Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(2):175–187. doi: 10.1111/j.1582-4934.2002.tb00185.x

Determination of mitochondrial reactive oxygen species: methodological aspects

Cécile Batandier 1, E Fontaine 1, Christiane Kériel 1, X M Leverve 1,
PMCID: PMC6740075  PMID: 12169203

Abstract

The generation of Reactive Oxygen Species (ROS) as by‐products in mitochondria Electron Transport Chain (ETC) has long been admitted as the cost of aerobic energy metabolism with oxidative damages as consequence. The purpose of this methodological review is to present some of the most widespread methods of ROS generation and to underline the limitations as well as some problems, identified with some experiments as examples, in the interpretation of such results. There is now no doubt that besides their pejorative role, ROS are involved in a variety of cellular processes for the continuous adaptation of the cell to its environment. Because ROS metabolism is a complex area (low production, instability of species, efficient antioxidant defense system, several places of production…) bias, variances and limitations in ROS measurements must be recognized in order to avoid artefactual conclusions, and especially to improve our understanding of physiological and pathophysiological mechanisms of such phenomenon.

Keywords: ROS, mitochondria, oxidative stress, redox status, fluorescence

References

  • 1. Boveris A., Oshino N., Chance B., The cellular production of hydrogen peroxide, Biochem. J., 128: 617–630, 1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Boveris A., Chance B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochem. J., 134: 707–716, 1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Halliwell B., Antioxidant defence mechanisms: from the beginning to the end (of the beginning), Free Radic. Res., 31: 261–272, 1999. [DOI] [PubMed] [Google Scholar]
  • 4. Nogueira V., Rigoulet M., Piquet M.A., Devin A., Fontaine E., Leverve X.M., Mitochondrial respiratory chain adjustment to cellular energy demand, J. Biol. Chem., 276: 46104–46110, 2001. [DOI] [PubMed] [Google Scholar]
  • 5. Chandel N.S., Schumacker P.T., Cellular oxygen sensing by mitochondria: old questions, new insight, J. Appl. Physiol., 88: 1880–1889, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Droge W., Free radicals in the physiological control of cell function, Physiol. Rev., 82: 47–95, 2002. [DOI] [PubMed] [Google Scholar]
  • 7. Chandel N.S., Budinger G.R., Choe S.H., Schumacker P.T., Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes, J. Biol. Chem., 272: 18808–18816, 1997. [DOI] [PubMed] [Google Scholar]
  • 8. Duranteau J, Chandel N.S., Kulisz A., Shao Z., Schumacker P.T., Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes, J. Biol. Chem., 273: 11619–11624, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Melov S., Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging, Ann. N.Y. Acad. Sci., 908: 219–225, 2000. [DOI] [PubMed] [Google Scholar]
  • 10. Turrens J.F., Superoxide production by the mitochondrial respiratory chain, Biosci. Rep., 17: 3–8, 1997. [DOI] [PubMed] [Google Scholar]
  • 11. Antunes F., Cadenas E., Estimation of H2O2 gradients across biomembranes, FEBS Lett., 475: 121–126, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Salvador A., Sousa J., Pinto R.E., Hydroperoxyl, superoxide and pH gradients in the mitochondrial matrix: a theoretical assessment, Free Radic. Biol. Med., 1: 1208–1215, 2001. [DOI] [PubMed] [Google Scholar]
  • 13. Han D., Williams E., Cadenas E., Mitochondrial respiratory chain‐dependent generation of superoxide anion and its release into the intermembrane space, Biochem. J., 353: 411–416, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Fridovich I., Fundamental aspects of reactive oxygen species, or what's the matter with oxygen Ann. N. Y. Acad. Sci., 893: 13–18, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Nulton‐Persson A.C., Szweda L.I., Modulation of mitochondrial function by hydrogen peroxide, J. Biol. Chem., 276: 23357–23361, 2001. [DOI] [PubMed] [Google Scholar]
  • 16. Kowaltowski A.J., Vercesi A.E., Mitochondrial damage induced by conditions of oxidative stress, Free Radic. Biol. Med., 26: 463–471, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Antunes F., Salvador A., Marinho H.S., Alves R., Pinto R.E., Lipid peroxidation in mitochondrial inner membranes. An integrative kinetic model, Free Radic. Biol. Med., 21: 917–943, 1996. [DOI] [PubMed] [Google Scholar]
  • 18. Lee H.C., Yin P.H., Lu C.Y., Chi C.W., Wei Y.H., Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells, Biochem. J., 348: 425–432, 2000. [PMC free article] [PubMed] [Google Scholar]
  • 19. Kirkinezos I.G., Moraes C.T., Reactive oxygen species and mitochondrial diseases, Semin. Cell. Dev. Biol., 12: 449–457, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Cai J., Jones D.P., Mitochondrial redox signaling during apoptosis, J. Bioenerg. Biomembr., 31: 327–334, 1999. [DOI] [PubMed] [Google Scholar]
  • 21. Thannickal V.J., Fanburg B.L., Reactive oxygen species in cell signaling, Am. J. Physiol. Lung. Cell. Mol. Physiol., 279: L1005–L1028, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Sauer H., Wartenberg M., Hescheler J., Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell. Physiol. Biochem., 11: 173–186, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Dalton T.P., Shertzer H.G., Puga A., Regulation of gene expression by reactive oxygen, Annu. Rev. Pharmacol. Toxicol., 39: 67–101, 1999. [DOI] [PubMed] [Google Scholar]
  • 24. Kowaltowski A.J., Castilho R.F., Vercesi A.E., Mitochondrial permeability transition and oxidative stress, FEBS Lett., 495: 12–15, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Vercesi A.E., Kowaltowski A.J., Grijalba M.T., Meinicke A.R., Castilho R.F., The role of reactive oxygen species in mitochondrial permeability transition, Biosci. Rep., 17: 43–52, 1997. [DOI] [PubMed] [Google Scholar]
  • 26. Quillet‐Mary A., Jaffrezou J.P., Mansat V., Bordier C., Naval J., Laurent G., Implication of mitochondrial hydrogen peroxide generation in ceramide‐ induced apoptosis, J. Biol. Chem., 272: 21388–21395, 1997. [DOI] [PubMed] [Google Scholar]
  • 27. Simon H.U., Haj‐Yehia A., Levi‐Schaffer F., Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5: 415–418, 2000. [DOI] [PubMed] [Google Scholar]
  • 28. Skulachev V.P., Mitochondria in the programmed death phenomena; a principle of biology: “it is better to die than to be wrong”, IUBMB Life, 49: 365–373, 2000. [DOI] [PubMed] [Google Scholar]
  • 29. Barja G., Mitochondrial free radical production and aging in mammals and birds, Ann. N. Y. Acad. Sci., 854: 224–238, 1998. [DOI] [PubMed] [Google Scholar]
  • 30. Lenaz G. Role of mitochondria in oxidative stress and aging Biochim. Biophys. Acta, 1366: 53–67, 1998. [DOI] [PubMed] [Google Scholar]
  • 31. Pryor W.A., Oxy‐radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol., 48: 657–667, 1986. [DOI] [PubMed] [Google Scholar]
  • 32. Chen Y.R., Sturgeon B.E., Gunther M.R., Mason R.P., Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. J. Biol. Chem., 274: 24611–24616, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Aibara S., Yamashita H., Mori E., Kato M., Morita Y., Isolation and characterization of five neutral isoenzymes of horseradish peroxidase, J. Biochem. (Tokyo), 92: 531–539, 1982. [DOI] [PubMed] [Google Scholar]
  • 34. Rauen U., Petrat F., Li T., De Groot H., Hypothermia injury/cold‐induced apoptosis‐ evidence of an increase in chelatable iron causing oxidative injury in spite of low O2‐/H2O2 formation, Faseb J., 14: 1953–1964, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Babior B.M., Kipnes R.S., Curnutte J.T., Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest., 52: 741–744, 1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Adak S., Bandyopadhyay U., Bandyopadhyay D., Banerjee R.K., Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2‐ and H2O2, Biochemistry, 37: 16922–16933, 1998. [DOI] [PubMed] [Google Scholar]
  • 37. Boveris A., Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria, Methods Enzymol., 105: 429–435, 1984. [DOI] [PubMed] [Google Scholar]
  • 38. Hasegawa E., Takeshige K., Oishi T., Murai Y., Minakami S., 1‐Methyl‐4‐phenylpyridinium (MPP+) induces NADH‐dependent superoxide formation and enhances NADH‐dependent lipid peroxidation in bovine heart submitochondrial particles, Biochem. Biophys. Res. Commun., 170: 1049–1055, 1990. [DOI] [PubMed] [Google Scholar]
  • 39. Barja G., Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr., 31: 347–366, 1999. [DOI] [PubMed] [Google Scholar]
  • 40. Korshunov S.S., Skulachev V.P., Starkov A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416: 15–18, 1997. [DOI] [PubMed] [Google Scholar]
  • 41. Hyslop P.A., Sklar L.A., A quantitative fluorimetric assay for the determination of oxidant production by polymorphonuclear leukocytes: its use in the simultaneous fluorimetric assay of cellular activation processes, Anal. Biochem., 141: 280–286, 1984. [DOI] [PubMed] [Google Scholar]
  • 42. Ruch W., Cooper P.H., Baggiolini M., Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse‐radish peroxidase, J. Immunol. Methods, 63: 347–357, 1983. [DOI] [PubMed] [Google Scholar]
  • 43. Staniek K., Nohl H., H(2)O(2) detection from intact mitochondria as a measure for one‐ electron reduction of dioxygen requires a non‐invasive assay system, Biochim. Biophys. Acta, 1413: 70–80, 1999. [DOI] [PubMed] [Google Scholar]
  • 44. Staniek K., Nohl H., Are mitochondria a permanent source of reactive oxygen species Biochim. Biophys. Acta, 1460: 268–275, 2000. [DOI] [PubMed] [Google Scholar]
  • 45. Xia Z., Lundgren B., Bergstrand A., DePierre J.W., Nassberger L., Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl‐2 and Bcl‐X(L), Biochem. Pharmacol., 57: 1199–1208, 1999. [DOI] [PubMed] [Google Scholar]
  • 46. Li B., Gutierrez PL., Blough NV., Trace determination of hydroxyl radical using fluorescence detection, Methods Enzymol., 300: 202–216, 1999. [DOI] [PubMed] [Google Scholar]
  • 47. Sanchez Ferrer, A. , Santema J.S., Hilhorst R., Visser A.J., Fluorescence detection of enzymatically formed hydrogen peroxide in aqueous solution and in reversed micelles, Anal. Biochem., 187: 129–132, 1990. [DOI] [PubMed] [Google Scholar]
  • 48. Zhu H., Bannenberg G.L., Moldeus P., Shertzer H.G., Oxidation pathways for the intracellular probe 2′,7′‐ dichlorofluorescein, Arch. Toxicol., 68: 582–587, 1994. [DOI] [PubMed] [Google Scholar]
  • 49. Lebel C.P., Ischiropoulos H., Bondy S.C., Evaluation of the probe 2′,7′‐dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5: 227–231, 1992. [DOI] [PubMed] [Google Scholar]
  • 50. Possel H., Noack H., Augustin W., Keilhoff G., Wolf G., 2,7‐Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett, 416: 175–178, 1997. [DOI] [PubMed] [Google Scholar]
  • 51. Kalinich J.F., Ramakrishnan N., McClain DE., The antioxidant Trolox enhances the oxidation of 2′,7′‐ dichlorofluorescin to 2′,7′‐dichlorofluorescein, Free Radic. Res., 26: 37–47, 1997. [DOI] [PubMed] [Google Scholar]
  • 52. Reid M.B., Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance, Acta Physiol. Scand., 162: 401–409, 1998. [DOI] [PubMed] [Google Scholar]
  • 53. Rota C., Fann Y.C., Mason R.P., Phenoxyl free radical formation during the oxidation of the fluorescent dye 2′,7′‐dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements, J. Biol. Chem., 274: 28161–28168, 1999. [DOI] [PubMed] [Google Scholar]
  • 54. Burkitt M.J., Wardman P., Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis, Biochem. Biophys. Res. Commun., 282: 329–333, 2001. [DOI] [PubMed] [Google Scholar]
  • 55. Bejma J., Ramires P., Ji L.L., Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver, Acta Physiol. Scand., 169: 343–351, 2000. [DOI] [PubMed] [Google Scholar]
  • 56. Esposti M.D., Hatzinisiriou I., McLennan H., Ralph S. Bcl‐2 and mitochondrial oxygen radicals. New approaches with reactive oxygen speciessensitive probes, J. Biol. Chem., 274: 29831–29837, 1999. [DOI] [PubMed] [Google Scholar]
  • 57. McLennan H.R., Degli Esposti, M. , The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species, J. Bioenerg. Biomembr., 32: 153–162, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Tirmenstein M.A., Nicholls‐Grzemski F.A., Zhang J.G., Fariss M.W., Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions, Chem. Biol. Interact., 127: 201–217, 2000. [DOI] [PubMed] [Google Scholar]
  • 59. Sureda F.X., Gabriel C., Comas J., Pallas M., Escubedo E., Camarasa J., Evaluation of free radical production, mitochondrial membrane potential and cytoplasmic calcium in mammalian neurons by flow cytometry, Brain Res., Brain Res. Protoc., 4: 280–287, 1999. [DOI] [PubMed] [Google Scholar]
  • 60. Raisanen S.R., Lehenkari P., Tasanen M., Rahkila P., Harkonen P.L., Vaananen H.K., Carbonic anhydrase III protects cells from hydrogen peroxide‐induced apoptosis, Faseb J., 13: 513–522, 1999. [DOI] [PubMed] [Google Scholar]
  • 61. Nieminen A.L., Byrne A.M., Herman B., Lemasters J.J., Mitochondrial permeability transition in hepatocytes induced by t‐ BuOOH: NAD(P)H and reactive oxygen species. Am. J. Physiol., 272 C1286–1294, 1997. [DOI] [PubMed] [Google Scholar]
  • 62. Valgimigli L., Pedulli G.F., Paolini M., Measurement of oxidative stress by EPR radicalprobe technique. Free Radic. Biol. Med., 31: 708–716, 2001. [DOI] [PubMed] [Google Scholar]
  • 63. Faulkner K., Fridovich I., Luminol and lucigenin as detectors for O2, Free Radic. Biol. Med., 15: 447–451, 1993. [DOI] [PubMed] [Google Scholar]
  • 64. Li Y., Zhu H., Kuppusamy P., Roubaud V., Zweier JL., Trush M.A., Validation of lucigenin (bis‐N‐methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems, J. Biol. Chem., 273: 2015–2023, 1998. [DOI] [PubMed] [Google Scholar]
  • 65. Li Y., Stansbury K.H., Zhu H., Trush M.A., Biochemical characterization of lucigenin (Bis‐Nmethylacridinium) as a chemiluminescent probe for detecting intramitochondrial superoxide anion radical production, Biochem. Biophys. Res. Commun., 262: 80–87, 1999. [DOI] [PubMed] [Google Scholar]
  • 66. Littauer A., de Groot H., Release of reactive oxygen by hepatocytes on reoxygenation: three phases and role of mitochondria, Am. J. Physiol., 262 G1015–1020, 1992. [DOI] [PubMed] [Google Scholar]
  • 67. Pitkanen S., Robinson B.H., Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase, J. Clin. Invest., 98: 345–351, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Lass A., Agarwal S., Sohal R.S., Mitochondrial ubiquinone homologues, superoxide radical generation, and longevity in different mammalian species, J. Biol. Chem., 272: 19199–19204, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Sohal R.S., Svensson I., Brunk U.T., Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev., 53: 209–215, 1990. [DOI] [PubMed] [Google Scholar]
  • 70. Herrero A., Barja G., Localization of the site of oxygen radical generation inside complex I of heart and non synaptic brain mammalian mitochondria. J. Bioenerg. Biomembr., 32: 609–615, 2000. [DOI] [PubMed] [Google Scholar]
  • 71. Kwong L.K., Sohal R.S., Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria, Arch. Biochem. Biophys., 350: 118–126, 1998. [DOI] [PubMed] [Google Scholar]
  • 72. Votyakova T.V., Reynolds I.J., DeltaPsi(m)‐Dependent and ‐independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem., 79: 266–277, 2001. [DOI] [PubMed] [Google Scholar]
  • 73. Gredilla R., Barja G., Lopez‐Torres M., Effect of short‐term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria and location of the free radical source, J. Bioenerg. Biomembr., 33: 279–287, 2001. [DOI] [PubMed] [Google Scholar]
  • 74. Zhang L., Yu L., Yu C.A., Generation of superoxide anion by succinate‐cytochrome c reductase from bovine heart mitochondria, J. Biol. Chem., 273: 33972–33976, 1998. [DOI] [PubMed] [Google Scholar]
  • 75. Radi R., Turrens J.F., Chang L.Y., Bush K.M., Crapo J.D., Freeman B.A., Detection of catalase in rat heart mitochondria, J. Biol. Chem., 266: 22028–22034, 1991. [PubMed] [Google Scholar]
  • 76. Hansford R.G., Hogue B.A., Mildaziene V., V., ‐Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age, J. Bioenerg. Biomembr., 29: 89–95, 1997. [DOI] [PubMed] [Google Scholar]
  • 77. Pansarasa O., Bertorelli L., Vecchiet J., Felzani G., Marzatico F., Age‐dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle. Free Radic. Biol. Med., 27: 617–622, 1999. [DOI] [PubMed] [Google Scholar]
  • 78. Amicarelli F., Ragnelli A.M., Aimola P., Bonfigli A., Colafarina S., Di Ilio, C. , et al., Age‐dependent ultrastructural alterations and biochemical response of rat skeletal muscle after hypoxic or hyperoxic treatments, Biochim. Biophys. Acta, 1453: 105–114, 1999. [DOI] [PubMed] [Google Scholar]
  • 79. Bejma J., Ji L.L., Aging and acute exercise enhance free radical generation in rat skeletal muscle, J. Appl. Physiol., 87: 465–470, 1999. [DOI] [PubMed] [Google Scholar]
  • 80. Bello‐Klein A., Morgan‐Martins M.I., Barp J., Llesuy S., Bello A.A., Singal P.K., Circaannual changes in antioxidants and oxidative stress in the heart and liver in rats, Comp. Biochem. Physiol. C Toxicol. Pharmacol., 126: 203–208, 2000. [DOI] [PubMed] [Google Scholar]
  • 81. Barja G., Kinetic measurement of mitochondrial oxygen radical production In: Yu B.P., ed. Methods in Aging Research, CRC Press; 1999. pp. 533–548. [Google Scholar]
  • 82. Hempel S.L., Buettner G.R., O'Malley Y.Q., Wessels D.A., Flaherty D.M., Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′‐dichlorodihydrofluorescein diacetate, 5(and 6)‐carboxy‐2′,7′‐ dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123, Free Radic. Biol. Med., 27: 146–159, 1999. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES