Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(2):244–254. doi: 10.1111/j.1582-4934.2005.tb00353.x

IFN‐ζ limitin: a member of type I IFN with mild lympho‐myelosuppression

Kenji Oritani 1,, Yuzuru Kanakura 1
PMCID: PMC6740103  PMID: 15963247

Abstract

Interferon (IFN)‐ζlimitin has been considered as a novel type I IFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN‐ζlimitin shows some sequence homology with IFN‐α and IFN‐β, has a globular structure with five α‐helices and four loops, and recognizes IFN‐α/β receptor. Although IFN‐ζlimitin displays antiviral, immunomodulatory, and antitumor effects, it has much less lymphomyelosuppressive activities than IFN‐α. Treatment of cells with type I IFNs induces and/or activates a number of molecules, which regulate cell cycle and apoptosis. It is noteworthy that IFN‐ζlimitin activates the Tyk2‐Daxx and Tyk2‐Crk pathways weaker than IFN‐α. Because experiments using antisense oligonucleotides have revealed their essential role in type I IFN‐related suppression of lympho‐hematopoiesis, little ability of IFN‐ζlimitin to activate the Tyk2‐dependent signaling pathway may explain its uniquely narrow range of biological activities. Further analysis of structure‐function relationship of type I IFNs will establish an engineered cytokine with useful features of IFN‐ζlimitin.

Keywords: interferon, IFN‐ζlimitin, cytokine, structure, signal, Daxx, Crk

References

  • 1. Oritani K, Medina KL, Tomiyama Y, Ishikawa J., Okajima Y, Ogawa M, Yokota T, Aoyama K, Takahashi I, Kincade PW, Matsuzawa Y. Limitin: An interferon‐like cytokine that preferentially influences B‐lymphocyte precursors. Nat Med. 2000; 6: 659–66. [DOI] [PubMed] [Google Scholar]
  • 2. Kawamoto S, Oritani K, Asada H, Takahashi I, Ishikawa J, Yoshida H, Yamada M, Ishida N, Ujiie H, Masaie H, Tomiyama Y, Matsuzawa Y. Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol. 2003; 77: 9622–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Oritani K, Tomiyama Y. Interferon‐limitin: novel type I interferon that displays a narrow range of biological activity. Int J Hematol. 2004; 80: 325–31. [DOI] [PubMed] [Google Scholar]
  • 4. Oritani K, Hirota S, Nakagawa T, Takahashi I, Kawamoto S, Yamada M, Ishida N, Kadoya T, Tomiyama Y, Kincade PW, Matsuzawa Y. T lymphocytes constitutively produce an interferonlike cytokine limitin characterized as a heat‐ and acid‐stable and heparin‐ binding glycoprotein. Blood 2003; 101: 178–85. [DOI] [PubMed] [Google Scholar]
  • 5. Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, receptors, and functions. Cytokine Growth Factor Rev. 2001; 12: 337–48. [DOI] [PubMed] [Google Scholar]
  • 6. Oritani K, Kincade PW, Tomiyama Y. Limitin: an interferon‐like cytokine without myeloerythroid suppressive properties. J Mol Med. 2001; 79: 168–174. [DOI] [PubMed] [Google Scholar]
  • 7. Pestka S, Krause CD, Walter MR. Interferons, interferon‐like cytokines, and their receptors. Immunol Rev. 2004; 202: 8–32. [DOI] [PubMed] [Google Scholar]
  • 8. Takahashi I, Kosaka H, Oritani K, Heath WR, Ishikawa J, Okajima Y, Ogawa M, Kawamoto S, Yamada M, Azukizawa H, Itami S, Yoshikawa K, Tomiyama Y, Matsuzawa Y. A new IFN‐like cytokine, limitin, modulates the immune response without influencing thymocyte development. J Immunol. 2001; 167: 3156–63. [DOI] [PubMed] [Google Scholar]
  • 9. Ishida N, Oritani K, Shiraga M, Yoshida H, Kawamoto S, Ujiie H, Masaie H, Ichii M, Tomiyama Y, Kanakura Y. Differential effects of a novel IFN‐limitin and IFN‐α on signals for Daxx induction and Crk phosphorylation that couple with growth control of megakaryocytes. Exp Hematol. 2005; 33: 495–503. [DOI] [PubMed] [Google Scholar]
  • 10. Kawamoto S, Oritani K, Asakura E, Ishikawa J, Koyama M, Miyano K, Iwamoto M, Yasuda S, Nakakubo H, Hirayama F, Ishida N, Ujiie H, Masaie H, Tomiyama Y. A new interferon, limitin, displays equivalent immunomodulatory and antitumor activities without myelosuppressive properties as compared with interferon‐alpha. Exp Hematol. 2004; 32: 797–805. [DOI] [PubMed] [Google Scholar]
  • 11. Nozawa H, Oda E, Nakao K, Ishihara M, Ueda S, Yokochi T, Ogasawara K, Nakatsuru Y, Shimizu S, Ohira Y, Hioki K, Aizawa S, Ishikawa T, Katsuki M, Muto T, Taniguchi T, Tanaka N. Loss of transcription factor IRF‐1 affects tumor susceptibility in mice carrying the Ha‐ras transgene or nullizygosity for p53. Genes Dev. 1999; 13: 1240–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, Wakeham A, Patterson B, Ohashi PS, Mak TW. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 1997; 275: 540–3. [DOI] [PubMed] [Google Scholar]
  • 13. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I. Immunodeficiency and chronic myelogenous leukemia‐like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–17. [DOI] [PubMed] [Google Scholar]
  • 14. Donze O, Dostie J, Sonenberg N. Regulatable expression of the interferon‐induced double‐stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 1999; 256: 322–9. [DOI] [PubMed] [Google Scholar]
  • 15. Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman RH. Interferon action and apoptosis are defective in mice devoid of 2',5'‐oligoadenylate‐dependent RNase L. EMBO J. 1997; 16: 6355–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T. Integration of interferon‐α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 2003; 424: 516–23. [DOI] [PubMed] [Google Scholar]
  • 17. Tanaka N, Ishihara M, Lamphier MS, Nozawa H, Matsuyama T, Mak TW, Aizawa S, Tokino T, Oren M, Taniguchi T. Cooperation of the tumour suppressors IRF‐1 and p53 in response to DNA damage. Nature 1996; 382: 816–8. [DOI] [PubMed] [Google Scholar]
  • 18. Tamura T, Ishihara M, Lamphier MS, Tanaka N, Oishi I, Aizawa S, Matsuyama T, Mak TW, Taki S, Taniguchi T. An IRF‐1‐dependent pathway of DNA damage‐induced apoptosis in mitogen‐activated T lymphocytes. Nature 1995; 376: 596–9. [DOI] [PubMed] [Google Scholar]
  • 19. Caraglia M, Abbruzzese A, Leardi A, Pepe S, Budillon A, Baldassare G, Selleri C, Lorenzo SD, Fabbrocini A, Giuberti G, Vitale G, Lupoli G, Bianco AR, Tagliaferri P. Interferon‐α induces apoptosis in human KB cells through a stress‐dependent mitogen activated protein kinase pathway that is antagonized by epidermal growth factor. Cell Death Differ. 1999; 6: 773–80. [DOI] [PubMed] [Google Scholar]
  • 20. Verma A, Deb DK, Sassano A, Uddin S, Varga J, Wickrema A, Platanias LC. Activation of the p38 mitogen‐activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor‐β on normal hematopoiesis. J Biol Chem. 2002; 277: 7726–35. [DOI] [PubMed] [Google Scholar]
  • 21. Micouin A, Wietzerbin J, Steunou V, Martyre MC. p95(vav) associates with the type I interferon (IFN) receptor and contributes to the antiproliferative effect of IFN‐α in megakaryocytic cell lines. Oncogene 2000; 19: 387–94. [DOI] [PubMed] [Google Scholar]
  • 22. Leaman DW, Chawla‐Sarkar M, Vyas K, Reheman M, Tamai K, Toji S, Borden EC. Identification of X‐linked inhibitor of apoptosis‐associated factor‐1 as an interferonstimulated gene that augments TRAIL Apo2L‐induced apoptosis. J Biol Chem. 2002; 277: 28504–11. [DOI] [PubMed] [Google Scholar]
  • 23. Liston P, Fong WG, Kelly NL, Toji S, Miyazaki T, Conte D, Tamai K, Craig CG, McBurney MW, Korneluk RG. Identification of XAF1 as an antagonist of XIAP anti‐Caspase activity. Nat Cell Biol. 2001; 3: 128–33. [DOI] [PubMed] [Google Scholar]
  • 24. Morrison BH, Bauer JA, Kalvakolanu DV, Lindner DJ. Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon‐β in ovarian carcinoma cells. J Biol Chem. 2001; 276: 24965–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Morrison BH, Bauer JA, Hu J, Grane RW, Ozdemir AM, Chawla‐Sarkar M, Gong B, Almasan A, Kalvakolanu DV, Lindner DJ. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 2002; 21: 1882–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Wang Q, Miyakawa Y, Fox N, Kaushansky K. Interferon‐α directly represses megakaryopoiesis by inhibiting thrombopoietin‐induced signaling through induction of SOCS‐1. Blood 2000; 96: 2093–9. [PubMed] [Google Scholar]
  • 27. Yang X, Khosravi‐Far R, Chang HY, Baltimore D. Daxx, a novel Fas‐binding protein that activates JNK and apoptosis. Cell 1997; 89: 1067–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Muromoto R, Yamamoto T, Yumioka T, Sekine Y, Sugiyama K, Shimoda K, Oritani K, Matsuda T. Daxx enhances Fas‐mediated apoptosis in a murine pro‐B cell line, BAF3. FEBS Lett. 2003; 540: 223–8. [DOI] [PubMed] [Google Scholar]
  • 29. Zhong S, Salomoni P, Ronchetti S, Guo A, Ruggero D, Pandolfi PP. Promyelocytic leukemia protein (PML) and Daxx participate in a novel nuclear pathway for apoptosis. J Exp Med. 2000; 191: 631–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell 2002; 108: 165–70. [DOI] [PubMed] [Google Scholar]
  • 31. Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G. The Pax3‐FKHR oncoprotein is unresponsive to the Pax3‐associated repressor hDaxx. EMBO J. 1999; 18: 3702–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Li R, Pei H, Watson DK, Papas TS. EAP1/Daxx interacts with ETS1 and represses transcriptional activation of ETS1 target genes. Oncogene 2000; 19: 745–53. [DOI] [PubMed] [Google Scholar]
  • 33. Emelyanov AV, Kovac CR, Sepulveda MA, Birshtein BK. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J Biol Chem. 2002; 277: 11156–64. [DOI] [PubMed] [Google Scholar]
  • 34. Muromoto R, Sugiyama K, Takachi A, Imoto S, Sato N, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and DNA methyltransferase 1‐associated protein DMAP1. J Immunol. 2004; 172: 2985–93. [DOI] [PubMed] [Google Scholar]
  • 35. Muromoto R, Sugiyama K, Yamamoto T, Oritani K, Shimoda K, Matsuda T. Physical and functional interactions between Daxx and TSG101. Biochem Biophys Res Commun. 2004; 316: 827–33. [DOI] [PubMed] [Google Scholar]
  • 36. Gongora R, Stephan RP, Zhang Z, Cooper MD. An essential role for Daxx in the inhibition of B lymphopoiesis by type I interferons. Immunity 2001; 14: 727–37. [DOI] [PubMed] [Google Scholar]
  • 37. Gongora R, Stephan RP, Schreiber RD, Cooper MD. Stat‐1 is not essential for inhibition of B lymphopoiesis by type I IFNs. J Immunol. 2000; 165: 2362–6. [DOI] [PubMed] [Google Scholar]
  • 38. Shimoda K, Kamesaki K, Numata A, Aoki K, Matsuda T, Oritani K, Tamiya S, Kato K, Takase K, Imamura R, Yamamoto T, Miyamoto T, Nagafuji K, Gondo H, Nagafuchi S, Nakayama K, Harada M. Cutting edge: tyk2 is required for the induction and nuclear translocation of Daxx which regulates IFN‐α‐induced suppression of B lymphocyte formation. J Immunol. 2002; 169: 4707–11. [DOI] [PubMed] [Google Scholar]
  • 39. Aoki K, Shimoda K, Oritani K, Matsuda T, Kamezaki K, Muromoto R, Numata A, Tamiya S, Haro T, Ishikawa F, Takase K, Yamamoto T, Yumioka T, Miyamoto T, Nagafuji K, Gondo H, Nagafuchi S, Nakayama K, Harada M. Limitin, an interferon‐like cytokine, transduces inhibitory signals on B‐cell growth through activation of Tyk2, but not Stat1, followed by induction and nuclear translocation of Daxx. Exp Hematol. 2003; 31: 1317–22. [DOI] [PubMed] [Google Scholar]
  • 40. Ahmad S, Alsayed YM, Druker BJ, Platanias LC. The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem. 1997; 272: 29991–4. [DOI] [PubMed] [Google Scholar]
  • 41. Reedquist KA, Fukazawa T, Panchamoorthy G, Langdon WY, Shoelson SE, Druker BJ, Band H. Stimulation through the T cell receptor induces Cbl association with Crk proteins and the guanine nucleotide exchange protein C3G. J Biol Chem. 1996; 271: 8435–42. [DOI] [PubMed] [Google Scholar]
  • 42. Uddin S, Gardziola C, Dangat A, Yi T, Platanias LC. Interaction of the c‐cbl proto‐oncogene product with the Tyk‐2 protein tyrosine kinase. Biochem Biophys Res Commun. 1996; 225: 833–8. [DOI] [PubMed] [Google Scholar]
  • 43. Cook SJ, Rubinfeld B, Albert I, McCormick F. RapV12 antagonizes Ras‐dependent activation of ERK1 and ERK2 by LPA and EGF in Rat‐1 fibroblasts. EMBO J. 1993; 12: 3475–85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Platanias LC, Uddin S, Bruno E, Korkmaz M, Ahmad S, Alsayed Y, van Den Berg D, Druker BJ, Wickrema A, Hoffman R. CrkL and CrkII participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. Exp Hematol. 1999; 27: 1315–21. [DOI] [PubMed] [Google Scholar]
  • 45. Foster GR, Finter NB, Are all type I human interferons equivalent J Viral Hepat. 1998; 5: 143–52. [DOI] [PubMed] [Google Scholar]
  • 46. Abramovich C, Shulman LM, Ratovitski E, Harroch S, Tovey M, Eid P, Revel M. Differential tyrosine phosphorylation of the IFNAR chain of the type I interferon receptor and of an associated surface protein in response to IFN‐α and IFN‐β. EMBO J. 1994; 13: 5871–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Constantinescu SN, Croze E, Murti A, Wang C, Basu L, Hollander D, Russell‐Harde D, Betts M, Garcia‐Martinez V, Mullersman JE, Pfeffer LM. Expression and signaling specificity of the IFNAR chain of the type I interferon receptor complex. Proc Natl Acad Sci USA. 1995; 92: 10487–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Croze E, Russell‐Harde D, Wagner TC, Pu H, Pfeffer LM, Perez HD. The human type I interferon receptor. Identification of the interferon β‐specific receptor‐associated phosphoprotein. J Biol Chem. 1996; 271: 33165–8. [DOI] [PubMed] [Google Scholar]
  • 49. Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon α/β signaling pathway. Cell 1992; 70: 313–22. [DOI] [PubMed] [Google Scholar]
  • 50. Uze G, Lutfalla G, Mogensen KE. α and β interferons and their receptor and their friends and relations. J Interferon Cytokine Res. 1995; 15: 3–26. [DOI] [PubMed] [Google Scholar]
  • 51. Cebrian M, Yague E, de Landazuri MO, Rodiguez‐Moya M, Fresno M, Pezzi N, Llamazares S, Sanchez‐Madrid F. Different functional sites on rIFN‐α2 and their relation to the cellular binding site. J Immunol. 1987; 138: 484–90. [PubMed] [Google Scholar]
  • 52. Kontsek P, Borecky L, Kontsekova E, Macikova I, Kolcunova A, Novak M, Krchnak V. Mapping of two immunodominant structures on human interferon α2c and their role in binding to cells. Mol Immunol. 1991; 28: 1289–97. [DOI] [PubMed] [Google Scholar]
  • 53. Uze G, Di Marco S, Mouchel‐Vielh E, Monneron D, Bandu MT, Horisberger MA, Dorques A, Lutfalla G, Mogensen KE. Domains of interaction between α interferon and its receptor components. J Mol Biol. 1994; 243: 245–57. [DOI] [PubMed] [Google Scholar]
  • 54. Runkel L, Pfeffer L, Lewerenz M, Monneron D, Yang CH, Murti A, Pellegrini S, Goelz S, Uze G, Mogensen K. Differences in activity between α and β type I interferons explored by mutational analysis. J Biol Chem. 1998; 273: 8003–8. [DOI] [PubMed] [Google Scholar]
  • 55. Shorts LH, Dancz CE, Shupp JW, Pontzer CH. Characterization of N‐terminal interferon mutants: P26L affords enhanced activity and lack of toxicity. Exp Biol Med. 2004; 229: 194–202. [DOI] [PubMed] [Google Scholar]
  • 56. Jonasch E, Haluska FG. Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 2001; 6: 34–55. [DOI] [PubMed] [Google Scholar]
  • 57. Bacosi M, Russo F, D'innocenzo S, Santolamazza M, Miglioresi L, Ursitti A, de Angelis A, Patrizi F, Ricci GL. Amantadine and interferon in the combined treatment of hepatitis C virus in elderly patients. Hepatol Res. 2002; 22: 231–9. [DOI] [PubMed] [Google Scholar]
  • 58. Reddy KR, Wright TL, Pockros PJ, Shiffman M, Everson G, Reindollar R, Fried MW, Purdum PP 3rd, Jensen D, Smith C, Lee WM, Boyer TD, Lin A, Pedder S, DePamphilis J. Efficacy and safety of pegylated (40‐kd) interferon α‐2a compared with interferon α‐2a in noncirrhotic patients with chronic hepatitis C. Hepatology 2001; 33: 433–8. [DOI] [PubMed] [Google Scholar]
  • 59. Melian EB, Plosker GL. Interferon αcon‐1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis. C. Drugs. 2001; 61: 1661–91. [DOI] [PubMed] [Google Scholar]
  • 60. Weiss K. Safety profile of interferon‐α therapy. Semin Oncolo. 1998; 25: 9–13. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES