Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(1):33–47. doi: 10.1111/j.1582-4934.2001.tb00136.x

Problems and solutions in myoblast transfer therapy

Gayle M Smythe 1,, Stuart I Hodgetts 2, Miranda D Grounds 2
PMCID: PMC6737837  PMID: 12067449

Abstract

Duchenne muscular dystrophy is a severe X‐linked neuromuscular disease that affects approximately 1/3500 live male births in every human population, and is caused by a mutation in the gene that encodes the muscle protein dystrophin. The characterization and cloning of the dystrophin gene in 1987 was a major breakthrough and it was considered that simple replacement of the dystrophin gene would ameliorate the severe and progressive skeletal muscle wasting characteristic of Duchenne muscular dystrophy. After 20 years, attempts at replacing the dystrophin gene either experimentally or clinically have met with little success, but there have been many significant advances in understanding the factors that limit the delivery of a normal dystrophin gene into dystrophic host muscle. This review addresses the host immune response and donor myoblast changes underlying some of the major problems associated with myoblast‐mediated dystrophin replacement, presents potential solutions, and outlines other novel therapeutic approaches.

Keywords: myoblast, Duchenne muscular dystrophy, dystrophin gene, dystrophin, myoblast transfer therapy, stem cells, gene therapy

References

  • 1. Hoffman E. P., Brown R. H., Kunkel L. M., Dystrophin: the protein product of the Duchenne muscular dystrophy locus, Cell, 51: 919, 1987. [DOI] [PubMed] [Google Scholar]
  • 2. Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C., Kunkel L. M., Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals, Cell, 50: 509, 1987. [DOI] [PubMed] [Google Scholar]
  • 3. Bonilla E., Samitt C. E., Miranda A. F., Hays A. P., Salviati G., DiMauro S., Kunkel L. M., Hoffman E. P., Rowland L. P., Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface, Cell, 54: 447, 1998. [DOI] [PubMed] [Google Scholar]
  • 4. Tremblay J. P., Guerette B., Myoblast transplantation: a brief review of the problems and some solutions, Basic Appl. Myol., 7: 221, 1997. [Google Scholar]
  • 5. Law P. K., Goodwin T. G., Fang Q., Duggirala V., Larkin C., Florendo J. A., Kirby D. S., Deering M. B., Li H. J., Chen M., Yoo T. J., Cornett J., Li L. M., Shirzad A., Quinley T., Holcomb R. L. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys, Cell Transplant., 1: 235, 1992. [DOI] [PubMed] [Google Scholar]
  • 6. Partridge T., Beauchamp J. R., Morgan J., Tremblay J. P., Huard J., Watt D., Wernig A., Irintchev A., Grounds M., Springer M. L., Bartlett R. J., Mendell J., Vilquin J. T., Bower J. J., Letter to the editor, Cell Transplant., 6: 195, 1997. [DOI] [PubMed] [Google Scholar]
  • 7. Fan Y., Maley M., Beilharz M., Grounds M., Rapid death of injected myoblasts in myoblast transfer therapy, Muscle Nerve, 19: 853, 1996. [DOI] [PubMed] [Google Scholar]
  • 8. Beauchamp J. R., Pagel C. N., Partridge T. A., A dual‐marker system for quantitative studies of myoblast transplantation in the mouse, Transplant., 63: 1794, 1997. [DOI] [PubMed] [Google Scholar]
  • 9. Qu Z., Balkir L., van Deutekom J., Robbins P., Pruchnic R., Huard J., Development of approaches to improve cell survival in myoblast transfer therapy, J. Cell Biol., 142: 1257, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Hodgetts S. I., Beilharz M. W., Scalzo T., Grounds M. D., Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor myoblasts in host mice depleted of CD4+/CD8+ or NK1.1+cells, Cell Transplant., 9: 489, 2000. [DOI] [PubMed] [Google Scholar]
  • 11. Smythe G. M., Hodgetts S. I., Grounds M. D., Immunobiology and the future of myoblast transfer therapy, Mol. Ther., 1: 304, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Guerette B., Asselin I., Skuk D., Entman M., Tremblay J., Control of inflammatory damage by anti‐LFA‐1: Increased success of myoblast transplantation, Cell Transplant., 6: 101, 1997. [DOI] [PubMed] [Google Scholar]
  • 13. Fan Y., Grounds M. D., Garlepp M. J., Beilharz M. W., Increased survival, movement and fusion of myoblasts from sliced muscle grafts into skeletal muscles of T‐cell depleted and tolerised dystrophic host mice, Basic Appl. Myol., 7: 231, 1997. [Google Scholar]
  • 14. Smythe G. M., Fan Y., Grounds M. D., Enhanced migration and fusion of donor myoblasts in dystrophic and normal host muscle, Muscle Nerve, 23: 560, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Cobbold S., Adams E., Marshall S., Davies J., Waldmann H., Mechanisms of peripheral tolerance and suppression induced by monoclonal antibodies to CD4 and CD8, Immunol. Rev., 149: 5, 1996. [DOI] [PubMed] [Google Scholar]
  • 16. Guerette B., Gingras M., Wood K., Roy R., Tremblay J., Immunosuppression with monoclonal antibodies and CTLA4‐Ig after myoblast transplantation in mice, Transplant., 62: 962, 1996. [DOI] [PubMed] [Google Scholar]
  • 17. Beauchamp J. R., Abraham D. J., Bou‐Gharios G., Partridge T. A., Olsen I., Expression and function of heterotypic adhesion molecules during differentiation of human skeletal muscle in culture, Am. J. Pathol., 140: 387, 1992. [PMC free article] [PubMed] [Google Scholar]
  • 18. Pavlath G. K., Rando T. A., Blau H. M., Transient immunosuppressive treatment leads to long‐term retention of allogeneic myoblasts in hybrid myofibers, J. Cell Biol., 127: 1923, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Pimorady‐Esfahani A., Grounds M. D., McMenamin P. G., Macrophages and dendritic cells in normal and regenerating murine skeletal muscle, Muscle Nerve, 20: 158, 1997. [DOI] [PubMed] [Google Scholar]
  • 20. Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y. J., Pulendran B., Palucka K., Immunobiology of dendritic cells, Annu. Rev. Immunol., 18: 767, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Doyle N. A., Bhagwan S. B., Meek B. B., Kutkoski G. J., Steeber D. A., Tedder T. F., Doerschhuk C. M., Neutrophil margination, sequestration, and emigration in the lungs of L‐selectin‐deficient mice, J. Clin. Invest., 99: 526, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Gorospe J., Tharp M., Hinckley J., Kornegay J., Hoffman E. P., A role for mast cells in the progression of Duchenne muscular dystrophy: correlations in dystrophin‐deficient humans, dogs, and mice, J. Neurol. Sci., 122: 44, 1994. [DOI] [PubMed] [Google Scholar]
  • 23. Tidball J. G., Berchenko E., Frenette J., Macrophage invasion does not contribute to muscle membrane injury during inflammation, J. Leuk. Biol., 65: 192, 1999. [PubMed] [Google Scholar]
  • 24. Skuk D., Tremblay J. P., Complement deposition and cell death after myoblast transplantation, Cell Transplant., 7: 427, 1998. [DOI] [PubMed] [Google Scholar]
  • 25. Hodgetts S. I., Grounds M. D., Complement and myoblast transfer therapy: Donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor but not in the absence of C5, Immunol. Cell Biol., In press, 2001. [DOI] [PubMed]
  • 26. Gasque P., Morgan B. P., Legoedec J., Chan P., Fontaine M., Human skeletal myoblasts spontaneously activate allogeneic complement but are resistant to killing, J. Immunol., 156: 3402, 1996. [PubMed] [Google Scholar]
  • 27. Vilquin J. T., Wagner E., Kinoshita I., Roy R., Tremblay J. P., Successful histocompatible myoblast transplantation in dystrophin‐deficient mdx mouse despite the production of antibodies against dystrophin, J. Cell Biol., 131: 975, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Tremblay J. P., Malouin F., Roy R., Huard J., Bouchard J. P., Satoh A., Richards C. L., Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy, Cell Transplant., 2: 99, 1993. [DOI] [PubMed] [Google Scholar]
  • 29. Kong J., Anderson J. E., Dynamic restoration of dystrophin to dystrophin‐deficient myotubes, Muscle Nerve, 24: 77, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Partridge T., Lu Q. L., Morris G., Hoffman E., Is myoblast transplantation effective?, Nature Med., 4: 1208, 1998. [DOI] [PubMed] [Google Scholar]
  • 31. Lu Q. L., Morris G. E., Wilton S. D., Ly T., Artem'yeva O. V., Strong P., Partridge T. A., Massive idiosyncratic exon skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant fibers by clonal expansion, J. Cell Biol., 148: 985, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Boulanger A., Asselin I., Roy R., Tremblay J., Role of non‐major histocompatibility complex antigens in the rejection of transplanted myoblasts, Transplant., 63: 893, 1997. [DOI] [PubMed] [Google Scholar]
  • 33. Miller S., Ito H., Blau H., Torti F., Tumor necrosis factor inhibits human myogenesis in vitro, Mol. Cell. Biol., 8: 2295, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Zamir O., Hasselgren P., Kunkel S., Frederick J., Higashiguchi T., Fischer J., Evidence that tumour necrosis factor participates in the regulation of muscle proteolysis during sepsis, Arch. Surg., 127: 170, 1992. [DOI] [PubMed] [Google Scholar]
  • 35. Brunda M. J., Interleukin‐12, J. Leuk. Biol., 55: 280, 1994. [DOI] [PubMed] [Google Scholar]
  • 36. Irintchev A., Zweyer M., Wernig A., Cellular and molecular reactions in mouse muscles after myoblast implantation, J. Neurocytol., 24: 319, 1995. [DOI] [PubMed] [Google Scholar]
  • 37. De Rossi M., Bernasconi P., Baggi F., de Waal Malefyt R., Mantegazza R., Cytokines and chemokines are expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation, Int. Immunol., 12: 1329, 2000. [DOI] [PubMed] [Google Scholar]
  • 38. Fan Y., Beilharz M. W., Grounds M. D., A potential alternative strategy for myoblast transfer therapy: the use of sliced muscle grafts, Cell Transplant., 5: 421, 1996. [DOI] [PubMed] [Google Scholar]
  • 39. Smythe G. M., Grounds M. D., Exposure to tissue culture conditions can adversely affect myoblast behavior in vivo in whole muscle grafts: implications for myoblast transfer therapy, Cell Transplant., 9: 379, 2000. [DOI] [PubMed] [Google Scholar]
  • 40. Irintchev A., Langer M., Zweyer M., Wernig A., Myoblast transplantation in the mouse: what cells do we use?, Basic Appl. Myol., 7: 161, 1997. [Google Scholar]
  • 41. Bower J., White J. D., Kurek J. B., Muldoon C. M., Austin L., The role of growth factors in myoblast transfer therapy, Basic Appl. Myol., 7: 177, 1997. [Google Scholar]
  • 42. Burkin D. J., Kaufman S. J., The alpha 7 beta 1 integrin in muscle development and disease, Cell Tiss. Res., 296: 183, 1999. [DOI] [PubMed] [Google Scholar]
  • 43. Taverna D., Disatnik M‐H., Rayburn H., Bronson R. T., Yang J., Rando T. A., Hynes R. O., Dystrophic muscle in mice chimeric for expression of α5 integrin, J. Cell Biol., 143: 849, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Grounds M. D., McGeachie J. K., Davies M. J., Sorokin L., Maley M. A. L., The expression of extracellular matrix during adult skeletal muscle regeneration: how the basement membrane, interstitium, and myogenic cells collaborate, Basic Appl. Myol., 8: 129, 1998. [Google Scholar]
  • 45. Ringelmann B., Roder C., Hallmann R., Maley M., Davies M., Grounds M., Sorokin L., Expression of laminin α1, α2, α4 and α5 chains, fibronectin and tenascin‐C in skeletal muscle of dystrophic 129REJ dy/dy mice, Exp. Cell Res., 246: 165, 1999. [DOI] [PubMed] [Google Scholar]
  • 46. Yokoyama W. M., Natural killer cell receptors, Curr. Opin. Cell Biol., 10: 298, 1998. [DOI] [PubMed] [Google Scholar]
  • 47. Weindl H., Behrens L., Maier S., Johnson M. A., Weiss E. H., Hohlfeld R., Muscle fibers in inflammatory myopathies and cultured myoblasts express the non‐classical major histocompatibility antigen HLA‐G, Ann. Neurol., 48: 679, 2000. [PubMed] [Google Scholar]
  • 48. Davis D. M., Chiu I., Fassett M., Cohen G. B., Mandelboim O., Strominger J. L., The human natural killer cell immune synapse, Proc. Natl. Acad. Sci. USA., 96: 15062, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Beauchamp J. R., Morgan J. E., Pagel C. N., Partridge T. A., Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem celllike properties as the myogenic source, J. Cell Biol., 144: 1113, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Lee J. Y., Qu‐Petersen Z., Cao B., Kimura S., Jankowski R., Cummins J., Usas A., Gates C., Robbins P., Wernig A., Huard J., Clonal isolation of muscle‐derived cells capable of enhancing muscle regeneration and bone healing, J. Cell Biol., 150: 1085, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Beauchamp J., Heslop L., Yu D. S. W., Tajbakhsh S., Kelly R. G., Wernig A., Buckingham M. E., Partridge T. A., Zammit P. S., Expression of CD34 and myf5 defines the majority of quiescent adult skeletal muscle satellite cells, J. Cell Biol., 151: 1221, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Cossu G., Mavilio F., Myogenic stem cells for the therapy of primary myopathies: wishful thinking of therapeutic perspective?, J. Clin. Invest., 105: 1669, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Grounds M. D., Muscle regeneration: Molecular aspects and therapeutic implications, Curr. Opin. Neurol., 12: 535, 1999. [DOI] [PubMed] [Google Scholar]
  • 54. Grounds M. D., Davies M. J., Chemotaxis in myogenesis, Basic Appl. Myol., 6: 469, 1996. [Google Scholar]
  • 55. Bischoff R., Chemotaxis of skeletal muscle satellite cells, Dev. Dynam., 208: 505, 1997. [DOI] [PubMed] [Google Scholar]
  • 56. Kinoshita I., Vilquin J., Roy R., Tremblay J., Successive injections in mdx mice of myoblasts grown with bFGF, Neuromusc. Disord., 6: 187, 1996. [DOI] [PubMed] [Google Scholar]
  • 57. Musaro A., McCullagh K., Houghton L., Dobrowolny G., Molinaro M., Barton E. R., Sweeney H., Rosenthal N., Localized IGF‐1 transgene expression sustains hypertrophy in senescent skeletal muscle, Nature Genetics, 27: 195, 2001. [DOI] [PubMed] [Google Scholar]
  • 58. Barton‐Davis E. R., Shoturma D. I., Musaro A., Rosenthal N., Sweeney H. L., Viral mediated expression of insulin‐like growth factor I blocks the agerelated loss of skeletal muscle function, Proc. Natl. Acad. Sci. USA., 95: 15603, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Megeney L. A., Kablar B., Garrett K., Anderson J. E., Rudnicki M. A., MyoD is required for myogenic stem cell function in adult skeletal muscle, Genes Dev., 10: 1173, 1996. [DOI] [PubMed] [Google Scholar]
  • 60. Yablonka‐Reuveni Z., Rivera A. J., Rudnicki M. A., Primig M., Anderson J. E., Natanson P., The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD, Dev. Biol., 210: 440, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. White J. D., Scaffidi A., Davies M., McGeachie J., Rudnicki M. A., Grounds M. D., Myotube formation is delayed but not prevented in MyoD‐deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice, J. Histochem. Cytochem., 48: 1531, 2000. [DOI] [PubMed] [Google Scholar]
  • 62. Ito H., Hallauer P. L., Hastings K. E. M., Tremblay J. P., Prior culture with concanavalin A increases intramuscular migration of transplanted myoblasts, Muscle Nerve, 21: 291, 1998. [DOI] [PubMed] [Google Scholar]
  • 63. Caron N. J., Asselin I., Morel G., Tremblay J. P., Increased myogenic potential and fusion of matrilysinexpressing myoblasts transplanted in mice, Cell Transplant., 8: 465, 1999. [DOI] [PubMed] [Google Scholar]
  • 64. Torrente Y., El Fahime E., Caron N. J., Bresolin N., Tremblay J. P., Intramuscular migration of myoblasts transplanted after muscle pretreatment with metalloproteinases, Cell Transplant., 9: 539, 2000. [PubMed] [Google Scholar]
  • 65. Karpati G., Zubrzycka‐Gaarn E. E., Carpenter S., Bulman D. E., Ray P. N., Worton R. G., Age‐related conversion of dystrophin‐negative to ‐positive fiber segments of skeletal but not cardiac muscle fibers in heterozygote mdx mice, J. Neuropathol. Exp. Neurol., 49: 96, 1990. [DOI] [PubMed] [Google Scholar]
  • 66. Chamberlain JS. Dystrophin levels required for genetic correction of Duchenne Muscular Dystrophy. Basic and Applied Myology, 7: 251, 1997. [Google Scholar]
  • 67. Hauser M. A., Amalfitano A., Kumar‐Singh R., Hauschka S. D., Chamberlain J. S., Improved adenoviral vectors for gene therapy of Duchenne muscular dystrophy, Neuromusc. Disord., 7: 277, 1997. [DOI] [PubMed] [Google Scholar]
  • 68. Kinoshita I, Vilquin JT, Chamberlain J, Tremblay JP. Transplantation of myoblasts from a transgenic mouse overexpressing dystrophin produced only a relatively small increase of dystrophin‐positive membrane. Muscle and Nerve, 21 (1): 91, 1998. [DOI] [PubMed] [Google Scholar]
  • 69. Ahmad A., Brinson M., Hodges B. L., Chamberalain J. S., Amalfitano A., Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for duchenne muscular dystrophy, Hum. Mol. Gen. 12: 2507, 2000. [DOI] [PubMed] [Google Scholar]
  • 70. Wang B., Li J., Xiao X., Adeno‐associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model, Proc. Natl. Acad. Sci. USA, 97: 13714, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Howell J. M., Lochmuller H., O'Hara A., Fletcher S., Kakulas B. A., Massie B., Nalbantoglou J., Karpati G., High‐level dystrophin expression after adenovirus‐mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression, Human Gene Ther., 9: 629, 1998. [DOI] [PubMed] [Google Scholar]
  • 72. Yang L., Lochmuller H., Luo J., Massie B., Nalbantoglou J., Karpati G., Petrof B. J., Adenovirus‐mediated dystrophin minigene transfer improves muscle strength in adult dystrophic (MDX) mice, Gene Ther., 5: 369, 1998. [DOI] [PubMed] [Google Scholar]
  • 73. Moisset P. A., Gagnon Y., Karpati G., Tremblay J. P., Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts, Gene Ther., 5: 1340, 1998. [DOI] [PubMed] [Google Scholar]
  • 74. Moisset P. A., Skuk D., Asselin I., Goulet M., Roy B., Karpati G., Tremblay J. P., Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene, Biochem. Biophys. Res. Comm., 247: 94, 1998. [DOI] [PubMed] [Google Scholar]
  • 75. Grounds M. D., Myoblast transfer therapy in the new millennium, Cell Transplant., 9: 485, 2000. [DOI] [PubMed] [Google Scholar]
  • 76. Heslop L., Morgan J., Partridge T., Evidence for a myogenic stem cell that is exhausted in dystrophic muscle, J. Cell Sci., 113: 2299, 2000. [DOI] [PubMed] [Google Scholar]
  • 77. Seigneurin‐Venin S., Bernard V., Moisset P‐A., Ouellette M. M., Mouly V., Di Donna S., Wright W. E., Tremblay J. P., Transplantation of normal and DMD myoblasts expressing the telomerase gene in SCID mice, Biochem. Biophys. Res. Comm., 272: 362, 2000. [DOI] [PubMed] [Google Scholar]
  • 78. Partridge T., The ‘fantastic voyage’ of muscle progenitor cells, Nature Medicine, 4: 554, 1998. [DOI] [PubMed] [Google Scholar]
  • 79. Mann C. J., Honeyman K., Cheng A. J., Ly T., Lloyd F., Fletcher S., Morgan J. E., Partridge T. A., Wilton S. D., Antisense‐induced exon skipping and synthesis of dystrophin in the mdx mouse, Proc. Natl. Acad. Sci. USA, 98: 42, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Barton‐Davis E. R., Cordier L., Shoturma D. I., Leland S. E., Sweeney L. H., Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice, J. Clin. Invest., 104: 375, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Blake D., Tinsley J., Davies K., Utrophin: a structural and functional comparison to dystrophin, Brain Pathol., 6: 37, 1996. [DOI] [PubMed] [Google Scholar]
  • 82. Gilbert R., Nalbantoglou J., Tinsley J. M., Massie B., Davies K. E., Karpati G., Efficient utrophin expression following adenovirus gene transfer in dystrophic muscle, Biochem. Biophys. Res. Comm., 242: 244, 1998. [DOI] [PubMed] [Google Scholar]
  • 83. Ebihara S., Guibinga G. H., Gilbert R., Nalbantoglou J., Massie B., Karpati G., Petrof B. J., Differential effects of dystrophin and utrophin gene transfer in immunocompetent muscular dystrophy (mdx) mice, Physiol. Genomics, 3: 133, 2000. [DOI] [PubMed] [Google Scholar]
  • 84. Faulkner J. A., Brooks S. V., The functional status of dystrophic muscles and functional recovery by skeletal muscles following myoblast transfer, Basic Appl. Myol., 7: 257, 1997. [Google Scholar]
  • 85. Radojevic V., Lin S., Burgunder J‐M., Differential expression of dystrophin, utrophin, and dystrophinassociated proteins in human muscle culture, Cell Tiss. Res., 300: 447, 2000. [DOI] [PubMed] [Google Scholar]
  • 86. Chaubourt E., Voisin V., Fossier P., Baux G., Israel M., De la Porte S., The NO way to increase muscular utrophin expression, CR Academy of Sciences III, 323: 735, 2000. [DOI] [PubMed] [Google Scholar]
  • 87. Cannon J. G., Fiatarone M. A., Fielding R. A., Evans W. J., Aging and stress‐induced changes in complement activation and neutrophil mobilization, J. Appl Physiol., 76: 2616, 1994. [DOI] [PubMed] [Google Scholar]
  • 88. Ito H., Vilquin J‐T., Skuk D., Roy B., Goulet M., Lille S., Dugre F. J., Asselin I., Roy R., Fardeau M., Tremblay J. P., Myoblast transplantation in non‐dystrophic dog, Neuromusc. Disord., 8: 95, 1998. [DOI] [PubMed] [Google Scholar]
  • 89. Guerette B., Asselin I., Vilquin J., Roy R., Tremblay J., Lymphocyte infiltration following alloand xenomyoblast transplantation in mdx mice, Muscle Nerve, 18: 39, 1995. [DOI] [PubMed] [Google Scholar]
  • 90. Emslie‐Smith A., Arahata K., Engel A., Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell‐mediated cytotoxicity in myopathies, Hum. Pathol., 20: 224, 1989. [DOI] [PubMed] [Google Scholar]
  • 91. Spencer M. J., Montecino‐Rodriguez E., Dorshkind K., Tidball J. G., Helper (CD4+) and cytotoxic (CD8+) T cells promote the pathology of dystrophin‐deficient muscle, Clin. Immunol., 98: 235, 2001. [DOI] [PubMed] [Google Scholar]
  • 92. Nahirney P., Dow P., Ovalle W., Quantitative morphology of mast cells in skeletal muscle of normal and genetically dystrophic mice, Anat. Rec., 247: 341, 1997. [DOI] [PubMed] [Google Scholar]
  • 93. Cai B., Spencer M., Nakamura G., Tseng‐Ong L., Tidball J., Eosinophilia of dystrophin‐deficient muscle is promoted by perforin‐mediated cytotoxicity by T cell effectors, Am. J. Pathol., 156: 1789, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES