Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(2):153–162. doi: 10.1111/j.1582-4934.2001.tb00148.x

The hyperlipemic hamster ‐ a model for testing the anti‐atherogenic effect of amlodipine

Anca Sima 1, Camelia Stancu 1, Elena Constantinescu 1, Laura Ologeanu 1, Maya Simionescu 1,
PMCID: PMC6738129  PMID: 12067498

Abstract

Male Golden Syrian hamsters were subjected to a hyperlipemic diet. At intervals ranging from 2 to 14 weeks, the animals were examined for changes in serum constituents and structural modifications of lesion‐prone areas: the cardiac valves, coronary arteries and aortic arch. Serum was characterized by a gradual increase in cholesterol, triglycerides and a decrease in total peroxyl‐radical trapping potential. The sequence of modifications of the endothelial cells, smooth muscle cells, and migrating plasma monocytes as well as of the extracellular matrix were established. Amlodipine treatment of hyperlipemic hamster was assessed. Amlodipine exhibited an athero‐protective effect, acting as antioxidant, reducing the LDL uptake by the vessel wall and consequently, limiting the size and extent of lesioned areas. The hyperlipemic hamster is a reliable model to unravel the cellular alterations leading to atheroma formation, and for testing the effect of drugs in this process.

Keywords: amlodipine, hyperlipemia, atherosclerosis, hypercholesterolemic hamster, fluorescent LDL, lipoproteins, electron microscopy

References

  • 1. Stary H.C., The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life, Eur. Heart J., 11: 3–19, 1990. [DOI] [PubMed] [Google Scholar]
  • 2. Velican C., Velican D., Arterele coronare in cardiopatia ischemica. Editura Medicala/Romania, Bucuresti , 1992. [Google Scholar]
  • 3. Sima A., Bulla A., Simionescu N., Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster, J. Submicrosc. Cytol. Pathol., 22: 1–16, 1990. [PubMed] [Google Scholar]
  • 4. Sullivan M.P., Cerda J.J., Robbins F.L., Burgin C.W., Beatty R.J., The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia, Lab. Anim. Sci., 43: 575–78, 1993. [PubMed] [Google Scholar]
  • 5. Bishop R. W., Structure of the hamster LDL receptor gene, J. Lipid Res., 33: 549–57, 1992. [PubMed] [Google Scholar]
  • 6. Chen L., Haught W.H., Yang B., Saldeen T.G.P., Parathasarathy S., Metha J., Preservation of endogenous antioxidant activity and inhibition of lipid peroxidation as common mechanisms of antiatherosclerotic effects of vitamin E, lovastatin and amlodipine, J. Am. Coll. Cardiol., 30: 569–75, 1997. [DOI] [PubMed] [Google Scholar]
  • 7. Digiesi V., Fiorillo C., Cosmi L., Rossetti M., Lenuzza M., Guidi D., Pace S., Rizzuti G., Nassi P., Reactive oxigen species and antioxidant status in essential arterial hypertension during terapy with dihydropiridine calcium channels antagonist, Clin. Ther., 151: 15–18, 2000. [PubMed] [Google Scholar]
  • 8. Tardif J.C., Insights into oxidative stress and atherosclerosis, Can. J. Cardiol., 16: 2D–4, 2000. [PubMed] [Google Scholar]
  • 9. Steinberg D., Low density lipoprotein oxidation and its pathobiological significance, J. Biol. Chem., 272: 20963–66, 1997. [DOI] [PubMed] [Google Scholar]
  • 10. Esterbauer H., Schmidt R., Hayn M., Relationships among oxidation of low‐density lipoprotein, antioxidant protection, and atherosclerosis, Advance in Pharmacology, 38: 425–56, 1997. [DOI] [PubMed] [Google Scholar]
  • 11. Holvoet P., VanCleemput J., Collen D., Vanhaecke J., Oxidized low density lipoprotein is a prognostic marker of transplant‐ associated coronary artery disease, Arterioscler. Thromb. Vasc. Biol., 20: 698–702, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Fukumoto M., Shoji T., Emoto M., Kawagishi T., Okuno Y., Nishizawa Y., Antibodies against oxidized LDL and carotid artery intima‐media thickness in a healthy population, Arterioscler. Thromb. Vasc. Biol., 20: 703–707, 2000. [DOI] [PubMed] [Google Scholar]
  • 13. Jones N.L., Reagan J.W., Willingham M.C., The pathogenesis of foam cell formation‐ Modified LDL stimulates uptake of co‐incubated LDL via macropinocytosis, Arterioscler. Thromb. Vasc. Biol., 20: 773–81, 2000. [DOI] [PubMed] [Google Scholar]
  • 14. Mehrabi M. R., Sinzinger H., Ekmekcioglu C., Tamaddon F., Plesch K., Glogar H.D., Maurer G., Stefenelli T., Lang I.M., Accumulation of oxidized LDL in human semilunar valves correlates with coronary atherosclerosis, Cardiovasc. Res., 45: 874–882, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Simionescu N., Sima A., Dobrian A., Tirziu D., Simionescu M., Pathobiochemical changes of the arterial wall at the inception of atherosclerosis In: Vollmer Roessner, (eds.), Current Topics in Pathology, Berlin , Springer Verlag, 1993, pp. 1–45. [DOI] [PubMed] [Google Scholar]
  • 16. Valkonen M., Kuusi T., Spectrophotometric assay for total peroxyl radical‐trapping antioxidant potential in human serum. J. Lipid. Res. 28: 823–833, 1997. [PubMed] [Google Scholar]
  • 17. Innerarity T. L., Pitas R. E., Mahley R. W., Lipoprotein ‐ Receptor Interactions In: Albers J. J., Segrest J.P., eds. Methods in Enzymology, vol 129, Academic Press, Inc./ NY USA , 1986, pp. 542–546. [DOI] [PubMed] [Google Scholar]
  • 18. Filip D.A., Nistor A., Bulla A, Radu A., Lupu F., Simionescu M., Cellular events in the development of valvular atherosclerosis lesions induced by experimental hypercholesterolemia. Atherosclerosis, 67: 199–214, 1987. [DOI] [PubMed] [Google Scholar]
  • 19. Nistor A., Bulla A., Filip D.A., Radu A., The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis, 68: 159–173, 1987. [DOI] [PubMed] [Google Scholar]
  • 20. Sima A., Popov D., Starodub O., Stancu C., Cristea C., Stern D., Simionescu M., Pathobiology of the heart in experimental diabetes: immunolocalization of LDL, IgG and AGE‐proteins in diabetic and/or hyperlipidemic hamster. Lab. Invest., 77: 3–18, 1997. [PubMed] [Google Scholar]
  • 21. Simionescu M., Simionescu N., Modulations and dysfunctions in the artery intima during the prelesional stage of hypercholesterolemic atherogenesis In: New Horizons in Coronary Heart Disease. Born G.V.R., Schwartz C.J., (eds.), Current Science Ltd., London , pp. 11. 1–11.14, 1993. [Google Scholar]
  • 22. Simionescu N., Vasile E., Lupu F., Popescu G., Simionescu M., Prelesional events in atherogenesis: Accumulation of extracellular cholesterol‐rich liposomes in the intima and cardiac valves of the hyperlipidemic rabbit. Am. J. Pathol., 123: 109–125, 1986. [PMC free article] [PubMed] [Google Scholar]
  • 23. Tirziu D., Dobrian A., Tasca C., Simionescu M., Simionescu M., Intimal thickening of human aorta contain modified reassembled lipoproteins, Atherosclerosis, 112:101–114, 1995. [DOI] [PubMed] [Google Scholar]
  • 24. Raicu M., Sima A., Toporan D., Stancu C., Protopopescu T., Ioan Al., Simionescu M., Nifedipine induces a pro‐atherogenic effect on smooth muscle cells in culture, incubated with LDL isolated from patients with coronary diseases, Eur.Heart J., 20: 66, 1999. [Google Scholar]
  • 25. Raicu M., Pojoga L., Simionescu N., Simionescu M., Differential effect of two calcium channel blockers ‐ nifedipine and diltiazem ‐ in atherogenesis in hypercholesterolemic hamster, J. Submicrosc. Cytol. Pathol., 28: 265–75, 1996. [PubMed] [Google Scholar]
  • 26. Kowala M.C., Recce R., Beyer S., Aberg G., Regression of early atherosclerosis in hyperlipidemic hamsters induced by fosinopril and captopril, J. Cardiovasc. Pharmacol., 25: 179–86, 1995. [DOI] [PubMed] [Google Scholar]
  • 27. Kowala M.C., Mazzucco C.E., Hartl K.S., Seiler S.M., Warr G.A., Abid S., Growe R.I., Prostacyclin agonists reduce early atherosclerosis in hyperlipidemic hamsters, Arteriosclerosis and Thromb., 13: 435–44, 1993. [DOI] [PubMed] [Google Scholar]
  • 28. Orekhov A.N., Tertov V.V., Pivovarova E.M., The effect of antihypertensive agents on atherosclerosis‐related parameters of human aorta intimal cells, Cardiology, 89: 111–18, 1998. [DOI] [PubMed] [Google Scholar]
  • 29. Tulenko T.N., Sumner A.E., Chen M., Huang Y., Laury‐Kleintop L., Ferdinand F.D., The smooth muscle cell membrane during atherogenesis: a potential target for amlodipine in atheroprotection, Am. Heart J., 141: S1–11, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Kramsch D.M., Limits of lipid‐lowering therapy: the potential benefits of amlodipine as an antiatherosclerotic agent, Int. J. Cardiol., 62: S119–24, 1997. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES