Abstract
The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG‐CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG‐CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.
Keywords: HMG CoA reductase, cell signaling, LDL oxidation, atherosclerosis, cancer, osteoporosis, endothelial dysfunction, macrophage, smooth muscle cell
References
- 1. Vaughan C.J., Gotto A.M., Basson C.T., The evolving role of statins in the management of atherosclerosis, J. Am. Coll. Cardiol., 35: 1–10, 2000. [DOI] [PubMed] [Google Scholar]
- 2. Hunninghake D.B., HMG‐CoA reductase inhibitors, Curr. Opin. Lipidol., 3: 22–8, 1992. [DOI] [PubMed] [Google Scholar]
- 3. Bellosta S., Ferri N., Bernini F., Paoletti R., Corsini A., Non‐lipid‐related effects of statins, Ann. Med., 32: 164–176, 2000. [DOI] [PubMed] [Google Scholar]
- 4. Meier C.R., Schlienger R.G., Kraenzlin M.E., Schlegel B., Jick H., HMG‐CoA reductase inhibitors and the risk of fractures, JAMA, 283: 3205–3210, 2000. [DOI] [PubMed] [Google Scholar]
- 5. Blum C.B., Comparison of properties of four inhibitors of 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase, Am. J. Cardiol., 73: 3D–11D, 1994. [DOI] [PubMed] [Google Scholar]
- 6. Lennernas H., Fager G., Pharmacodynamics and pharmacokinetics of the HMG‐CoA reductase inhibitors: similarities and differences, Clin. Pharmacokinet., 32: 403–425, 1997. [DOI] [PubMed] [Google Scholar]
- 7. Blumenthal RS., Statins: Effective antiatherosclerotic therapy, Am. Heart. J., 139: 577–83, 2000. [DOI] [PubMed] [Google Scholar]
- 8. Corsini A., Bellosta S., Baetta R., Fumagalli R., Bernini F., New insights into the pharmacodynamics and pharmacokinetic properties of statins, Pharmacol. Ther., 84: 413–28, 1999;. [DOI] [PubMed] [Google Scholar]
- 9. Sehayek E., Butbul E., Avner R., Enhanced cellular metabolism of very low density lipoprotein by simvastatin: a novel mechanism of action of HMG‐CoA reductase inhibitors, Eur. J. Clin. Invest., 24: 173–8, 1994. [DOI] [PubMed] [Google Scholar]
- 10. Stein E.A., Lane M., Laskarzewski P., Comparison of statins in hypertriglyceridemia, Am. J. Cardiol., 81: 66B–69B, 1998. [DOI] [PubMed] [Google Scholar]
- 11. Ginsberg H.N., Le N.A., Short M.P., Ramakrishnan R., Desnick R.J., Suppression of apolipoprotein B production during treatment of cholesteryl ester storage disease with lovastatin: implication for regulation of apolipoprotein B synthesis, J. Clin. Invest., 80: 1692–1697, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Gaw A., Packard C.J., Murray E.F., Effects of simvastatin on apoB metabolism and LDL subfraction distribution, Arterioscler. Thromb., 13: 170–89, 1993. [DOI] [PubMed] [Google Scholar]
- 13. Marais A.D., Naumova R.P., Firth J.C., Penny C., Neuwirth C.K., Thompson G.R., Decreased production of low density lipoprotein by atorvastatin after apheresis in homozygous familial hypercholesterolemia, J. Lipid Res., 38: 2071–2078, 1997. [PubMed] [Google Scholar]
- 14. Raal F.J., Pilcher G.J., Illingworth D.R., Pappu A.S., Stein E.A., Laskarzewski P., Mitchel Y.B., Melino M.R., Expanded dose simvastatin is effective in homozygous familial hypercholesterolemia, Atherosclerosis, 135: 249–256, 1997. [DOI] [PubMed] [Google Scholar]
- 15. Kostner G.M., Gavish D., Leopold B., Bolzano K., Weintraub M.S., Breslow J.L., HMG‐CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels, Circulation, 80: 1313–1319, 1989. [DOI] [PubMed] [Google Scholar]
- 16. Aviram M., Hussein O., Rosenblat M., Schlezinger S., Hayek T., Keidar S., Interactions of platelets, macrophages, and lipoproteins in hypercholesterolemia: antiatherogenic effects of HMG‐CoA reductase inhibitor therapy, J. Cardiovasc. Pharmacol., 31: 39–45, 1998. [DOI] [PubMed] [Google Scholar]
- 17. Hoffman R., Brook G.J., Aviram M., Hypolipidemic drugs reduce lipoprotein susceptibility to undergo lipid peroxidation: in vitro and ex vivo studies, Atherosclerosis, 93: 105–13, 1992. [DOI] [PubMed] [Google Scholar]
- 18. Wagner A.H., Kohler T., Ruckschloss U., Just I., Hecker M., Improvement of nitric oxide‐dependent vasodilatation by HMG‐CoA reductase inhibitors through attenuation of endothelial superoxide anion formation, Arterioscler. Thromb. Vasc. Biol., 20: 61–9, 2000. [DOI] [PubMed] [Google Scholar]
- 19. Chen L., Haught W.H., Yang B., Preservation of endogenous antioxidant activity and inhibition of lipid peroxidation as common mechanisms of antiatherosclerotic effects of vitamin E, lovastatin and amlodipine, J. Am. Coll. Cardiol., 30: 569–75, 1997. [DOI] [PubMed] [Google Scholar]
- 20. Hrboticky N., Draude G., Hapfelmeier G., Lorenz R., Weber P.C., Lovastatin decreases the receptor‐mediated degradation of acetylated and oxidized LDLs in human blood monocytes during early stage of differentiation into macrophages, Arterioscler. Throm. Vasc. Biol., 19: 1267–75, 1999. [DOI] [PubMed] [Google Scholar]
- 21. Pietsch A., Erl W., Lorenz R.L., Lovastatin reduces the expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells, Biochem. Pharmacol., 52: 433, 1996. [DOI] [PubMed] [Google Scholar]
- 22. Voet D., Voet J.G., Lipids and membranes In: John Wiley & Sons, Inc., eds., Biochemistry, Second Edition, USA , 1995, pp. 315–316. [Google Scholar]
- 23. Bernini F., Didoni G., Bonfadini G., Bellosta S., Fumagalli R., Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages, Atherosclerosis, 104: 19–26, 1993. [DOI] [PubMed] [Google Scholar]
- 24. Bernini F., Scurati N., Bonfadini G., Fumagalli R., HMG‐CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages, Arterioscler. Thromb. Vasc. Biol., 15: 1352–8, 1995. [DOI] [PubMed] [Google Scholar]
- 25. Laufs U., Fata V.L., Plutzky J., Liao J.K., Upregulation of endothelial nitric oxide synthase by HMG‐CoA reductase inhibitors, Circulation, 97: 1129–1135, 1998. [DOI] [PubMed] [Google Scholar]
- 26. Simionescu M., Stancu C., Costache G., Sima A., Endothelial cell response to hyperlipemia: activation‐ dysfunction‐ injury; the protective role of simvastatin, Gen. Pharm., 2001. (in press). [DOI] [PubMed]
- 27. Endres M., Laufs U., Huang Z., Nakamura T., Huang P., Moskowitz M.A., Liao J.K., Stroke protection by 3‐hydroxy‐3‐methylglutaryl (HMG)‐CoA reductase inhibitors mediated by endothelial nitric oxide synthase, Proc. Natl. Acad. Sci. USA, 95: 8880–8885, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Ross R., Atherosclerosis ‐ an inflammatory disease, N. Engl. J. Med. 340: 115–26, 1999. [DOI] [PubMed] [Google Scholar]
- 29. Weber C., Erl W., Weber K.S.C., Weber P.C., HMG‐CoA reductase inhibitors decrease CD11b expression and CD11b‐dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia, J. Am. Coll. Cardiol., 30: 1212–7, 1997. [DOI] [PubMed] [Google Scholar]
- 30. Bustos C., Hernandez‐Presa H., Ortego M., Tunon J., Ortega L., Perez F., HMG‐CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis, J. Am. Coll. Cardiol., 32: 2057–64, 1998. [DOI] [PubMed] [Google Scholar]
- 31. Kimura M., Kurose I., Russell J., Granger D.N., Effects of fluvastatin on leukocyte‐endothelial cell adhesion in hypercholesterolemic rats, Arterioscler. Thromb. Vasc. Biol., 17: 1521–6, 1997. [DOI] [PubMed] [Google Scholar]
- 32. Baetta R., Donetti E., Comparato C., Calore M., Rossi A., Teruzzi C., In vitro and in vivo apoptosis by atorvastatin in stimulated smooth muscle cells, Pharmacol. Res., 36: 115–21, 1997. [DOI] [PubMed] [Google Scholar]
- 33. Falk E., Shah P.K., Fuster V., Coronary plaque disruption, Circulation 92: 657–71, 1995. [DOI] [PubMed] [Google Scholar]
- 34. Bellosta S., Via D., Canavesi M., Pfister P., Fumagalli R., Paoletti R., HMG‐CoA reductase inhibitors reduce MMP‐9 secretion by macrophages, Arterioscler: Thromb. Vasc. Biol., 18: 1671–8, 1998. [DOI] [PubMed] [Google Scholar]
- 35. Ballantyne C.M., Herd J.A, Dunn J.K., Jones P.H., Farmer J.A., Gotto A.M.J., Effects of lipid lowering therapy on progression of coronary and carotid artery disease, Curr. Opin. Lipidol., 8: 354–361, 1997. [DOI] [PubMed] [Google Scholar]
- 36. Stancu C., Niculescu L., Toporan D., Sima A., Ioan A., Simionescu M., Statins produce antiatherosclerotic effects in coronary heart disease patients, Proceedings of the Romanian Academy, 2001. (in press).
- 37. Nofer J‐R., Tepel M., Kehrel B., Low‐density lipoproteins inhibit the Na+/H+ antiport in human platelets: a novel mechanism enhancing platelet activity in hypercolesterolemia, Circulation, 95: 1370–7, 1997. [DOI] [PubMed] [Google Scholar]
- 38. Essig M., Nguyen G., Prie D., Escoubet B., Sraer J.D., Friedlander G., 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors increase fibrinolytic activity in rat aortic endothelial cells, Circ. Res., 83: 683–90, 1998. [DOI] [PubMed] [Google Scholar]
- 39. Colli S., Eligini S., Lalli M., Camera M., Paoletti R., Tremoli E., Vastatins inhibit tissue factor in cultured human macrophages: a novel mechanism of protection against atherosclerosis, Arterioscler: Thromb. Vasc. Biol., 17: 265–72, 1997. [DOI] [PubMed] [Google Scholar]
- 40. Maron D.J., Fazio S., Linton M.F., Current perspectives on statins, Circulation, 101: 207–213, 2000. [DOI] [PubMed] [Google Scholar]