68 | 17.40 | <3 | 25.20 | 61.20 | 8.48 | 1452.00 | 0.30 | 516 | 6.10 |
RSC16-03_B | <0.9 | <5 | 0.39 | 7.59 | 20.21 | 5.32 | 278.72 | <0.08 | 9.79 | 28.72 | <3 | 32.13 | 73.40 | 18.17 | 2414.89 | 0.13 | 553 | 11.70 |
RSC16-03_C | 3.21 | 4.76 | 1.30 | 13.92 | 63.33 | 71.43 | 684.52 | 0.95 | 32.14 | 167.86 | 5.95 | 86.07 | 401.19 | 289.57 | 3904.76 | 3.89 | 2738 | 62.70 |
RSC16-04_A | <0.9 | <5 | 0.13 | 2.83 | 7.22 | 1.24 | 210.90 | <0.08 | 4.74 | 15.56 | <3 | 13.53 | 41.73 | 8.48 | 744.36 | 0.26 | 219 | 2.50 |
RSC16-04_B | <0.9 | <5 | 0.27 | 4.22 | 14.14 | 3.20 | 234.84 | <0.08 | 8.61 | 16.11 | <3 | 27.05 | 131.56 | 8.89 | 1475.41 | 0.68 | 504 | 11.30 |
RSC16-04_C | 1.23 | 4.92 | 0.97 | 13.68 | 65.41 | 60.25 | 735.25 | 1.48 | 30.74 | 116.80 | 2.70 | 83.98 | 303.69 | 263.29 | 4106.56 | 3.75 | 2373 | 60.90 |
LAI | <0.9 | <5 | 0.53 | 8.89 | 37.36 | 28.16 | 356.60 | <0.08 | 20.38 | 12.74 | <3 | 45.28 | 151.42 | 23.76 | 2773.58 | 2.73 | 2208 | 31.50 |
RSC16-05_A | <0.9 | <5 | 0.08 | 1.96 | 10.91 | 2.41 | 156.29 | <0.08 | 5.56 | 14.90 | <3 | 14.37 | 40.91 | 8.93 | 710.14 | 0.13 | 283 | 5.30 |
RSC16-05_B | <0.9 | <5 | 0.06 | <0.2 | 6.13 | 1.43 | 79.17 | <0.08 | 3.65 | 17.87 | <3 | 8.22 | 41.74 | 8.67 | 455.22 | 0.53 | 142 | 3.30 |
RSC16-05_C | <0.9 | 4.05 | <0.2 | 4.75 | 15.14 | 4.32 | 243.24 | <0.08 | 10.95 | 16.62 | <3 | 24.19 | 68.92 | 10.19 | 1432.43 | 0.13 | 635 | 10.80 |
RSC16-06_A | <0.9 | <5 | 0.15 | 5.58 | 18.21 | 2.74 | 422.62 | <0.08 | 9.40 | 18.81 | <3 | 30.95 | 69.05 | 10.32 | 2035.71 | 0.13 | 405 | 6.10 |
RSC16-06_B | 1.16 | <5 | 0.88 | 15.23 | 71.12 | 55.60 | 689.22 | 1.16 | 32.33 | 76.29 | 3.88 | 82.89 | 315.52 | 224.32 | 3892.24 | 4.03 | 2716 | 74.80 |
RSC16-06_C | 1.05 | 7.89 | 1.03 | 15.80 | 91.45 | 65.79 | 614.47 | 1.32 | 35.53 | 84.21 | <3 | 90.00 | 386.84 | 239.63 | 4223.68 | 3.48 | 3618 | 68.20 |
RSC16-07_A | <0.9 | <5 | <0.2 | 5.83 | 22.29 | 3.71 | 402.86 | <0.08 | 11.71 | 21.00 | <3 | 34.29 | 91.43 | 10.04 | 1528.57 | 0.23 | 671 | 4.10 |
RSC16-07_B | 1.62 | <5 | 0.81 | 14.11 | 69.60 | 57.52 | 641.01 | 1.40 | 34.53 | 63.67 | 2.59 | 79.64 | 361.51 | 161.07 | 3712.23 | 4.48 | 3367 | 63.70 |
RSC16-07_C | 2.05 | 5.13 | 1.23 | 16.24 | 83.97 | 67.44 | 564.10 | 1.54 | 37.18 | 76.92 | 3.85 | 89.23 | 388.46 | 269.07 | 3858.97 | 5.03 | 4756 | 74.60 |
RSC16-08_A | <0.9 | <5 | 0.06 | 4.01 | 13.66 | 2.32 | 219.51 | <0.08 | 7.93 | 20.24 | <3 | 18.29 | 56.10 | 17.20 | 957.32 | 0.33 | 182 | 2.90 |
RSC16-08_B | <0.9 | <5 | 0.28 | 13.12 | 46.74 | 43.39 | 731.40 | 0.62 | 28.51 | 34.71 | <3 | 66.32 | 246.69 | 62.75 | 3384.30 | 3.48 | 2318 | 36.70 |
RSC16-08_C | <0.9 | <5 | 0.37 | 8.05 | 34.48 | 25.40 | 450.00 | <0.08 | 16.57 | 22.50 | <3 | 39.92 | 153.63 | 32.87 | 2334.68 | 1.63 | 1282 | 22.30 |
FLE | 0.00 | <6 | 0.35 | 13.71 | 51.36 | 44.49 | 852.97 | <0.08 | 29.24 | 20.97 | <3 | 68.64 | 259.32 | 80.38 | 3546.61 | 6.38 | 2492 | 39.20 |
FLE17-A | 0.25 | 2.83 | 0.41 | 10.64 | 23.50 | 32.87 | 512.94 | 0.67 | 12.31 | 32.15 | 2.70 | 45.90 | 142.96 | 59.64 | 4405.04 | 0.80 | 1103 | 6.80 |
FLE17-B | 1.64 | 6.47 | 4.74 | 14.00 | 112.59 | 121.19 | 475.09 | 1.51 | 31.36 | 181.02 | 17.24 | 83.91 | 1201.43 | 321.00 | 4137.13 | 4.80 | 4556 | 43.70 |
FLE17-C | 0.55 | 3.81 | 0.67 | 9.90 | 37.63 | 35.89 | 487.37 | 0.77 | 17.17 | 27.73 | 5.37 | 46.96 | 196.54 | 118.41 | 3249.33 | <0.05 | 3761 | 48.20 |
Table 2.
ID | Profondeur cm | Age AD | Ag mg/kg | As mg/kg | Cd mg/kg | Co mg/kg | Cr mg/kg | Cu mg/kg | Mn mg/kg | Mo mg/kg | Ni mg/kg | Pb mg/kg | Sn mg/kg | V mg/kg | Zn mg/kg | Hg ng/g | Ti mg/kg | TOC % | S mg/kg | Silts + clays % |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 0.15 | 0.5 | 0.09 | 0.15 | 1 | 2 | 0.13 | 0.05 | 0.08 | 0.3 | 0.05 | 0.05 | 0.8 | 0.03 | 0.8 | 0.05 | 50 | |||
REFERENCE | x | x | 0.04 | 4.58 | 0.75 | 14.08 | 25.96 | 9.29 | 474.55 | 2.29 | 13.73 | 12.75 | 2.05 | 68.24 | 207.66 | 62.33 | 4344.02 | 7.90 | 1243 | 55.2 |
RSC16-09_A | 2 | 2017 | 0.48 | 2.52 | 0.08 | 13.89 | 32.50 | 18.54 | 669.81 | 0.74 | 16.90 | 21.71 | 3.03 | 58.92 | 141.75 | 19.04 | 5567.92 | 0.60 | 1399 | 18.1 |
RSC16-09_B | 24 | 2016 | 0.31 | 2.16 | 0.06 | 10.61 | 24.26 | 9.39 | 497.01 | 0.50 | 13.07 | 21.81 | 7.25 | 45.26 | 104.79 | 14.12 | 4114.29 | 0.80 | 1106 | 14.8 |
RSC16-09_C | 55 | 2013 | 0.44 | 4.68 | 0.40 | 13.39 | 55.49 | 45.93 | 1043.19 | 1.32 | 33.43 | 35.79 | 3.31 | 72.80 | 282.59 | 62.07 | 4195.06 | 4.54 | 3080 | 56.4 |
RSC16-09_D | 75 | 2012 | 0.45 | 3.70 | 0.34 | 12.62 | 43.09 | 29.07 | 682.03 | 1.16 | 26.20 | 30.21 | 3.54 | 62.55 | 226.49 | 66.75 | 4026.94 | 3.79 | 2628 | 57.5 |
RSC17-03_A | 133.5 | 2008 | 0.29 | 2.93 | 0.10 | 11.54 | 31.33 | 19.70 | 573.74 | 1.01 | 19.98 | 19.61 | 2.27 | 50.81 | 144.17 | 24.71 | 4031.66 | 1.55 | 1621 | 24.0 |
RSC17-03_B | 152.5 | 2007 | 1.08 | 3.27 | 0.19 | 12.04 | 30.36 | 17.07 | 573.20 | 0.68 | 15.66 | 24.49 | 5.61 | 51.82 | 143.20 | 46.97 | 4709.33 | 1.40 | 1595 | 30.4 |
RSC17-03_C | 172.5 | 2006 | 1.05 | 6.11 | 0.83 | 15.06 | 63.95 | 62.55 | 638.60 | 1.56 | 37.47 | 48.47 | 4.48 | 80.55 | 356.87 | 111.04 | 4216.04 | 5.09 | 3838 | 58.7 |
RSC17-03_D | 193.5 | 2004 | 2.39 | 6.12 | 1.27 | 15.23 | 75.92 | 80.54 | 661.78 | 2.09 | 39.24 | 75.08 | 5.27 | 87.15 | 459.69 | 178.81 | 4041.88 | 0.00 | 4716 | 67.6 |
RSC17-04_A | 285 | 1998 | 0.71 | 3.83 | 0.81 | 11.79 | 45.01 | 32.35 | 587.38 | 1.10 | 21.80 | 33.06 | 3.19 | 57.08 | 222.40 | 104.85 | 3844.32 | 2.81 | 2245 | 44.1 |
RSC17-04_B | 314 | 1996 | 0.46 | 2.62 | n.a. | 11.85 | 29.78 | 15.46 | 559.44 | 0.90 | 14.56 | 20.82 | 2.33 | 48.89 | 143.09 | 23.39 | 4201.90 | 0.73 | 1469 | 20.6 |
RSC17-04_C | 334 | x | 0.18 | 2.84 | 0.30 | 5.98 | 24.90 | 19.21 | 274.31 | 0.48 | 11.31 | 190.11 | 2.14 | 27.14 | 115.83 | 60.47 | 1631.08 | 0.65 | 2406 | 7.0 |
RSC17-04_D | 347 | 1994 | 3.51 | 7.05 | 1.72 | 16.19 | 96.78 | 107.92 | 531.14 | 1.93 | 37.38 | 92.14 | 8.37 | 89.48 | 504.05 | 418.21 | 4154.96 | 5.34 | 5994 | 68.5 |
RSC17-04_E | 367 | 1993 | 0.63 | 5.79 | 0.46 | 14.50 | 67.09 | 41.05 | 554.45 | 1.92 | 29.08 | 59.89 | 3.68 | 79.22 | 244.78 | 145.79 | 4182.19 | 3.64 | 3295 | 64.3 |
RSC17-04_F | 386.5 | x | 0.96 | 4.80 | 0.89 | 12.87 | 53.81 | 64.24 | 500.00 | 1.50 | 24.61 | 124.26 | 14.65 | 67.24 | 379.89 | 188.19 | 3868.72 | 4.02 | 7151 | 40.3 |
RSC17-04_G | 409 | 1990 | 4.46 | 8.73 | 8.46 | 17.00 | 83.37 | 123.70 | 504.98 | 2.02 | 40.56 | 269.43 | 13.06 | 103.97 | 1793.55 | 348.13 | 4336.52 | 5.13 | 8135 | 62.9 |
RSC17-04_H | 419.5 | 1989 | 2.94 | 21.20 | 22.76 | 13.47 | 78.74 | 690.15 | 386.72 | 4.64 | 38.28 | 262.52 | 14.65 | 92.93 | 4043.16 | 1375.30 | 3245.47 | 17.59 | 10342 | 23.4 |
RSC17-05_A | 447.5 | 1987 | 0.36 | 3.56 | 0.17 | 8.65 | 37.28 | 30.32 | 401.58 | 1.03 | 16.23 | 72.01 | 4.87 | 41.84 | 373.78 | 48.96 | 2600.41 | 1.29 | 3236 | 27.1 |
RSC17-05_B | 467.5 | 1986 | 0.28 | 3.47 | 0.38 | 8.14 | 34.66 | 31.54 | 417.05 | 0.89 | 15.21 | 92.03 | 5.75 | 39.99 | 223.99 | 115.99 | 2584.72 | 1.04 | 3169 | 18.7 |
RSC17-05_C | 487.5 | 1985 | 0.15 | 2.46 | 0.39 | 7.63 | 28.57 | 19.82 | 344.22 | 0.87 | 13.00 | 49.14 | 4.34 | 34.08 | 168.95 | 56.31 | 2240.79 | 0.44 | 2369 | 15.5 |
RSC17-05_D | 507.5 | 1983 | 0.17 | 2.15 | 0.31 | 8.21 | 26.11 | 26.20 | 408.87 | 0.70 | 10.88 | 67.10 | 11.59 | 39.38 | 134.40 | 80.57 | 3301.03 | 0.94 | 2323 | 10.3 |
RSC17-05_E | 534.5 | 1982 | 1.95 | 9.88 | 2.07 | 13.38 | 1448.85 | 1247.04 | 476.53 | 1.31 | 31.15 | 252.81 | 23.94 | 67.68 | 1536.04 | 1606.65 | 3776.39 | 9.23 | 5797 | 33.6 |
RSC17-05_F | 541.5 | 1981 | 2.34 | 6.47 | 1.37 | 12.61 | 583.41 | 482.76 | 475.41 | 1.04 | 25.20 | 171.36 | 15.56 | 57.06 | 779.34 | 534.26 | 3650.02 | 10.40 | 3842 | 30.3 |
RSC17-06_A | 599 | 1977 | 0.23 | 4.40 | 0.51 | 9.60 | 97.01 | 71.65 | 355.09 | 0.66 | 17.59 | 150.62 | 5.54 | 44.49 | 268.12 | 143.84 | 3419.10 | 14.80 | 3076 | 14.5 |
RSC17-06_B | 610 | 1977 | 0.44 | 4.44 | 0.71 | 11.56 | 190.18 | 152.50 | 472.13 | 0.77 | 19.70 | 109.60 | 8.58 | 55.34 | 353.29 | 470.55 | 3806.79 | 2.70 | 2417 | 28.2 |
RSC17-06_C | 614 | 1976 | 0.30 | 4.41 | 0.50 | 11.00 | 182.00 | 161.00 | 447.69 | 0.64 | 17.21 | 81.24 | 8.07 | 48.98 | 293.34 | 157.93 | 3499.22 | 3.50 | 2399 | 19.9 |
RSC17-06_D | 637.5 | 1975 | 0.49 | 6.47 | 0.99 | 7.98 | 328.60 | 197.59 | 370.65 | 1.14 | 16.95 | 99.25 | 21.39 | 48.69 | 497.24 | 1700.00 | 2314.44 | 19.16 | 4922 | n.a. |
RSC17-06_E | 641.5 | 1974 | 0.34 | 4.06 | 0.53 | 11.08 | 163.53 | 147.51 | 447.43 | 0.71 | 18.28 | 82.33 | 7.72 | 50.88 | 293.86 | 185.69 | 3493.00 | 3.90 | 2376 | 23.7 |
RSC17-06_F | 668.5 | 1973 | 0.92 | 5.38 | 1.19 | 9.49 | 589.03 | 466.33 | 395.64 | 1.42 | 19.46 | 132.47 | 22.02 | 47.00 | 717.67 | 545.77 | 2851.07 | 7.50 | 5097 | 24.4 |
RSC17-06_G | 700.5 | x | 0.14 | 2.56 | 0.48 | 6.26 | 27.47 | 39.63 | 345.17 | 0.62 | 12.94 | 50.78 | 9.46 | 31.29 | 141.22 | 45.28 | 1590.17 | 0.40 | 2488 | 5.3 |
This article also includes the calculation of three pollution indexes: enrichment factors (EF), geoaccumulation indexes (Igeo), and the metallic pollution index (MPI) for the two datasets displayed in Table 1, Table 2, respectively. Contamination categories for EF and Igeo are listed in Table 3. Results and interpretations of EF, Igeo, and MPI are presented in two Excel sheets in supplementary data.
Table 3.
Enrichment factors (EF)a |
Geoaccumulation index (Igeo)b |
||||
---|---|---|---|---|---|
Level | Value | Enrichment | Class | Value | Contamination |
I | <1 | none | 0 | <0 | none |
II | 1–3 | minor | 1 | 0–1 | none to moderate |
III | 3–5 | moderate | 2 | 1–2 | moderate |
IV | 5–10 | moderately severe | 3 | 2–3 | moderate to strong |
V | 10–25 | severe | 4 | 3–4 | strong |
VI | 25–50 | very severe | 5 | 4–5 | strong to extreme |
VII | >50 | extremely severe | 6 | >5 | extreme |
According to Chen et al. (2007).
According to Muller (1981).
2. Experimental design, materials, and methods
2.1. CHNS analyzer
Total Carbon (TC) and Total Organic Carbon (TOC) contents were determined using a CHNS analyzer TruSpec® Leco 932 (catalytic combustion method and infrared detection), with a Limit of Detection (LOD) of 0.05% and a Limit of Quantification (LOQ) of 0.17%, respectively. The sample set was first dried during 24h at 50 °C and then analyzed for the assessment of TC content. The same set was used for TOC measurements by using silver capsules. They were placed on a plastic plate with small numbered wells. The samples were then moistened with about 20μL of ELGA water which allowed acidification. The plate was then placed in a sealed glass desiccator in the presence of a small beaker containing about 25mL of concentrated HCl. The samples were exposed to HCl steam for 4 hours at room temperature. They were then removed and placed in the oven for 1 hour at 50 °C to remove HCl and water residues. The capsules were then closed and placed in the CHNS analyzer without reweighing. Analyses were performed in duplicates using PACS-2 (Marine sediment) and OAS as standard reference materials for control. For additional information about certified reference values, the reader is referred to supplementary data.
2.2. Grain-size analyses
Grain-size analyses were performed by sieving the coarse fraction using apertures of 16, 11.3, 8, 5.6, 4, 2.8, 2, 1.4, and 1 mm. Laser diffraction was performed without pretreatment to characterize the fraction under 2 mm in duplicate or triplicate using a Horiba® LA-950 Laser Particle Size Analyzer. Data were then combined and interpreted using the Folk and Ward method [2] in the GRADISTAT Excel spreadsheet [3] to extract parameters such as silt and clay contents and d50.
2.3. ICP-AES
Total acid attacks were performed on ca. 0.1 g of crushed sediment by mixing 4 ml of HNO3 with 1.6 ml of HClO4, and 2 ml of HF in Teflon tubes completed to 15 ml with ultrapure water. The quantification of major elements and trace metals, except for mercury, have been performed using an Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) Varian X® with multi-elements solutions, reference materials and sample replicates. LSKD-2, LSKD-4 (Lake sediments) and Buffalo RM8704 (River sediment) were used as certified reference materials (SI).
2.4. AAS
Mercury (Hg) content was analyzed on ca. 50 mg of dried powders following thermal decomposition, amalgamation, and Atomic Absorption Spectroscopy (AAS) analyses using a DMA-80 with an instrumental LOD of 0.005 ng/g of sediment. Different certified control masses of known concentrations were analyzed to make a calibration curve ranging from 1 to 25 ng of Hg. For each analysis, the sample is heated to 200 °C for 1min, then the temperature increases for 1min30s to reach 650 °C. This temperature is maintained for another 1min30s. During this time, the Hg steam is captured in the "amalgamator" containing gold, which captures Hg. After 1min30sec. At 650 °C, the "amalgamator" is heated to 900 °C for 12s, which releases the Hg that goes into the detection cell. Hg is then detected by AAS at 253.65nm. This method allowed to determine a mean LOD of 0.03 ng/g of sediment for the whole dataset, which varies according to the mass and the Hg concentration of each sample.
2.5. Pollution indexes
The assessment of pollution was made by calculating Enrichments Factors (EF, equation 1) [4], [5], [6] and Geoaccumulation Indexes (Igeo, equation 2) [7], [8]. EF and Igeo are both seven classes indexes used to assess a pollution by a single metal (Table 3).
-
(1)
EF (X) = where X and Ti represent the metal and titanium concentrations, respectively, in sample or reference sample in mg kg−1.
-
(2)
Igeo (X) = where X represents the metal concentration in sample or reference sample in mg kg−1.
The calculation of EFs requires a reference sample for background geochemical values and a conservative element to normalize geochemical data that can be affected by grain-size effect. The reference sample was provided by sampling a deep layer in a core (LSC17) collected in the lake feeding the Saint-Charles 30 km upstream [1]. According to the age-depth model presented in Tremblay et al. [9], the layer sampled at 85–86 cm depth in core LSC17 predates the European settlement in Canada and was thus targeted to evaluate natural background concentrations for metals [1]. The affinity of Ti for fine sediments was first suggested from Itrax® data [1], and then confirmed when plotting Ti inferred from ICP-AES analyses versus grain-size. Fig. 1 shows the relationship between Ti and d50 is negative (y = -0.1883x + 863.54; r = 0.79) and significant (p < 10−4). This relationship is even stronger (r = 0.83) when two outliers are removed from the dataset.
We inferred the extent of polymetallic contamination for each sample by calculating Metallic Pollution Index (MPI, equation 3) [10]. MPI values > 1 indicate pollution whereas MPI values < 1 indicate no pollution.
-
(3)
MPI = where M represents the metal concentration whereas n indicates the number of metals considered.
Acknowledgments
The funding of this study was provided by Québec City, UMR-SU and MITACS Accelerate postdoctoral program through a stipend for Léo Chassiot. The INRS-ETE lab teams are warmly acknowledged for assistance in analytical procedures: Stéphane Prémont, Lise Rancourt, Anissa Bensadoune, Brigitte Patry, Philippe Girard and Jean-François Dutil.
Footnotes
Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104256.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supplementary data
The following is the Supplementary data to this article:
References
- 1.Chassiot L., Francus P., De Coninck A., Lajeunesse P., Cloutier D., Labarre T. Spatial and temporal patterns of metallic pollution in Québec City, Canada: sources and hazard assessment from reservoir sediment records. Sci. Total Environ. 2019;697:136–147. doi: 10.1016/j.scitotenv.2019.04.021. [DOI] [PubMed] [Google Scholar]
- 2.Folk R.L., Ward W.C. Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 1957;27:3–26. [Google Scholar]
- 3.Blott S.J., Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms. 2001;26:1237–1248. [Google Scholar]
- 4.Chen C.-W., Kao C.-M., Chen C.-F., Dong C.-D. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere. 2007;66:1431–1440. doi: 10.1016/j.chemosphere.2006.09.030. [DOI] [PubMed] [Google Scholar]
- 5.Çevik F., Göksu M.Z.L., Derici O.B., Fındık Ö. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ. Monit. Assess. 2009;152:309–317. doi: 10.1007/s10661-008-0317-3. [DOI] [PubMed] [Google Scholar]
- 6.Grosbois C., Meybeck M., Lestel L., Lefèvre I., Moatar F. Severe and contrasted polymetallic contamination patterns (1900-2009) in the Loire River sediments (France) Sci. Total Environ. 2012;435–436:290–305. doi: 10.1016/j.scitotenv.2012.06.056. [DOI] [PubMed] [Google Scholar]
- 7.Müller G. Index of geoaccumulation in sediments of the rhine River. Geol. J. 1969;2:109–118. [Google Scholar]
- 8.Müller G. Die Schwermetallbelastung der sedimente des Neckara und seiner Nebenflusse: eine Bestandsaufnahme. Chem. Ztg. 1981;105:157–164. [Google Scholar]
- 9.Tremblay R., Légaré S., Pienitz R., Vincent W., Hall R. Étude paléolimnologique de l'histoire trophique du lac Saint-Charles, réservoir d'eau potable de la Communauté Urbaine de Québec. Rev. des Sci. de l'Eau. 2001;14:489–510. [Google Scholar]
- 10.Tomlinson D.L., Wilson J.G., Harris C.R., Jeffrey D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980;33:566–575. [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.