Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(2):160–174. doi: 10.1111/j.1582-4934.2002.tb00184.x

Thalidomide as an anti‐cancer agent

S Kumar 1, T E Witzig 1, S V Rajkumar 1
PMCID: PMC6740081  PMID: 12169202

Abstract

Thalidomide is a glutamic acid derivative initially introduced as a sedative hypnotic nearly forty years ago. It was withdrawn following numerous reports linking it to a characteristic pattern of congenital abnormalities in babies born to mothers who used the drug for morning sickness. It has gradually been re‐introduced into clinical practice over the past two decades, albeit under strict regulation, since it was found to be useful in the management of erythema nodosum leprosum and HIV wasting syndrome. Recognition of its anti‐angiogenic effect led to its evaluation in the treatment of various malignancies, where angiogenesis has been shown to play an important role. Numerous clinical trials done over the past four years have confirmed the significant anti‐myeloma activity of this drug. It has also shown promise in preliminary trials in the treatment of a variety of different malignant diseases. The mechanisms of its antineoplastic effects continue to be the focus of ongoing research. It has become clear that even though its anti angiogenic effects play a significant role in the anti‐tumor activity, there are other properties of this drug which are responsible as well. It also possesses anti‐TNF alpha activity, which has led to its evaluation in several inflammatory states. In this concise review, we briefly describe the historical background and pharmacological aspects of this drug. We have concisely reviewed the current knowledge regarding mechanisms of its anti‐neoplastic activity and the results of various clinical trials in oncology.

Keywords: Thalidomide, anti‐neoplastic agent, angiogenesis, myeloma, TNF‐alpha

References

  • 1. McBride W.G., Thalidomide and congenital abnormalities, Lancet, 2: 1358, 1961. [Google Scholar]
  • 2. McCredie J., Neural crest defects. A neuroanatomic basis for classification of multiple malformations related to phocomelia, J. Neurol. Sci., 28: 373, 1976. [DOI] [PubMed] [Google Scholar]
  • 3. Lash J.W., Saxen L., Human teratogenesis: invitro studies on thalidomide‐inhibited chondrogenesis, Dev. Biol., 28: 61, 1972. [DOI] [PubMed] [Google Scholar]
  • 4. D'Amato R.J., Loughnan M.S., Flynn E., Folkman J., Thalidomide is an inhibitor of angiogenesis, Proceedings of the National Academy of Sciences of the United States of America, 91: 4082, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Figg W.D., Raje S., Bauer K.S., Tompkins A., Venzon D., Bergan R., Chen A., Hamilton M., Pluda J., Reed E., Pharmacokinetics of thalidomide in an elderly prostate cancer population, J. Pharm. Sci., 88: 121, 1999. [DOI] [PubMed] [Google Scholar]
  • 6. Piscitelli S.C., Figg W.D., Hahn B., Kelly G., Thomas S., Walker R.E., Single‐dose pharmacokinetics of thalidomide in human immunodeficiency virus‐infected patients, Antimicrob. Agents Chemother, 41: 2797, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Eriksson T., Bjorkman S., Hoglund P., Clinical pharmacology of thalidomide, Eur. J. Clin. Pharmacol., 57: 365, 2001. [DOI] [PubMed] [Google Scholar]
  • 8. Bauer K.S., Dixon S.C., Figg W.D., Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species‐dependent, Biochemical Pharmacology, 55: 1827, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Minchinton A.I., Fryer K.H., Wendt K.R., Clow K.A., Hayes M.M., The effect of thalidomide on experimental tumors and metastases, Anti Cancer Drugs, 7: 339, 1996. [DOI] [PubMed] [Google Scholar]
  • 10. Folkman J., Tumor angiogenesis: therapeutic implications, N. Engl. J. Med., 285: 1182, 1971. [DOI] [PubMed] [Google Scholar]
  • 11. Folkman J., Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis, New England Journal of Medicine, 333: 1757, 1995. [DOI] [PubMed] [Google Scholar]
  • 12. Vermeulen P.B., Verhoeven D., Fierens H., Hubens G., Goovaerts G., Van Marck E., De Bruijn E.A., Van Oosterom A.T., Dirix L.Y., Microvessel quantification in primary colorectal carcinoma: an immunohistochemical study, Br. J. Cancer, 71: 340, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Weidner N., Folkman J., Pozza F., Bevilacqua P., Allred E.N., Moore D.H., Meli S., Gasparini G., Tumor angiogenesis: a new significant and independent prognostic indicator in early‐stage breast carcinoma, J. Natl. Cancer Inst., 84: 1875, 1992. [DOI] [PubMed] [Google Scholar]
  • 14. Dickinson A.J., Fox S.B., Persad R.A., Hollyer J., Sibley G.N., Harris A.L., Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas, British Journal of Urology, 74: 762, 1994. [DOI] [PubMed] [Google Scholar]
  • 15. Rajkumar S.V., Leong T., Fonseca R., Dispenzieri A., Lacy M.Q., Witzig T.E., Lust J.A., Gertz M. A., Kyle R.A., Greipp P.R., Bone marrow angiogenesis has prognostic value in multiple myeloma. An Eastern Cooperative Oncology Group Study, Proc Am Soc Clin Oncol, 18: 19a, 1999. [Google Scholar]
  • 16. Bellamy W.T., Richter L., Frutiger Y., Grogan T. M., Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies, Cancer Research, 59: 728, 1999. [PubMed] [Google Scholar]
  • 17. Rajkumar S. V., Yoon S. Y., Li C. Y., Roche P. C., Fonseca R., Dispenzieri A., Lacy M.Q., Lust J.A., Gertz M.A., Kyle R.A., Greipp P.R., Witzig T.E., Angiogenesis in myeloma: expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and their receptors by neoplastic plasma cells, Blood, 94: 303b, 1999. [Google Scholar]
  • 18. Di Raimondo, F. , Azzaro M.P., Palumbo G., Bagnato S., Giustolisi G., Floridia P., Sortino G., Giustolisi R., Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood, Haematologica, 85: 800, 2000. [PubMed] [Google Scholar]
  • 19. Dankbar B., Padro T., Leo R., Feldmann B., Kropff M., Mesters R.M., Serve H., Berdel W. E., Kienast J., Vascular endothelial growth factor and interleukin‐6 in paracrine tumor‐stromal cell interactions in multiple myeloma, Blood, 95: 2630, 2000. [PubMed] [Google Scholar]
  • 20. Sezer O., Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma, European Journal of Haematology, 66: 83, 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Kumar S., Fonseca R., Dispenzieri A., Lacy M.Q., Lust J.A., Witzig T.E., Gertz M.A., Kyle R.A., Greipp P.R., Rajkumar S.V., Bone marrow (BM) angiogenesis in multiple myeloma (MM): effect of therapy and prognostic value, Blood, 96: 363a, 2000. [Google Scholar]
  • 22. Moreira A.L., Sampaio E.P., Zmuidzinas A., Frindt P., Smith K.A., Kaplan G., Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation, Journal of Experimental Medicine, 177: 1675, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Niwayama S., Turk B. E., Liu J.O., Potent inhibition of tumor necrosis factor‐alpha production by tetrafluorothalidomide and tetrafluorophthalimides, J. Med. Chem., 39: 3044, 1996. [DOI] [PubMed] [Google Scholar]
  • 24. Haslett P.A., Corral L.G., Albert M., Kaplan G., Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset, Journal of Experimental Medicine, 187: 1885, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Gad S.M., Shannon E.J., Krotoski W.A., Hastings R.C., Thalidomide induces imbalances in T‐lymphocyte sub‐populations in the circulating blood of healthy males, Lepr. Rev., 56: 35, 1985. [DOI] [PubMed] [Google Scholar]
  • 26. McHugh S.M., Rifkin I.R., Deighton J., Wilson A. B., Lachmann P.J., Lockwood C.M., Ewan P.W., The immunosuppressive drug thalidomide induces T helper cell type 2 (Th2) and concomitantly inhibits Th1 cytokine production in mitogen‐ and antigen‐stimulated human peripheral blood mononuclear cell cultures, Clinical & Experimental Immunology, 99: 160, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Geitz H., Handt S., Zwingenberger K., Thalidomide selectively modulates the density of cell surface molecules involved in the adhesion cascade, Immunopharmacology, 31: 213, 1996. [DOI] [PubMed] [Google Scholar]
  • 28. Keifer J.A., Guttridge D.C., Ashburner B.P., Baldwin A.S., Jr. , Inhibition of NF‐kappa B activity by thalidomide through suppression of Ikappa B kinase activity, J.Biol. Chem., 276: 22382, 2001. [DOI] [PubMed] [Google Scholar]
  • 29. Hideshima T., Chauhan D., Shima Y., Raje N., Davies F.E., Tai Y.T., Treon S.P., Lin B., Schlossman R.L., Richardson P., Muller G., Stirling D.I., Anderson K.C., Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy, Blood, 96: 2943, 2000. [PubMed] [Google Scholar]
  • 30. Noguchi T., Shimazawa R., Nagasawa K., Hashimoto Y., Thalidomide and its analogues as cyclooxygenase inhibitors, Bioorg. Med. Chem. Lett., 12: 1043, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. Davies F.E., Raje N., Hideshima T., Lentzsch S., Young G., Tai Y.T., Lin B., Podar K., Gupta D., Chauhan D., Treon S.P., Richardson P.G., Schlossman R.L., Morgan G.J., Muller G.W., Stirling D.I., Anderson K.C., Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma, Blood, 98: 210, 2001. [DOI] [PubMed] [Google Scholar]
  • 32. Singhal S., Mehta J., Desikan R., Ayers D., Roberson P., Eddlemon P., Munshi N., Anaissie E., Wilson C., Dhodapkar M., Zeddis J., Barlogie B., Antitumor activity of thalidomide in refractory multiple myeloma, New England Journal of Medicine, 341: 1565, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Barlogie B., Spencer T., Tricot G., Zeldis J., Munshi N., Zangari M., Badros A., Toor A., Shaughnessy J., Morris C., Desikan R., Long term follow up of 169 patients receiving a phase II trial of single agent thalidomide for advanced and refractory multiple myeloma (MM), Blood, 96: 514a, 2000. [DOI] [PubMed] [Google Scholar]
  • 34. Rajkumar S. V., Fonseca R., Dispenzieri A., Lacy M.Q., Lust J.A., Witzig T.E., Kyle R.A., Gertz M. A., Greipp P.R., Thalidomide in the treatment of relapsed multiple myeloma, Mayo Clin. Proc., 75: 897, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Rajkumar S.V., Dispenzieri A., Lacy M.Q., Geyer S., Itturia N., Fonseca R., Hayman S.R., Lust J. A., Kyle R.A., Greipp P.R., Gertz M.A., Witzig T. E., Response Rate and Durablity of Response with Thalidomide Therapy for Relapsed Multiple Myeloma (MM), Blood, 98: 162a, 2001. [Google Scholar]
  • 36. Barlogie B., Desikan R., Eddlemon P., Spencer T., Zeldis J., Munshi N., Badros A., Zangari M., Anaissie E., Epstein J., Shaughnessy J., Ayers D., Spoon D., Tricot G., Extended survival in advanced and refractory multiple myeloma after single‐agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients, Blood, 98: 492, 2001. [DOI] [PubMed] [Google Scholar]
  • 37. Juliusson G., Celsing F., Turesson I., Lenhoff S., Adriansson M., Malm C., Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma, Br. J. Haematol., 109: 89, 2000. [DOI] [PubMed] [Google Scholar]
  • 38. Grosbois B., Bellissant E., Moreau P., Attal M., Zerbib R., Thalidomide (Thal) in the Treatment of Advanced Multiple Myeloma (MM). A Prospective Study of 120 Patients, Blood, 98: Abstract 689, 2001. [Google Scholar]
  • 39. Hus M., Dmoszynska A., Soroka‐Wojtaszko M., Jawniak D., Legiec W., Ciepnuch H., Hellmann A., Wolska‐Smolen T., Skotnicki A., Manko J., Thalidomide treatment of resistant or relapsed multiple myeloma patients, Haematologica, 86: 404, 2001. [PubMed] [Google Scholar]
  • 40. Durie B., Stepan D.E., Low Dose Thalidomide Alone and in Combination: Long Term Follow‐Up, Blood, 98: 163a, 2001. [Google Scholar]
  • 41. Bertolini F., Mingrone W., Alietti A., Ferrucci P. F., Cocorocchio E., Peccatori F., Cinieri S., Mancuso P., Corsini C., Burlini A., Zucca E., Martinelli G., Cineri S., Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers, Ann. Oncol., 12: 987, 2001. [DOI] [PubMed] [Google Scholar]
  • 42. Raza S. N., Veksler Y., Sabir T., Li Z., Anderson L., Jagannath S., Durable response to thalidomide in relapsed/refractory multiple myeloma (MM), Blood, 96: 168a, 2000. [Google Scholar]
  • 43. Tosi P., Zamagni E., Cellini C., Ronconi S., Patriarca F., Ballerini F., Musto P., Di Raimondo, F. , Ledda A., Lauria F., Masini L., Gobbi M., Vacca A., Ria R., Cangini D., Tura S., Baccarani M., Cavo M., Salvage therapy with thalidomide in patients with advanced relapsed/refractory multiple myeloma, Haematologica, 87: 408, 2002. [PubMed] [Google Scholar]
  • 44. Schey S., Jones R. W., Cavenagh J., Johnson R., Thalidomide (T) in relapsed/refractory multiple myeloma (MM): a UK Myeloma Forum study: 6, 9, and 12‐month results, Proc. ASCO: Abstract 1102, 2002.
  • 45. Alexanian R., Weber D., Giralt S., Delasalle K., Consolidation Therapy of Multiple Myeloma with Thalidomide‐Dexamethasone after Intensive Chemotherapy, Blood, 98: Abstract 686, 2001. [DOI] [PubMed] [Google Scholar]
  • 46. Dimopoulos M.A., Zomas A., Viniou N.A., Grigoraki V., Galani E., Matsouka C., Economou O., Anagnostopoulos N., Panayiotidis P., Treatment of Waldenstrom's macroglobulinemia with thalidomide, J. Clin. Oncol., 19: 3596, 2001. [DOI] [PubMed] [Google Scholar]
  • 47. Seldin D.C., Choufani E., Skinner M., Wright D.G., Dember L., Weisman J., Fennessey S., Finn K., Sanchorwala V., A phase I/II trial of thalidomide for patients with AL amyloidosis, Blood, 98: Abstract 691, 2001. [Google Scholar]
  • 48. Steins M.B., Padro T., Bieker R., Ruiz S., Kropff M., Kienast J., Kessler T., Buechner T., Berdel W.E., Mesters R.M., Efficacy and safety of thalidomide in patients with acute myeloid leukemia, Blood, 99: 834, 2002. [DOI] [PubMed] [Google Scholar]
  • 49. Raza A., Meyer P., Dutt D., Zorat F., Lisak L., Nascimben F., Du Randt, M. , Kaspar C., Goldberg C., Loew J., Dar S., Gezer S., Venugopal P., Zeldis J., Thalidomide produces transfusion independence in long‐standing refractory anemias of patients with myelodysplastic syndromes, Blood, 98: 958, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Zorat F., Shetty V., Dutt D., Lisak L., Nascimben F., Allampallam K., Dar S., York A., Gezer S., Venugopal P., Raza A., The clinical and biological effects of thalidomide in patients with myelodysplastic syndromes, Br. J. Haematol., 115: 881, 2001. [DOI] [PubMed] [Google Scholar]
  • 51. Barosi G., Grossi A., Comotti B., Marchetti M., Thalidomide in patients with myelofibrosis with myeloid metaplasia, Blood, 96: 746a, 2000. [DOI] [PubMed] [Google Scholar]
  • 52. Pro B., Younes A., Albitar M., Hagemeister F. B., Rodriguez M.A., McLaughlin P., Clemons M., Samaniego F., Cabanillas F., Phase II study of thalidomide in patients with recurrent Hodgkin's disease (HD) and non‐Hodgkin's lymphomas (NHL), Blood, 98: Abstract 4712, 2001. [Google Scholar]
  • 53. Figg W. D., Dahut W., Duray P., Hamilton M., Tompkins A., Steinberg S.M., Jones E., Premkumar A., Linehan W.M., Floeter M.K., Chen C.C., Dixon S., Kohler D.R., Kruger E.A., Gubish E., Pluda J.M., Reed E., A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgenindependent prostate cancer, Clin. Cancer Res., 7: 1888, 2001. [PubMed] [Google Scholar]
  • 54. Figg W.D., Arlen P., Gulley J., Fernandez P., Noone M., Fedenko K., Hamilton M., Parker C., Kruger E.A., Pluda J., Dahut W.L., A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen‐independent prostate cancer, Semin. Oncol., 28: 62, 2001. [DOI] [PubMed] [Google Scholar]
  • 55. Baidas S.M., Winer E.P., Fleming G.F., Harris L., Pluda J.M., Crawford J.G., Yamauchi H., Isaacs C., Hanfelt J., Tefft M., Flockhart D., Johnson M.D., Hawkins M.J., Lippman M.E., Hayes D.F., Phase II evaluation of thalidomide in patients with metastatic breast cancer, J. Clin. Oncol., 18: 2710, 2000. [DOI] [PubMed] [Google Scholar]
  • 56. Fife K., Howard M.R., Gracie F., Phillips R.H., Bower M., Activity of thalidomide in AIDS‐related Kaposi's sarcoma and correlation with HHV8 titre, Int. J. STD. AIDS, 9: 751, 1998. [DOI] [PubMed] [Google Scholar]
  • 57. Fine H.A., Figg W.D., Jaeckle K., Wen P.Y., Kyritsis A.P., Loeffler J.S., Levin V.A., Black P. M., Kaplan R., Pluda J.M., Yung W.K., Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high‐grade gliomas, J. Clin. Oncol., 18: 708, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Hwu W.J., Krown S.E., Menell J.H., Panageas K.S., Merrell J., Quinn C.J., Chapman P.B., Livingston P.O., Wolchok J.D., Williams L.J., Houghton A.N., Temozolomide (TMZ) plus thalidomide in patients with advanced melanoma: a phase II trial, Proc. ASCO: Abstract 1372, 2002.
  • 59. Govindarajan R., Irinotecan and thalidomide in metastatic colorectal cancer, Oncology (Huntingt), 14: 29, 2000. [PubMed] [Google Scholar]
  • 60. Richardson P.G., Schlossman R.L., Hideshima T., Davies F., LeBlanc R., Catley L., Doss D., Kelly K.A., McKenney M., Mechlowicz J., Freeman A., Deocampo R., Rich R., Ryoo J., Chauhan D., Munshi N., Weller E., Thomas S., Zeldis J., Anderson K.C., A phase 1 study of oral CC5013, an immunomodulatory thalidomide (Thal) derivative, in patients with relapsed and refractory multiple myeloma (MM). Blood, 98: 775a, 2001. [Google Scholar]
  • 61. Elliott M. A., Mesa R. A., Li C. Y., Hook C. C., Ansell S. M., Levitt R. M., Geyer S. M., Tefferi A., Thalidomide treatment in myelofibrosis with myeloid metaplasia, Br. J. Haematol., 117: 288, 2002. [DOI] [PubMed] [Google Scholar]
  • 62. Eisen T., Boshoff C., Mak I., Sapunar F., Vaughan M.M., Pyle L., Johnston S.R., Ahern R., Smith I.E., Gore M.E., Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer, Br. J. Cancer, 82: 812, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Little R.F., Wyvill K.M., Pluda J.M., Welles L., Marshall V., Figg W.D., Newcomb F.M., Tosato G., Feigal E., Steinberg S.M., Whitby D., Goedert J.J., Yarchoan R., Activity of thalidomide in AIDS‐related Kaposi's sarcoma, J. Clin. Oncol., 18: 2593, 2000. [DOI] [PubMed] [Google Scholar]
  • 64. Stebbing J., Benson C., Eisen T., Pyle L., Smalley K., Bridle H., Mak I., Sapunar F., Ahern R., Gore M. E., The treatment of advanced renal cell cancer with high‐dose oral thalidomide, Br. J. Cancer, 85: 953, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Motzer R.J., Berg W., Ginsberg M., Russo P., Vuky J., Yu R., Bacik J., Mazumdar M., Phase II trial of thalidomide for patients with advanced renal cell carcinoma, J. Clin. Oncol., 20: 302, 2002. [DOI] [PubMed] [Google Scholar]
  • 66. Short S.C., Traish D., Dowe A., Hines F., Gore M., Brada M., Thalidomide as an anti‐angiogenic agent in relapsed gliomas, J. Neurooncol., 51: 41, 2001. [DOI] [PubMed] [Google Scholar]
  • 67. Marx G.M., Pavlakis N., McCowatt S., Boyle F. M., Levi J.A., Bell D.R., Cook R., Biggs M., Little N., Wheeler H.R., Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme, J. Neurooncol., 54: 31, 2001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES