Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(4):351–361. doi: 10.1111/j.1582-4934.2003.tb00238.x

Endoplasmic reticulum Ca2+ homeostasis and neuronal death

A Verkhratsky 1, E C Toescu 2
PMCID: PMC6740085  PMID: 14754504

Abstract

The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage‐gated Ca2+ channels by Ca2+‐induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol‐1,4,5‐trisphosphate‐induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long‐range Ca2+ signalling via intra‐ER tunnels. The fluctuations of intra‐ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post‐translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.

Keywords: Ca2+ ‐ Ca2+ release, Endoplasmic reticulum, InsP3, ryanodine, neurodegeneration

References

  • 1. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 1: 11–21, 2000. [DOI] [PubMed] [Google Scholar]
  • 2. Bootman M. D., Petersen O. H., Verkhratsky A. The endoplasmic reticulum is a focal point for co‐ordination of cellular activity, Cell Calcium, 32: 231–234, 2002. [DOI] [PubMed] [Google Scholar]
  • 3. Kostyuk P., Verkhratsky A. Calcium stores in neurons and glia, Neuroscience, 63: 381–404, 1994. [DOI] [PubMed] [Google Scholar]
  • 4. Kostyuk P. G., Verkhratsky A. Calcium signaling in the nervous system. Chichester et al.: John Wiley & Sons, 1995. [Google Scholar]
  • 5. Verkhratsky A. J., Petersen O. H. Neuronal calcium stores, Cell Calcium, 24: 333–343, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Verkhratsky A., Toescu E. C. Integrative aspects of calcium signalling. New York , London : Plenum Press, 1998, p. 408. [Google Scholar]
  • 7. Petersen O. H., Petersen C. C., Kasai H. Calcium and hormone action, Annu. Rev. Physiol., 56: 297–319, 1994. [DOI] [PubMed] [Google Scholar]
  • 8. Baumann O., Walz B. Endoplasmic reticulum of animal cells and its organization into structural and functional domains, Int. Rev. Cytol., 205: 149–214, 2001. [DOI] [PubMed] [Google Scholar]
  • 9. Gerasimenko O. V., Gerasimenko J. V, Rizzuto R. R., Treiman M., Tepikin A., Petersen O. H. The distribution of the endoplasmic reticulum in living pancreatic acinar cells, Cell Calcium, 34: 261–268, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Chevet E., Cameron P. H., Pelletier M. F., Thomas D. Y., Bergeron J. J. The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation, Curr. Opin. Struct. Biol., 11: 120–124, 2001. [DOI] [PubMed] [Google Scholar]
  • 11. Palade G. Intracellular aspects of the process of protein synthesis, Science, 189: 347–358, 1975. [DOI] [PubMed] [Google Scholar]
  • 12. Nielsen S. P., Petersen O. H. Transport of calcium in the perfused submandibular gland of the cat, J. Physiol., 223: 685–697, 1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells, Science, 167: 58–59, 1970. [DOI] [PubMed] [Google Scholar]
  • 14. Berridge M. J. The endoplasmic reticulum: a multifunctional signalling organelle, Cell Calcium, 32: 235–249, 2002. [DOI] [PubMed] [Google Scholar]
  • 15. Verkhratsky A., Petersen O. H. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death, Eur. J. Pharmacol., 447: 141–154, 2002. [DOI] [PubMed] [Google Scholar]
  • 16. Bootman M. D., Lipp P., Berridge M. J. The organisation and functions of local Ca2+ signals, J. Cell. Sci., 114: 2213–2222, 2001. [DOI] [PubMed] [Google Scholar]
  • 17. Mogami H., Nakano K., Tepikin A. V., Petersen O. H. Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch, Cell, 88: 49–55, 1997. [DOI] [PubMed] [Google Scholar]
  • 18. Pahl H. L. Signal transduction from the endoplasmic reticulum to the cell nucleus, Physiol. Rev., 79: 683–701, 1999. [DOI] [PubMed] [Google Scholar]
  • 19. Chapman R., Sidrauski C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus, Annu. Rev. Cell Dev. Biol., 14: 459–485, 1998. [DOI] [PubMed] [Google Scholar]
  • 20. Verkhratsky A. The endoplasmic reticulum and neuronal calcium signalling, Cell Calcium, 32: 393–404, 2002. [DOI] [PubMed] [Google Scholar]
  • 21. Solovyova N., Veselovsky N., Toescu E. C., Verkhratsky A. Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurones: direct visualisation of Ca2+‐ induced Ca2+ release triggered by physiological Ca2+ entry, EMBO J., 21: 622–630, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Camello C., Lomax R., Petersen O. H., Tepikin A. V. Calcium leak from intracellular stores—the enigma of calcium signalling, Cell Calcium, 34: 355–361, 2002. [DOI] [PubMed] [Google Scholar]
  • 23. Michalak M., Robert Parker J. M., Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum, Cell Calcium, 32: 269–278, 2002. [DOI] [PubMed] [Google Scholar]
  • 24. Paschen W. Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states, Cell Calcium, 29: 1–11, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments, Cell Calcium, 34: 305–310, 2003. [DOI] [PubMed] [Google Scholar]
  • 26. Paschen W. Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain, Cell Calcium, 34: 365–383, 2003. [DOI] [PubMed] [Google Scholar]
  • 27. Toescu E. C., Verkhratsky A. Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria, Cell Calcium, 34: 311–323, 2003. [DOI] [PubMed] [Google Scholar]
  • 28. Wuytack F., Raeymaekers L., Missiaen L. Molecular physiology of the SERCA and SPCA pumps, Cell Calcium, 32: 279–305, 2002. [DOI] [PubMed] [Google Scholar]
  • 29. Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties, Prog. Neurobiol., 65: 309–338, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Galione A., Churchill G. C. Interactions between calcium release pathways: multiple messengers and multiple stores, Cell Calcium, 32: 343–354, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. Rossi D., Sorrentino V. Molecular genetics of ryanodine receptors Ca2+ release channels, Cell Calcium, 32: 307–319, 2002. [DOI] [PubMed] [Google Scholar]
  • 32. Taylor C. W., Laude A. J. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+ , Cell Calcium, 32: 321–334, 2002. [DOI] [PubMed] [Google Scholar]
  • 33. Young K. W., Nahorski S. R. Sphingosine 1‐phosphate: a Ca2+ release mediator in the balance, Cell Calcium, 34: 335–341, 2002. [DOI] [PubMed] [Google Scholar]
  • 34. Bak J., White P., Timar G., Missiaen L., Genazzani A. A., Galione A. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes, Curr. Biol., 9: 751–754, 1999. [DOI] [PubMed] [Google Scholar]
  • 35. Chameau P., Van de Vrede Y., Fossier P., Baux G. Ryanodine‐, IP3‐ and NAADP‐dependent calcium stores control acetylcholine release, Pflugers Arch., 443: 289–296, 2001. [DOI] [PubMed] [Google Scholar]
  • 36. Kuba K. Release of calcium ions linked to the activation of potassium conductance in a caffeine‐treated sympathetic neurone, J. Physiol., 298: 251–269, 1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Morita K., Koketsu K., Kuba K. Oscillation of [Ca2+]i‐ linked K+ conductance in bullfrog sympathetic ganglion cell is sensitive to intracellular anions, Nature, 283: 204–205, 1980. [DOI] [PubMed] [Google Scholar]
  • 38. Brown D. A., Constanti A., Adams P. R. Ca‐activated potassium current in vertebrate sympathetic neurons, Cell Calcium, 4: 407–420, 1983. [DOI] [PubMed] [Google Scholar]
  • 39. Salanki J., Budai D., Vero M. Modification of bursting in a Helix neuron by drugs influencing intracellular regulation of calcium level, Acta Physiol. Hung., 62: 213–224, 1983. [PubMed] [Google Scholar]
  • 40. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2, Meth. Enzymol., 172: 230–262, 1989. [DOI] [PubMed] [Google Scholar]
  • 41. Neering I. R., McBurney R. N. Role for microsomal Ca storage in mammalian neurones, Nature, 309: 158–160, 1984. [DOI] [PubMed] [Google Scholar]
  • 42. Lipscombe D., Madison D. V., Poenie M., Reuter H., Tsien R. W., Tsien R. Y. Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons, Neuron, 1: 355–365, 1988. [DOI] [PubMed] [Google Scholar]
  • 43. Marrion N. V., Adams P. R. Release of intracellular calcium and modulation of membrane currents by caffeine in bull‐frog sympathetic neurones, J. Physiol., 445: 515–535, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Thayer S. A., Hirning L. D., Miller R. J. The role of caffeine‐sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neuron in vitro, Mol. Pharmacol., 34: 664–673, 1988. [PubMed] [Google Scholar]
  • 45. Friel D. D., Tsien R. W. A caffeine‐ and ryanodine‐sensitive Ca2+ store in bullfrog sympathetic neurones modulates effects of Ca2+ entry on [Ca2+]i , J. Physiol., 450: 217–246, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Usachev Y., Shmigol A., Pronchuk N., Kostyuk P., Verkhratsky A. Caffeine‐induced calcium release from internal stores in cultured rat sensory neurons, Neuroscience, 57: 845–859, 1993. [DOI] [PubMed] [Google Scholar]
  • 47. Usachev Y., Kostyuk P., Verkhratsky A. 3‐Isobutyl‐1‐methylxanthine (IBMX) affects potassium permeability in rat sensory neurones via pathways that are sensitive and insensitive to [Ca2+]in , Pflugers Arch., 430: 420–428, 1995. [DOI] [PubMed] [Google Scholar]
  • 48. Verkhratsky A., Shmigol A. Calcium‐induced calcium release in neurones, Cell Calcium 19: 1–14, 1996. [DOI] [PubMed] [Google Scholar]
  • 49. Bleakman D., Roback J. D., Wainer B. H., Miller R. J., Harrison N. L. Calcium homeostasis in rat septal neurons in tissue culture, Brain Res., 600: 257–267, 1993. [DOI] [PubMed] [Google Scholar]
  • 50. Shmigol A., Kirischuk S., Kostyuk P., Verkhratsky A. Different properties of caffeine‐sensitive Ca2+ stores in peripheral and central mammalian neurones, Pflugers Arch., 426: 174–176, 1994. [DOI] [PubMed] [Google Scholar]
  • 51. Shmigol A., Kostyuk P., Verkhratsky A. Role of caffeine‐sensitive Ca2+ stores in Ca2+ signal termination in adult mouse DRG neurones, Neuroreport, 5: 2073–2076, 1994. [DOI] [PubMed] [Google Scholar]
  • 52. Shmigol A., Kostyuk P., Verkhratsky A. Dual action of thapsigargin on calcium mobilization in sensory neurons: inhibition of Ca2+ uptake by caffeine‐sensitive pools and blockade of plasmalemmal Ca2+ channels, Neuroscience, 65: 1109–1118, 1995. [DOI] [PubMed] [Google Scholar]
  • 53. Shmigol A., Svichar N., Kostyuk P., Verkhratsky A. Gradual caffeine‐induced Ca2+ release in mouse dorsal root ganglion neurons is controlled by cytoplasmic and luminal Ca2+ , Neuroscience, 73: 1061–1067, 1996. [DOI] [PubMed] [Google Scholar]
  • 54. Shmigol A., Verkhratsky A., Isenberg G. Calcium‐induced calcium release in rat sensory neurons, J. Physiol. Lond., 489: 627–636, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Kirischuk S., Voitenko N., Kostyuk P., Verkhratsky A. Calcium signalling in granule neurones studied in cerebellar slices, Cell Calcium, 19: 59–71, 1996. [DOI] [PubMed] [Google Scholar]
  • 56. Kano M., Garaschuk O., Verkhratsky A., Konnerth A. Ryanodine receptor‐mediated intracellular calcium release in rat cerebellar Purkinje neurones, J. Physiol., 487: 1–16, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Garaschuk O., Yaari Y., Konnerth A. Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones, J. Physiol., 502: 13–30, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Pfaffinger P. J., Leibowitz M. D., Subers E. M., Nathanson N. M., Almers W., Hille B. Agonists that suppress M‐current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M‐current suppression, Neuron, 1: 477–484, 1988. [DOI] [PubMed] [Google Scholar]
  • 59. Otsu H., Yamamoto A., Maeda N., Mikoshiba K., Tashiro Y. Immunogold localization of inositol 1, 4, 5‐trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies, Cell Struct. Funct., 15: 163–173, 1990. [DOI] [PubMed] [Google Scholar]
  • 60. Walton P. D., Airey J. A., Sutko J. L., Beck C. F., Mignery G. A., Sudhof T. C., Deerinck T. J., Ellisman M. H. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons, J. Cell Biol., 113: 1145–1157, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Khodakhah K., Ogden D. Functional heterogeneity of calcium release by inositol trisphosphate in single Purkinje neurones, cultured cerebellar astrocytes, and peripheral tissues, Proc. Natl. Acad. Sci. USA, 90: 4976–4980, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Khodakhah K., Ogden D. Fast activation and inactivation of inositol trisphosphate‐evoked Ca2+ release in rat cerebellar Purkinje neurones, J. Physiol., 487: 343–358, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Svichar N., Shmigol A., Verkhratsky A., Kostyuk P. InsP3‐induced Ca2+ release in dorsal root ganglion neurones, Neurosci. Lett., 227: 107–110, 1997. [DOI] [PubMed] [Google Scholar]
  • 64. Svichar N., Shmigol A., Verkhratsky A., Kostyuk P. ATP induces Ca2+ release from IP3‐sensitive Ca2+ stores exclusively in large DRG neurones, Neuroreport, 8: 1555–1559, 1997. [DOI] [PubMed] [Google Scholar]
  • 65. Kirischuk S., Matiash V., Kulik A., Voitenko N., Kostyuk P., Verkhratsky A. Activation of P2‐purino‐, α1‐adreno and H1‐histamine receptors triggers cytoplasmic calcium signalling in cerebellar Purkinje neurons, Neuroscience, 73: 643–647, 1996. [DOI] [PubMed] [Google Scholar]
  • 66. Alvarez J., Montero M. Measuring [Ca2+] in the endoplasmic reticulum with aequorin, Cell Calcium, 32: 251–260, 2002. [DOI] [PubMed] [Google Scholar]
  • 67. Demaurex N., Frieden M. Measurements of the free luminal ER Ca2+ concentration with targeted “cameleon” fluorescent proteins, Cell Calcium, 34: 109–119, 2003. [DOI] [PubMed] [Google Scholar]
  • 68. Solovyova N., Verkhratsky A. Monitoring of free calcium in the neuronal endoplasmic reticulum: An overview of modern approaches, J. Neurosci. Meth., 122: 1–12, 2002. [DOI] [PubMed] [Google Scholar]
  • 69. Alonso M. T., Barrero M. J., Michelena P., Carnicero E., Cuchillo I., Garcia A. G., Garcia‐Sancho J., Montero M., Alvarez J. Ca2+‐induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin, J. Cell Biol., 144: 241–254, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Solovyova N., Fernyhough P., Glazner G., Verkhratsky A. Xestospongin C empties the ER calcium store but does not inhibit InsP3‐induced Ca2+ release in cultured dorsal root ganglia neurones, Cell Calcium, 32: 49–52, 2002. [DOI] [PubMed] [Google Scholar]
  • 71. Solovyova N., Verkhratsky A. Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol‐1,4,5‐trisphosphate receptors as revealed by intra‐ER [Ca2+] recordings in single rat sensory neurones, Pflugers Arch., 446: 447–454, 2003. [DOI] [PubMed] [Google Scholar]
  • 72. Leist M., Nicotera P. Calcium and neuronal death, Rev. Physiol. Biochem. Pharmacol., 132: 79–125, 1998. [DOI] [PubMed] [Google Scholar]
  • 73. Sattler R., Tymianski M. Molecular mechanisms of calcium‐dependent excitotoxicity, J. Mol. Med. 78: 3–13, 2000. [DOI] [PubMed] [Google Scholar]
  • 74. Mattson M. P. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity, Trends Neurosci., 21: 53–57, 1998. [DOI] [PubMed] [Google Scholar]
  • 75. Lu C., Chan S. L., Fu W., Mattson M. P. The lipid per‐oxidation product 4‐hydroxynonenal facilitates opening of voltage‐dependent Ca2+ channels in neurons by increasing protein tyrosine phosphorylation. J. Biol. Chem., 2002. [DOI] [PubMed]
  • 76. Glazner G., Fernyhough P. Neuronal survival in the balance: are endoplamic reticulum membrane proteins the fulcrum, Cell Calcium, 32: 421–433, 2002. [DOI] [PubMed] [Google Scholar]
  • 77. Mattson M. P., Gary D. S., Chan S. L., Duan W. Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease. Biochem. Soc. Symp., 151–162, 2001. [DOI] [PubMed]
  • 78. Huang T. J., Sayers N. M., Fernyhough P., Verkhratsky A. Diabetes‐induced alterations in calcium homeostasis in sensory neurones of streptozotocin‐diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin‐3, Diabetologia, 45: 560–570, 2002. [DOI] [PubMed] [Google Scholar]
  • 79. Kirischuk S., Verkhratsky A. Calcium homeostasis in aged neurones, Life Sci., 59: 451–459, 1996. [DOI] [PubMed] [Google Scholar]
  • 80. Kirischuk S., Voitenko N., Kostyuk P., Verkhratsky A. Age‐associated changes of cytoplasmic calcium homeostasis in cerebellar granule neurons in situ: investigation on thin cerebellar slices, Exp. Gerontol., 31: 475–487, 1996. [DOI] [PubMed] [Google Scholar]
  • 81. Verkhratsky A., Shmigol A., Kirischuk S., Pronchuk N., Kostyuk P. Age‐dependent changes in calcium currents and calcium homeostasis in mammalian neurons, Ann. NY Acad. Sci., 747: 365–381, 1994. [DOI] [PubMed] [Google Scholar]
  • 82. Verkhratsky A., Toescu E. C. Calcium and neuronal ageing, Trends Neurosci., 21: 2–7, 1998. [DOI] [PubMed] [Google Scholar]
  • 83. Xiong J., Verkhratsky A., Toescu E. C. Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurons in brain slices, J. Neurosci., 22: 10761–10771, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Patil C., Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals, Curr. Opin. Cell Biol., 13: 349–355, 2001. [DOI] [PubMed] [Google Scholar]
  • 85. Mengesdorf T., Althausen S., Oberndorfer I., Paschen W. Response of neurons to an irreversible inhibition of endoplasmic reticulum Ca2+‐ATPase: relationship between global protein synthesis and expression and translation of individual genes, Biochem. J., 356: 805–812, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Doutheil J., Treiman M., Oschlies U., Paschen W. Recovery of neuronal protein synthesis after irreversible inhibition of the endoplasmic reticulum calcium pump, Cell Calcium, 25: 419–428, 1999. [DOI] [PubMed] [Google Scholar]
  • 87. Glazner G. W., Camandola S., Geiger J. D., Mattson M. P. Endoplasmic reticulum D‐myo‐inositol 1,4,5‐trisphosphate‐sensitive stores regulate nuclear factor‐kappaB binding activity in a calcium‐independent manner, J. Biol. Chem., 276: 22461–22467, 2001. [DOI] [PubMed] [Google Scholar]
  • 88. Lee J., Bruce‐Keller A. J., Kruman Y., Chan S. L., Mattson M. P. 2‐Deoxy‐D‐glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins, J. Neurosci. Res., 57: 48–61, 1999. [DOI] [PubMed] [Google Scholar]
  • 89. Yu Z., Luo H., Fu W., Mattson M. P. The endoplasmic reticulum stress‐responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis, Exp Neurol 155: 302–314, 1999. [DOI] [PubMed] [Google Scholar]
  • 90. Thuerauf D. J., Hoover H., Meller J., Hernandez J., Su L., Andrews C., Dillmann W. H., McDonough P. M., Glembotski C. C. Sarco/endoplasmic reticulum calcium ATPase‐2 expression is regulated by ATF6 during the endoplasmic reticulum stress response, J. Biol. Chem., 276: 48309–48317, 2001. [DOI] [PubMed] [Google Scholar]
  • 91. Kitao Y., Ozawa K., Miyazaki M., Tamatani M., Kobayashi T., Yanagi H., Okabe M., Ikawa M., Yamashima T., Stern D. M., Hori O., Ogawa S. Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity, J. Clin. Invest., 108: 1439–1450, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Kuwabara K., Matsumoto M., Ikeda J., Hori O., Ogawa S., Maeda Y., Kitagawa K., Imuta N., Kinoshita T., Stern D. M., Yanagi H., Kamada T. Purification and characterization of a novel stress protein, the 150‐kDa oxygen‐regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain, J. Biol. Chem., 271: 5025–5032, 1996. [DOI] [PubMed] [Google Scholar]
  • 93. Ozawa K., Kuwabara K., Tamatani M., Takatsuji K., Tsukamoto Y., Kaneda S., Yanagi H., Stern D. M., Eguchi Y., Tsujimoto Y., Ogawa S., Tohyama M. 150‐kDa oxygen‐regulated protein (ORP150) suppresses hypoxia‐induced apoptotic cell death, J. Biol. Chem., 274: 6397–6404, 1999. [DOI] [PubMed] [Google Scholar]
  • 94. Niebauer M., Gruenthal M. Neuroprotective effects of early vs. late administration of dantrolene in experimental status epilepticus, Neuropharmacology, 38: 1343–1348, 1999. [DOI] [PubMed] [Google Scholar]
  • 95. LaFerla F. M. Calcium dyshomeostasis and intracellular signalling in Alzheimer disease, Nat. Rev. Neurosci., 3: 862–872, 2002. [DOI] [PubMed] [Google Scholar]
  • 96. Mattson M. P., Chan S. L. Neuronal and glial calcium signaling in Alzheimer's disease, Cell Calcium, 34: 385–397, 2003. [DOI] [PubMed] [Google Scholar]
  • 97. Refolo L. M., Eckman C., Prada C. M., Yager D., Sambamurti K., Mehta N., Hardy J., Younkin S. G. Antisense‐induced reduction of presenilin 1 expression selectively increases the production of amyloid beta42 in transfected cells, J. Neurochem., 73: 2383–2388, 1999. [DOI] [PubMed] [Google Scholar]
  • 98. Imaizumi K., Katayama T., Tohyama M. Presenilin and the UPR. Nat. Cell. Biol., 3: E104, 2001. [DOI] [PubMed] [Google Scholar]
  • 99. Katayama T., Imaizumi K., Honda A., Yoneda T., Kudo T., Takeda M., Mori K., Rozmahel R., Fraser P., George‐Hyslop P. S., Tohyama M. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease‐linked presenilin‐1 mutations, J. Biol. Chem., 276: 43446–43454, 2001. [DOI] [PubMed] [Google Scholar]
  • 100. Katayama T., Imaizumi K., Sato N., Miyoshi K., Kudo T., Hitomi J., Morihara T., Yoneda T., Gomi F., Mori Y., Nakano Y., Takeda J., Tsuda T., Itoyama Y., Murayama O., Takashima A., St George‐Hyslop P., Takeda M., Tohyama M. Presenilin‐1 mutations downregulate the signalling pathway of the unfolded‐protein response, Nat. Cell. Biol., 1: 479–485, 1999. [DOI] [PubMed] [Google Scholar]
  • 101. Sato N., Imaizumi K., Manabe T., Taniguchi M., Hitomi J., Katayama T., Yoneda T., Morihara T., Yasuda Y., Takagi T., Kudo T., Tsuda T., Itoyama Y., Makifuchi T., Fraser P. E., St George‐Hyslop P., Tohyama M. Increased production of beta‐amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2, J. Biol. Chem., 276: 2108–2114, 2001. [DOI] [PubMed] [Google Scholar]
  • 102. Chan S. L., Mayne M., Holden C. P., Geiger J. D., Mattson M. P. Presenilin‐1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons, J. Biol. Chem., 275: 18195–18200, 2000. [DOI] [PubMed] [Google Scholar]
  • 103. Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., LaFerla F. M. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin‐1 knockin mice, J. Cell. Biol., 149: 793–798, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Leissring M. A., Yamasaki T. R., Wasco W., Buxbaum J. D., Parker I., LaFerla F. M. Calsenilin reverses presenilin‐mediated enhancement of calcium signaling, Proc. Natl. Acad. Sci. USA, 97: 8590–8593, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Yoo A. S., Cheng I., Chung S., Grenfell T. Z., Lee H., Pack‐Chung E., Handler M., Shen J., Xia W., Tesco G., Saunders A. J., Ding K., Frosch M. P., Tanzi R. E., Kim T. W. Presenilin‐mediated modulation of capacitative calcium entry, Neuron, 27: 561–572, 2000. [DOI] [PubMed] [Google Scholar]
  • 106. Etcheberrigaray R., Hirashima N., Nee L., Prince J., Govoni S., Racchi M., Tanzi R. E., Alkon D. L. Calcium responses in fibroblasts from asymptomatic members of Alzheimer's disease families, Neurobiol. Dis., 5: 37–45, 1998. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES