Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(3):307–327. doi: 10.1111/j.1582-4934.2002.tb00511.x

Protein folding in the post‐genomic era

Jeannine M Yon 1,
PMCID: PMC6740087  PMID: 12417049

Abstract

Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic message is translated into the three‐dimensional and functional structure of proteins. In these post‐genomic times, the knowledge of the fundamental principles are required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has practical applications in the understanding of different pathologies and the development of novel therapeutics to prevent diseases associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the “new view” which describes the folding process in terms of an energy landscape. These new insights arise from both theoretical and experimental studies. The problem of folding in the cellular environment is briefly discussed. The modern view of misfolding and aggregation processes that are involved in several pathologies such as prion and Alzheimer diseases. Several approaches of structure prediction, which is a very active field of research, are described.

Keywords: protein structure, chaperones, molten globule, aggregate, protein folding

References

  • 1. Monod J., Le hasard et la Nécessité, Le Seuil; ed. Paris , 1976. [Google Scholar]
  • 2. Wu H., Studies on denaturation of proteins. Atheory of denaturation. Chinese J. Physiol. 5: 321–341; reproduced in Adv. Prot. Chem., 46: 6–26, 1931. [PubMed] [Google Scholar]
  • 3. Kauzmann I., Some factors in the interpretation of protein denaturation. Adv. Prot. Chem., 14: 1–67, 1959. [DOI] [PubMed] [Google Scholar]
  • 4. Ghélis C., Yon J.M., in Protein folding Acad. Press New‐York, 1982. [Google Scholar]
  • 5. Thornton J.M., Orengo C.A., Todd A.E., Pearl F.M., Protein folds, functions and evolution. J. Mol. Biol., 293: 333–342, 1999. [DOI] [PubMed] [Google Scholar]
  • 6. Anfinsen C.B., Principles that govern the folding of protein chains. Science, 181: 223–230, 1973. [DOI] [PubMed] [Google Scholar]
  • 7. Levinthal C., Are there pathways for protein folding. J. Chim. Phys., 65: 44–45, 1968. [Google Scholar]
  • 8. Wetlaufer D.B., Nucleation, rapid folding and globular intrachain regions in proteins. Proc. Natl. Acad. Sci. USA, 70: 697–701, 1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Karplus M., Weaver D.L., Protein folding dynamics. Nature, 260: 404–406, 1976. [DOI] [PubMed] [Google Scholar]
  • 10. Karplus M., Weaver D.L., Protein folding dynamics: the diffusion‐collision model and experimental data. Protein Sci., 3: 650–668, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Karplus, M. , Šali A., Theoretical studies of protein folding and unfolding. Curr. Op. Struct. Biol., 5: 58–73, 1995. [DOI] [PubMed] [Google Scholar]
  • 12. Dill K.A., Bromberg S., Yue K., Fiebig K.M., Yee D.P., Thomas P.D. et al., Principles of protein folding: a perspective from simple extract models. Protein Sci., 4: 561–602, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Bryngelson J.D., Wolynes P.G., Spin‐glass and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA, 84: 7524–7528, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Levitt M., Warshel A., Computer simulation of protein folding. Nature, 253: 693–698, 1975. [DOI] [PubMed] [Google Scholar]
  • 15. Taketomi H., Kano F., Gô N., The effect of amino acid substitutions on protein folding and unfolding transition studied by computer simulations. Biopolymers, 27: 527–560, 1988. [DOI] [PubMed] [Google Scholar]
  • 16. Skolnick J., Kolinski A., Simulations of the folding of a globular protein. Science, 250: 1121–1125, 1992. [DOI] [PubMed] [Google Scholar]
  • 17. Godzik A., Skolnick J., Kolinski A., Simulation of the folding pathway of triose phosphate isomerase‐type α/β barrel proteins. Proc. Natl. Acad. Sc. USA, 89: 2629–2633, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Šali A., Shakhnovich E., Karplus M., How does a protein fold. Nature, 369: 248–251, 1994. [DOI] [PubMed] [Google Scholar]
  • 19. Kolinski A., Skolnick J., Monte Carlo simulations of protein folding. I‐Lattice model and interaction scheme. Proteins Struct. Funct. Genet., 18: 338–352, 1994. [DOI] [PubMed] [Google Scholar]
  • 20. Daggett V., Levitt M., A model of the molten globule state from molecular dynamics simulations. J. Mol. Biol., 232: 600–619, 1993. [DOI] [PubMed] [Google Scholar]
  • 21. Baldwin R.L., Intermediates in protein folding reactions and the mechanism of protein folding. Ann. Rev. Biochem., 44: 453–475, 1975. [DOI] [PubMed] [Google Scholar]
  • 22. Kim P.S., Baldwin R.L., Specific intermediates in the folding process of small proteins and the mechanism of protein folding. Ann. Rev. Biochem., 51: 459–489, 1982. [DOI] [PubMed] [Google Scholar]
  • 23. Kim P.S., Baldwin R.L., Intermediates in the folding reactions of small proteins.. Ann. Rev. Biochem., 59: 631–660, 1990. [DOI] [PubMed] [Google Scholar]
  • 24. Zimm B.H., Bragg J.K., Theory of the phase transition between helix and random coil polypeptide chains. J. Chem. Phys., 31: 526–535, 1959. [Google Scholar]
  • 25. Lifson S., Roig A., On the theory of helix‐coil transition in polypeptides. J. Chem. Phys., 34: 1963–1974, 1961. [Google Scholar]
  • 26. Fersht A.N., Nucleation mechanisms in protein folding. Curr. Op. Struct. Biol., 7: 3–9, 1997. [DOI] [PubMed] [Google Scholar]
  • 27. Jaenicke R., Folding and association of proteins. Progress in Biophysics and Molecular Biology, 49: 117–237, 1987. [DOI] [PubMed] [Google Scholar]
  • 28. Ptitsyn O.B., Rashin A.A., Stagewise mechanism of protein folding. Doklady Akademii Nauk SSSR, 213: 473–475, 1973. [PubMed] [Google Scholar]
  • 29. Janin J., The protein kingdom: a survey of the three‐dimensional structure and evolution of globular proteins. Bull. Inst. Pasteur Paris, 77: 337–373, 1979. [Google Scholar]
  • 30. Chothia C., Principles which determine the structure of proteins. Ann. Rev. Biochem, 53: 537–572, 1984. [DOI] [PubMed] [Google Scholar]
  • 31. Levitt M., Chothia C., Structural patterns in globular proteins. Nature, 261: 552–558, 1976. [DOI] [PubMed] [Google Scholar]
  • 32. Dill K.A., Theory for folding and stability of globular proteins. Biochemistry, 24: 1501–1509, 1985. [DOI] [PubMed] [Google Scholar]
  • 33. Harrison S.C., Durbin R., Is there a single pathway for the folding of a polypeptide chain. Proc. Natl. Acad. Sci. USA, 82: 4028–4030, 1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Yon J.M., Protein folding: concepts and perspectives. Cell. Mol. Life Sci., 53: 557–567, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Yon J.M., Protein folding: a perspective for biology, medicine and biotechnology. Braz. J. Med. Biol. Res., 34: 419–435, 2001. [DOI] [PubMed] [Google Scholar]
  • 36. Wetlaufer D.B., Ristow S., Acquisition of the three‐dimensional structure of proteins. Ann. Rev. Biochem., 42: 135–158, 1973. [DOI] [PubMed] [Google Scholar]
  • 37. Creighton T.E., Experimental studies of folding and unfolding. Prog. Biophys. Mol. Biol., 33: 231–297, 1974. [DOI] [PubMed] [Google Scholar]
  • 38. Weissman J.A., Kim P.S., Reexamination of the folding of BPTI: predominance of native intermediates. Nature, 336: 42–48, 1992. [DOI] [PubMed] [Google Scholar]
  • 39. Ghélis C., Transient conformational states in proteins followed by differential labelling. Biophys. J., 32: 503–514, 1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Roder H., Elöve G.A., Englander S.W., Structural characterization of folding intermediates in cytochrome c by H‐exchange labelling and proton NMR. Nature, 335: 700–704, 1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Baldwin R.L., Pulse H/D exchange studies of folding intermediates. Curr. Op. Struct. Biol., 3: 84–91, 1993. [Google Scholar]
  • 42. Dobson C.M., Characterization of protein folding intermediates. Curr. Op. Struct. Biol., 1: 22–27, 1991. [Google Scholar]
  • 43. Matouschek A., Fersht A.R., Protein engineering in analysis of protein folding and stability. Methods in Enzymol., 202: 82–112, 1991. [DOI] [PubMed] [Google Scholar]
  • 44. Ballery N., Desmadril M., Minard P., Yon J.M., Characterization of an intermediate in the folding pathway of phosphoglycerate kinase; chemical reactivity of genetically introduced cysteinyl residues during the folding process. Biochemistry, 32: 708–714, 1993. [DOI] [PubMed] [Google Scholar]
  • 45. Garcia P., Desmadril M., Minard P., Yon J.M., Evidence for residual structures in the unfolded form of yeast phosphoglycerate kinase. Biochemistry, 34: 397–404, 1995. [DOI] [PubMed] [Google Scholar]
  • 46. Wetlaufer D.B., Folding of protein fragments. Adv. Prot. Chem., 34: 61–92, 1981. [DOI] [PubMed] [Google Scholar]
  • 47. Pecorari F., Minard P., Desmadril M., Yon J.M., Structure and functional complementation of engineered fragments from yeast phosphoglycerate kinase. Prot. Engng., 6: 313–325, 1993. [DOI] [PubMed] [Google Scholar]
  • 48. Ptitsyn O.B., Molten globule and protein folding. Adv. Prot. Chem., 47: 83–229, 1995. [DOI] [PubMed] [Google Scholar]
  • 49. Kuwajima K., The molten globule state as a clue for understanding the folding and cooperativity of globular protein structure. Prot. Struct. Genet., 6: 87–103, 1989. [DOI] [PubMed] [Google Scholar]
  • 50. Ptitsyn O.B., Rashin A.A., Stagewise mechanism of protein folding. Dokl. Akad. Nauk, SSSR, 213: 473–475, 1973. [PubMed] [Google Scholar]
  • 51. Ohgushi M., Wada A., Molten globule state: a compact form of protein with mobile side‐chains. FEBS Letters, 164: 20–24, 1983. [DOI] [PubMed] [Google Scholar]
  • 52. Ptitsyn O.B., Pain R., Semisotnov G., Zerovnik E., Razgulyaev O.I., Evidence for a molten globule state as a general intermediate in protein folding. FEBS Letters, 26: 21–24, 1990. [DOI] [PubMed] [Google Scholar]
  • 53. Chaffotte A.F., Cadieux C., Guillou Y., Goldberg M.E., A possible folding initial intermediate: the C proteolytic domain of tryptophane synhtase β chain folds in less than 4 milliseconds into a condensed state with non native‐like secondary structures. Biochemistry, 31: 4303–4308, 1992. [DOI] [PubMed] [Google Scholar]
  • 54. Wong K.P., Hamlin L.M., Acid denaturation of bovine carbonic anhydrase. B. Biochemistry, 13: 2678–2683, 1974. [DOI] [PubMed] [Google Scholar]
  • 55. Jagannadham M.V., Balasubramanian D., The molten globule intermediate form in the folding pathway of human carbonic anhydrase. FEBS Letters, 188: 326–330, 1985. [DOI] [PubMed] [Google Scholar]
  • 56. Goto Y., Fink A.L., Conformational states of β‐lactamase: molten globule state at acidic and alkaline pH with high salt. Biochemistry, 28: 945–952, 1989. [DOI] [PubMed] [Google Scholar]
  • 57. Beasty A.M., Matthews C.R., Characterization of an early intermediate in the folding of the α subunit of tryptophan synthase by hydrogen exchange mearurement. Biochemistry, 24: 3547–3553, 1985. [DOI] [PubMed] [Google Scholar]
  • 58. Brems D.N., Plaisted S., Havel H.A., Kaufmann E.W., Stodola J., Eaton I.C. et al., Equilibrium denaturation of pituitary and recombinant bovine growth hormone. Biochemistry, 24: 7662–7668, 1985. [DOI] [PubMed] [Google Scholar]
  • 59. Brems D.N., Havel H.A., Folding bovine growth hormone is consistent with the molten globule hypothesis. Proteins. Struct. Funct. Genet., 5: 93–94, 1989. [DOI] [PubMed] [Google Scholar]
  • 60. Shiraki K., Nishikawa K., Goto Y., Trifluoroethanol induced stabilization of the α‐helical structure of β‐lactoglobulin: implication for non hierarchical protein folding. J. Mol. Biol., 245: 180–194, 1995. [DOI] [PubMed] [Google Scholar]
  • 61. Radford S. E., Dobson C. M., Evans P.A., The folding of hen lysozyme involves partially structure intermediates and multiple pathways. Nature, 358: 302–307, 1992. [DOI] [PubMed] [Google Scholar]
  • 62. Kuwajima K., The molten globule state of α‐lactalbumin. FASEB J., 10: 102–109, 1996. [DOI] [PubMed] [Google Scholar]
  • 63. Alexandrescu A.T., Evans P.A., Pitkeathly M., Baum J., Dobson C.M., Structure and dynamics of the acid‐denatured molten globule of α‐lactalbumin: a two‐dimensional NMR study. Biochemistry, 32: 1707–1718, 1993. [DOI] [PubMed] [Google Scholar]
  • 64. Balbach J., Forge V., van Nuland N. A. J., Winder S. I., Hore P. J., Dobson C. M., Following protein folding in real time using NMR spectroscopy. Nature Struct. Biol., 2: 866–870, 1995. [DOI] [PubMed] [Google Scholar]
  • 65. Ptitsyn O.B., How does protein synthesis give rise to the 3D‐structure. FEBS Lett., 285: 176–181, 1992. [DOI] [PubMed] [Google Scholar]
  • 66. Uversky, V.N. , Ptitsyn, Partly folded state, a new equilibrium state of protein molecules: four‐state guanidinium chloride‐induced unfolding of β‐lactamase at low temperature. Biochemistry, 33: 2782–2791, 1994. [DOI] [PubMed] [Google Scholar]
  • 67. Uversky, V.N. , Ptitsyn, Further evidence on the equilibrium “pre‐molten globule state”: four‐state guanidinium chloride‐induced unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol., 255: 215–228, 1996. [DOI] [PubMed] [Google Scholar]
  • 68. Jeng M.F., Englander S.W., Stable submolecular folding units in a non compact form of cytochrome c.. J. Mol. Biol., 221: 215–228, 1991. [DOI] [PubMed] [Google Scholar]
  • 69. Fink A.L., Calciano L.J., Goto Y., Kurotsu T., Palleros D.R., Classification of acid denaturation of proteins: intermediates and unfolded states. Biochemistry, 33: 12504–12511, 1994. [DOI] [PubMed] [Google Scholar]
  • 70. Fink A.L., Compact intermediate states in protein folding. Ann. Rev. Biophys. Biomol. Struct., 24: 495–522, 1995. [DOI] [PubMed] [Google Scholar]
  • 71. Dobson C.M., Characterization of protein folding intermediates. Curr. Op. Struct. Biol., 1: 22–27, 1991. [Google Scholar]
  • 72. Arai M., Kuwajima K., Role of molten globule state in protein folding. Adv. Prot. Chem., 57: 209–282, 2000. [DOI] [PubMed] [Google Scholar]
  • 73. Amir D., Haas E., Reduced bovine pancreatic trypsin inhibitor has a compact structure. Biochemistry, 27: 8889–8893, 1988. [DOI] [PubMed] [Google Scholar]
  • 74. Amir D., Kraus S., Haas E., Detection of local structures in reduced unfolded bovine pancreatic trypsin inhibitor. Proteins Struct. Funct. Gent., 13: 162–173, 1992. [DOI] [PubMed] [Google Scholar]
  • 75. Shortle D., Meeker A.K., Freire E., Stability mutants of staphylococcal nuclease. Large compensating enthalpy‐entropy changes for reversible denaturation reaction. Biochemistry, 27: 4761–4768, 1988. [DOI] [PubMed] [Google Scholar]
  • 76. Shortle D., Meeker A.K., Residual structure in large fragments of staphylococcal nuclease: effect of amino acids substitutions. Biochemistry, 28: 963–944, 1989. [DOI] [PubMed] [Google Scholar]
  • 77. Shortle D., Abeygunawardana C., NMR analysis of the residual structures in the denatured state of an unusual mutant of staphylococcal nuclease. Curr. Biol. Struct., 1: 121–134, 1993. [DOI] [PubMed] [Google Scholar]
  • 78. Garvey E.P., Swank J., Matthews C.R., A hydrophobic cluster forms early in the folding of dihydrofolate reductase. Proteins Struct. Funct. Genet., 6: 259–266, 1989. [DOI] [PubMed] [Google Scholar]
  • 79. Elöve G.A., Roder H., Structure and stability of cytochrome c folding intermediates, In protein refolding ed. by Georgiou, ACS Symposium series 1991, pp. 50–63.
  • 80. Kosen P.A., Creighton T.E., Blout E.R., Circular dichroism spectroscopy of bovine pancreatic trypsin inhibitor and five altered conformational states. Biochemistry, 20: 5744–5754, 1981. [DOI] [PubMed] [Google Scholar]
  • 81. Neri D., Billeter M., Wider G., Wüthrich K., NMR determination of residual structures in a urea‐denatured protein, the 434 repressor. Science, 257: 1559–1563, 1992. [DOI] [PubMed] [Google Scholar]
  • 82. Logan T.M., Theriault Y., Fesik S.W., Structural characterization of the FK 506 binding protein unfolded in urea and guanidine hydrochloride. J. Mol. Biol., 236: 637–648, 1994. [DOI] [PubMed] [Google Scholar]
  • 83. Lamb K.J., Kim P.S., Formation of a hydrophobic cluster in denatured bovine pancreatic trypsin inhibitor. J. Mol. Biol., 236: 412–420, 1994. [DOI] [PubMed] [Google Scholar]
  • 84. Plaxco K.W., Dobson C.M., Time‐relaxed biophysical methods in the study of protein folding. Curr. Op. Struct. Biol., 6: 630–636, 1996. [DOI] [PubMed] [Google Scholar]
  • 85. Regenfuss P., Clegg R.M., Fulwyler M.J., Gray H.B., Mixing liquids in microseconds. Rev. Sci. Instrum., 56: 283–290, 1985. [Google Scholar]
  • 86. Takahashi S., Yeh S.R., Das T.K., Chan C.K., Gottfried D.S., Rousseau D.L., Folding of cytochrome c initiated by submillisecond mixing. Nature Struct. Biol., 4: 44–50, 1997. [DOI] [PubMed] [Google Scholar]
  • 87. Nötling B., Golbik R., Fersht A.R., Submillisecond events in protein folding. Proc. Natl. Acad. Press USA, 92: 10668–10672, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Ballew R.M., Sabelko J., Gruebele M., Direct observation of protein folding. Proc. Natl. Acad. Press USA, 93: 5759–5764, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Phillips C.M., Mizutani Y., Hochstrasser R.M., Ultrafast thermally unfolding of Rnase A.. Proc. Natl. Acad. Press USA, 92: 7292–7296, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Jones C.M., Henri E.R., Hu U., Chan C.K., Luck S.D., Bhuyan A., et al., Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Natl. Acad. Press USA, 90: 11860–11864, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Pascher T., Chesik J.P., Winkler R.J., Gray H.B., Protein folding triggered by electron transfer. Science, 271: 1558–1560, 1996. [DOI] [PubMed] [Google Scholar]
  • 92. Burton R.E., Huang G.S., Daugherty M.A., Fullbright P.W., Oas T.G., Microsecond protein folding through a compact transition state. J. Mol. Biol., 263: 311–322, 1996. [DOI] [PubMed] [Google Scholar]
  • 93. Hagen S.J., Hofrichter J., Szabo A., Eaton W.A., Diffusion‐limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding. Proc. Natl. Acad. Press USA, 93: 11615–11617, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. McCammon J.A., A speed limit of protein folding. Proc. Natl. Acad. Press USA, 93: 11426–11427, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Ballow R.M., Sabelko J., Gruebele M., Observation of distinct nanosecond and microsecond protein folding events. Nature Struct. Biol., 3: 923–926, 1996. [DOI] [PubMed] [Google Scholar]
  • 96. Gontcharova V., Elm E.J., Baker D., Horwich A.L., Mechanisms of protein folding. Curr. Op. Struct. Biol., 11: 70–82, 2001. [DOI] [PubMed] [Google Scholar]
  • 97. Matouschek A., Kellis J.T., Serrano L., Bycroft M., Fersht A.R., Transient folding intermediates characterized by protein engineering. Nature, 346: 440–445, 1990. [DOI] [PubMed] [Google Scholar]
  • 98. Lecomte J.T.J., Matthews C.R., Unravelling the mechanism of protein folding: new tricks for an old problem. Prot. Engng., 6: 1–10, 1993. [DOI] [PubMed] [Google Scholar]
  • 99. Levitt M., Effect of proline residues in protein folding. J. Mol. Biol., 145: 251–263, 1981. [DOI] [PubMed] [Google Scholar]
  • 100. Jaenicke R., Protein folding: local structures, domains, subunits and assemblies. Biochemistry, 30: 3147–3161, 1991. [DOI] [PubMed] [Google Scholar]
  • 101. Peng Z.Y., Wu L.C., Autonomous protein folding units, Adv. Prot. Chem., 53: 1–47, 2000. [DOI] [PubMed] [Google Scholar]
  • 102. Sharma A.K., Minke‐Gogi V., Gohl, P. , Siebendritt R., Jaenicke, R. , Rudolph R., Limited proteolysis of γII‐cristallin from calf eye lens.. Eur. J. Biochem., 194: 603–609, 1990. [DOI] [PubMed] [Google Scholar]
  • 103. Jecht M., Tomschy A., Kirschner K., Jaenicke R., Autonomous folding of the excised coenzymebinding domain of D‐glyceraldehyde 3–phosphate dehydrogenase from Thermotoga marina.. Prot. Sci., 3: 411–418, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Herold M., Leister B., Hage A., Luger, K. & Kirschner, K. , Autonomous folding and coenzymebinding of the excised pyridoxal 5′‐phosphate domain of aspartate amino transferase from Escherichia coli.. Biochemistry, 30: 3612–3620, 1991. [DOI] [PubMed] [Google Scholar]
  • 105. Williams K.P., Shelson S.E., Cooperative self assembly of SH2 domain fragments restore phosphopeptide binding. Biochemistry, 32: 11279–11284, 1993. [DOI] [PubMed] [Google Scholar]
  • 106. Shelson S.E., Shivaraja M., Williams K.P., Hu P., Schelssinger J., Weiss M.A., Specific phosphopeptide binding regulates a conformational change in the P13–kinase SH2 domain associated with enzyme activation. EMBO J., 12: 795–801, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Ghélis C., Tempête‐Gaillourdet M., Yon J.M., The folding of pancreatic elastase: independent domain refolding and inter‐domain interaction. Biochem. Biophys. Res. Comm., 84: 31–36, 1978. [DOI] [PubMed] [Google Scholar]
  • 108. Minard P., Hall L., Betton J.M., Missiakas D., Yon J.M., Efficient expression and characterization of isolated structural domains of yeast phosphoglycerate kinase generated by site‐directed mutagenesis. Prot. Egng., 3: 55–60, 1989. [DOI] [PubMed] [Google Scholar]
  • 109. Fairbrother W.J., Minard P., Hall L., Betton J.M., Missiakas D., Yon J.M., Nuclear magnetic resonance studies of isolated strucral domains of yeast phosphoglycerate kinase. Prot. Egng., 3: 5–11, 1989. [DOI] [PubMed] [Google Scholar]
  • 110. Missiakas D., Betton J.M., Minard P., Yon J.M., Unfolding‐refolding of the domains in yeast phosphoglycerate kinase: comparison with the isolated engineered domains.. Biochemistry, 29: 8683–8689, 1990. [DOI] [PubMed] [Google Scholar]
  • 111. Slaby I., Holmgren A., Structure and enzymatic function of thioredoxin refolded by complementation of two tryptic fragments. Biochemistry, 18: 5584–5599, 1979. [DOI] [PubMed] [Google Scholar]
  • 112. Shiba K., Shimmel P., Functional assembly of a randomly cleaved protein. Proc. Natl. Acad. Sci. USA, 89: 1880–1884, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Ritco ‐ Vonsovici M., Minard P., Desmadril M., Yon J.M., Is the continuity of the domains required for the correct folding of a two‐domain protein. Biochemistry, 34: 16543–16551, 1995. [DOI] [PubMed] [Google Scholar]
  • 114. Pecorari F., Guilbert C., Minard P., Desmadril M., Yon J.M., Folding and functional complementation of engineered fragments from yeast phsophoglycerate kinase, Biochemistry, 35: 3465–3476, 1996. [DOI] [PubMed] [Google Scholar]
  • 115. Wolynes P.G., Onuchic J.N., Thirumalai D., Navigating the folding routes. Science, 267: 1618–1620, 1995. [DOI] [PubMed] [Google Scholar]
  • 116. Brygelson J.D., Onuchic J.N., Socci N.D., Wolynes P.G., Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct. Funct. Genet., 21: 167–195, 1995. [DOI] [PubMed] [Google Scholar]
  • 117. Onuchic J.N., Wolynes P.G., Luthey‐Schulten Z., Socci N.D., Toward an outline of the topology of a realistic protein folding funnel. Proc. Natl. Acad. Sci. USA, 92: 3626–3630, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Onuchic J.N., Nymeyer H., Garcia A.E., Chahine J., Socci N.D., The energy landscape theory of protein folding; insights into folding mechanisms and scenarios. Adv. Prot. Chem., 53: 87–152, 2000. [DOI] [PubMed] [Google Scholar]
  • 119. Dobson C.M., Karplus M., The fundamentals of protein folding: bringing together theory and experiment. Curr. Op. Struct. Biol., 9: 92–101, 1999. [DOI] [PubMed] [Google Scholar]
  • 120. Baldwin R.L., Matching speed and stability. Nature, 369: 183–184, 1994. [DOI] [PubMed] [Google Scholar]
  • 121. Dobson, C.M. , Šali A., Karplus M., Protein folding: A perspective from theory and experiment. Ang. Chem. Int. Ed. Engl., 37: 868–893, 1998. [DOI] [PubMed] [Google Scholar]
  • 122. Onuchic J.N., Socci N.D., Luthey‐Schulten Z., Wolynes P.G., Protein folding funnels. The nature of the transition state ensemble. Fold. Des., 1: 441–450, 1996. [DOI] [PubMed] [Google Scholar]
  • 123. Lazarides T., Karplus M., New view of protein folding reconciled the old through multiple unfolding trajectories. Science, 278: 441–450, 1997. [DOI] [PubMed] [Google Scholar]
  • 124. Ellis R.J., Molecular crowding: an important but neglected aspect of the cellular environment. Curr. Op. Struct. Biol., 11: 114–119, 2001. [DOI] [PubMed] [Google Scholar]
  • 125. Roseman M.M., Chen S., White H., Braig K., Saibil H.R., The chaperonin ATPase cycle mechanisms of allosteric switching and movements of substrate binding domains in GroEL. Cell, 87: 241–245, 1986. [DOI] [PubMed] [Google Scholar]
  • 126. Braig K., Otwinowski Z., Hedge R., Boisvert D.C., Joachimiak A., Horwich A.L., Sigler P.B., The crystal structure of the bacterial chaperonin GroEL at 2.8Å.. Nature, 371: 578–586, 1994. [DOI] [PubMed] [Google Scholar]
  • 127. Xu Z., Horwich A.L., Sigler P.B., The crystal structure of the asymmetric GroEL‐GroES(ADP)7 chaperonin complex. Nature, 388: 741–750, 1997. [DOI] [PubMed] [Google Scholar]
  • 128. Rye H.S., Burston S.G., Fenton W.A., Beechem J.M., Xu Z., Sigler P.B., Horwich A.L., Distinct action of cis and trans ATP within the double ring of the chaperonin GroEL. Nature, 388: 792–798, 1997. [DOI] [PubMed] [Google Scholar]
  • 129. Weissman J.S., Rye H.S., Fenton W.A., Beechem J.M., Horwich A.L., Characterization of the active intermediate of the GroEL‐GroES mediated protein folding reaction. Cell, 84: 481–490, 1996. [DOI] [PubMed] [Google Scholar]
  • 130. Ranson N.A., Burston S.G., Clarke A.R., Binding, encapsulation and ejection: substrate dynamics during a chaperonin‐assisted folding reaction. J. Mol. Biol., 266: 656–664, 1997. [DOI] [PubMed] [Google Scholar]
  • 131. Wang J.D., Weissman J.S., Thinking outside the box: new insights into the mechanisms of GroEL‐mediated protein folding. Nature Struct. Biol., 6: 597–600, 1999. [DOI] [PubMed] [Google Scholar]
  • 132. Ellis R.J., Hartl F.U., Principles of protein folding in the cellular environment. Curr. Op. Struct. Biol., 9: 102–110, 1999. [DOI] [PubMed] [Google Scholar]
  • 133. Ma J., Karplus M., The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc. Natl. Acad. Sci. USA, 95: 8502–8507, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134. Ma J., Sigler P.M., Xu Z.H., Karplus M., A dynamic model for allosteric mechanism for GroEL.. J. Mol. Biol., 302: 303–313, 2000. [DOI] [PubMed] [Google Scholar]
  • 135. Thirumalai D., Lorimer G., Chaperonin‐mediated protein folding. Ann. Rev. Biophys. Mol. Struct., 30: 245–269, 2001. [DOI] [PubMed] [Google Scholar]
  • 136. Mitraki A., Betton J.M., Desmadril M., Yon J.M., Quasi‐irreversibility of the unfoldingrefolding reaction of horse muscle phosphoglycerate kinase induced by guanidine hydrochloride. Biochemistry, 24: 4770–4777, 1987. [Google Scholar]
  • 137. Yon J.M., The specificity of protein aggregation. Nature Biotech., 14: 1231, 1996. [DOI] [PubMed] [Google Scholar]
  • 138. Speed M.A., Wang D.I.C., King J., Specific aggregation of partially folded polypeptide chains. The molecular basis of inclusion body composition. Nature Biotech., 14: 1283–1287, 1996. [DOI] [PubMed] [Google Scholar]
  • 139. London J., Skzynia C., Goldberg M.E., Renaturation of Escherichia coli tryptophanase after exposure to 8M urea. Evidence for the existence of nucleation centers. Eur. J. Biochem., 47: 409–415, 1974. [DOI] [PubMed] [Google Scholar]
  • 140. Shlunegger M.P., Bennett M.J., Eisenberg D., Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Prot. Chem., 50: 61–122, 1997. [DOI] [PubMed] [Google Scholar]
  • 141. Pecorari F., Minard P., Desmadril M., Yon J.M., Occurrence of transient multimeric species during the refolding of a monomeric protein. J. Biol. Chem., 271: 5270–5276, 1996. [DOI] [PubMed] [Google Scholar]
  • 142. Eliezer D., Chiba K., Tsuruta H., Doniach S., Hodgson K.O., Kihara H., Evidence of an associative intermediate on the myoglobin refolding pathway. Biophys. J., 65: 912–917, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Eliezer D., Jennings, P.A. , Wright, Doniach, S. , Hodgson K.O., Tsurata H., The radius of gyration P.E. of an apomyoglobin folding intermediate. Science, 270: 487–488, 1995. [DOI] [PubMed] [Google Scholar]
  • 144. Semisotnov, G.V. , Kuwajima, Protein globularization during folding: a study by synchrotron small‐angle X‐ray scattering. J. Mol. Biol., 262: 559–574, 1996. [DOI] [PubMed] [Google Scholar]
  • 145. Silow M., Tan Y.J., Fersht, A.N. Oliverberg, M. , Formation of short‐lived protein aggregates directly from the coil in two‐state folding. Biochemistry, 38: 13006–13012, 1999. [DOI] [PubMed] [Google Scholar]
  • 146. Fink A.L., Protein aggregation, Folding aggregates, inclusion bodies and amyloid. Fold. Des., 3: R9–R23, 1998. [DOI] [PubMed] [Google Scholar]
  • 147. Yon J.M., Protein Aggregation, in Encyclopedia of Molecular Biology and Molecular Medicine, Meyers R.A. ed. vol. V, VCH, Weinheim , 1996, pp. 73–93. [Google Scholar]
  • 148. Jarrett J.T., Berger E.P., Landsbury P.T. Jr., The C‐terminus of the beta protein is critical for amuloidogenesis. Ann. N.Y. Acad. Sci., 695: 144–146, 1993. [DOI] [PubMed] [Google Scholar]
  • 149. Kelly J.W., Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Op. Struct. Biol., 6: 11–17, 1996. [DOI] [PubMed] [Google Scholar]
  • 150. Prusiner S.B., Novel proteinaceous infection particles cause scrapie. Science, 216: 136–144, 1982. [DOI] [PubMed] [Google Scholar]
  • 151. Sailer A., Bülher H., Fisher M., Azuzzi A., Weissmann C., No propagation of prions in mice devoid of PrP. Cell, 77: 967–968, 1994. [DOI] [PubMed] [Google Scholar]
  • 152. Prusiner S.B., Prions. Proc. Natl. Acad. Sci. USA, 95: 13363–13383, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Wüthrich K., Riek R., Three‐dimensional structures of prion proteins. Adv. Prot. Chem., 52: 55–82, 2001. [DOI] [PubMed] [Google Scholar]
  • 154. Alonsa D.O.V., Daggett V., Simulations and computational analysis of prion protein conformations. Adv. Prot. Chem., 52: 107–137, 2001. [DOI] [PubMed] [Google Scholar]
  • 155. Dima R.I., Thirumalai D., Exploring protein aggregation and self propagation using lattice models: phase diagram and kinetics. Prot. Sci., 11: 1036–1049, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156. Guijarro J.I., Sunde M., Jones J.A., Campbell I.D., Dobson C.M., Amyloid fibril formation by an SH3 domain. Proc. Natl. Acad. Sci. USA, 95: 4224–4228, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Chiti F., Webster P., Taddeit N., Clark A., Stefani M., Ramponi G., Dobson C.M., Designing conditions for in vitro formation of amyloin protofilaments and fibrils. Proc. Natl. Acad. Sci. USA, 96: 3342–3344, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158. Fandrich M., Fletcher M.A., Dobson C.M., Amyloid fibrils from muscle myoglobin. Nature, 410: 163–166, 2001. [DOI] [PubMed] [Google Scholar]
  • 159. Bucciantini M., Giannoni E., Chiti F., Baroni F., Formigli L., Zurdo J., Taddei N., Ramponi G., Dobson C.M., Stefani M., Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 416: 507–511, 2002. [DOI] [PubMed] [Google Scholar]
  • 160. Al Lazikami B., Jung J., Xiang Z., Honig B., Protein structure prediction. Curr. Op. Chem. Biol., 5: 51–56, 2001. [DOI] [PubMed] [Google Scholar]
  • 161. Murzin A.G., Brenner S.E., Hubbard T., Chothia C., SCOP a structural classification of protein database for the investigation of sequences and structures. J. Mol. Biol., 247: 536–540, 1995. [DOI] [PubMed] [Google Scholar]
  • 162. Orengo C.A., Michie A.D., Jones S., Jones J.T., Swindelle M.B., Thornton J.M., CATH a hierarchic classification of protein domain structures. Structure, 5: 1093–1108, 1997. [DOI] [PubMed] [Google Scholar]
  • 163. Orengo C.A., Todd A.E., Thornton J.M., From protein structure to function. Curr. Op. Struct. Biol., 9: 374–382, 1999. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES