Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(1):127–134. doi: 10.1111/j.1582-4934.2004.tb00267.x

β‐secretase‐cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

Kristina Sennvik 1, N Bogdanovic 1, Inga Volkmann 1, J Fastbom 1, E Benedikz 1,
PMCID: PMC6740108  PMID: 15090268

Abstract

β‐amyloid (Aβ) is the main constituent of senile plaques seen in Alzheimer's disease. Aβ is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases β‐ and β‐secretase. In this study, we examined content and localization of β‐secretase‐cleaved APP (β‐sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular β‐sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. β‐sAPP was found to be localized in astrocytes and in axons. We found the β‐sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal β‐sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. β‐sAPP was also found surrounding senile plaques and cerebral blood vessels. The results presented here show altered β‐sAPP staining in the AD brain, suggestive of abnormal processing and transport of APP.

Keywords: Alzheimer's disease, amyloid precursor protein, senile plaques, immunohistochemistry

References

  • 1. Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Master C.L., Grzeschik K.H., Multhaup G., Beyreuther K., Muller‐Hill B., The precursor of Alzheimer's disease precursor protein resembles a cell‐surface receptor, Nature, 325: 733–736, 1987. [DOI] [PubMed] [Google Scholar]
  • 2. Dodart J., Mathis C., Ungerer A., The beta‐amyloid precursor protein and its derivatives: from biology to learning and memory processes, Rev. Neurosci., 11: 75–93, 2000. [DOI] [PubMed] [Google Scholar]
  • 3. Morimoto T., Ohsawa I., Takamura C., Ishiguro M., Kohsaka S., Involvement of amyloid precursor protein in functional synapse formation in cultured hippocampal neurons, J. Neurosci. Res., 51: 185–195, 1998. [DOI] [PubMed] [Google Scholar]
  • 4. Perez R., Zhenh H., Van der Ploeg L., Koo E., The β‐amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity, J. Neurosci., 15: 9407–9414, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Vassar R., Bennett B.D., Babu‐Khan S., Kahn S., Mendiaz E.A., Denis P., Teplow D.B., Ross S., Amarante P., Loeloff R., Luo Y., Fisher S., Fuller J., Edenson S., Lile J., Jarosinski M.A., Biere A.L., Curran E., Burgess T., Louis J.‐C., Colins F., Treanor J., Rogers G., Citron M., β‐secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE, Science, 286: 735–741, 1999. [DOI] [PubMed] [Google Scholar]
  • 6. Citron M., Teplow T.B., Selkoe D.J., Generation of amyloid beta protein from its precursor is sequence specific, Neuron, 14: 661–670, 1995. [DOI] [PubMed] [Google Scholar]
  • 7. Hardy J., Amyloid, the presenilins and Alzheimer's disease, Trends Neurosci., 20: 154–159, 1997. [DOI] [PubMed] [Google Scholar]
  • 8. McKhann G., Drachmann D., Folstein M., Katzman R., Price D., Stadlan E.M., Clinical diagnosis of Alzheimer's disease: report of the NINCDS‐ADRDA Work Group under the auspices of Department of Health and Human Services task force on Alzheimer's disease, Neurology, 34: 939–944, 1989. [DOI] [PubMed] [Google Scholar]
  • 9. Mirra S., Heyman A., McKeel D., Sumi S., Crain B., Brownlee L., Vogel F., Hughes J., Van Belle G., Berg L., The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology, 41: 479–486, 1991. [DOI] [PubMed] [Google Scholar]
  • 10. Sennvik K., Fastbom J., Blomberg M., Wahlund L.‐O., Winblad B., Benedikz E., Levels of α‐ and β‐secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients, Neuroscience Letters, 278: 169–172, 2000. [DOI] [PubMed] [Google Scholar]
  • 11. Anderton B., Callahan L., Coleman P., Davies P., Flood D., Jicha G., Ohms T., Weaver C., Dendritic changes in Alzheimer's disease and factors that may underlie those changes, Prog. Neurobiol., 55: 595–609, 1998. [DOI] [PubMed] [Google Scholar]
  • 12. Arendt T., Alzheimer's disease as a disorder of mechanisms underlying structural brain selforganisation, Neuroscience, 102: 723–765, 2001. [DOI] [PubMed] [Google Scholar]
  • 13. Rossner S., Apelt J., Schliebs R., Perez‐Polo J., Bigl V., Neuronal and glial betasecretase (BACE) protein expression in transgenic Tg2576 mice with amyloid plaque pathology, J. Neurosci. Res., 64: 437–446, 2001. [DOI] [PubMed] [Google Scholar]
  • 14. Kasa P., Papp H., Kovacs I., Forgon M., Penke B., Yamaguchi, H. , Human amyloid‐β1‐42 applied in vivo inhibits the fast axonal transport of proteins in the sciatic nerve of rat, Neurosci. Lett., 278: 117–119, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Maldonado T., Jones R., Norris D., Distribution of β‐amyloid and amyloid precursor protein in the brain of spawning(senescent) salmon: a natural, brain‐aging model, Brain Res., 858: 237–251, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Campbell E., Pearson R., Parkinson D., Methods to uncover an antibody epitope in the KPI domain of Alzheimer's amyloid precursor protein for immunohistochemistry in human brain, J. Neurosci. Meth., 93: 133–138, 1999. [DOI] [PubMed] [Google Scholar]
  • 17. Tagliavini F., Giaccone G., Verga L., Ghiso J., Frangione B., Bugiani O., Alzheimer's patients: pre‐amyloid deposits are immunoreactive with antibodies to extracellular domains of the amyloid precursor protein, Neurosci. Lett., 128: 117–120, 1991. [DOI] [PubMed] [Google Scholar]
  • 18. Takahashi H., Kurashima C., Utsuyama M., Hirokawa K., Immunohistological study of senile brains by using a monoclonal antibody recognizing β amyloid precursor protein: significance of granular deposits in relation with senile plaques, Acta Neuropathologica, 80: 260–265, 1990. [DOI] [PubMed] [Google Scholar]
  • 19. Joachim C., Games D., Morris J., Ward P., Frenkel D., Selkoe, D. , Antibodies to non‐beta regions of the beta‐amyloid precursor protein detect a subset of senile plaques, Am. J. Pathol., 138: 373–384, 1991. [PMC free article] [PubMed] [Google Scholar]
  • 20. Rozemuller A., Roos R., Bots G., Kamphorst W., Eikelenboom P., Van Nostrand W., Distribution of β/A4 protein and amyloid precursor protein in hereditary cerebral hemorrhage with amyloidosis‐dutch type and Alzheimer's disease, Am. J. Pathol., 142: 1449–1457, 1993. [PMC free article] [PubMed] [Google Scholar]
  • 21. Caporaso G., Takei K., Gandy S., Matteoli M., Mundigl O., Greengard P., De Camilli P., Morphological and biochemical analysis of the intracellular trafficking of the Alzheimer b/A4 amyloid precursor protein, J. Neurosci., 14: 3122–31318, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Sheetz M., Pfister K., Bulinsku J., Cotman C., Mechanisms of trafficking in axons and dendrites: implications for development and neurodegeneration, Prog. Neurobiol., 55: 577–594, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Simons M., Ikonen E., Tienari P., Cid‐Arregui A., Mönning U., Beyreuther K., Dotti C., Intracellular routing of human amyloid protein precursor: axonal delivery followed by transport to the dendrites, J. Neurosci. Res., 41: 121–128, 1995. [DOI] [PubMed] [Google Scholar]
  • 24. Stone J., Singleton R., Povlishock J., Antibodies to the C‐terminus of the b‐amyloid precursor protein (APP): a site‐specific marker for the detection of traumatic axonal injury, Brain Res., 871: 288–302, 2000. [DOI] [PubMed] [Google Scholar]
  • 25. Tienari P., De Strooper B., Ikonen E., Simons M., Weidemann A., Czech C., Hartmann T., Ida N., Multhaup G., Masters C., Van Leuven F., Beyreuther K., Dotti C., The β‐amyloid domain is essential for axonal sorting of amyloid precursor protein, EMBO J., 15: 5218–1529, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 26. Yamazaki T., Selkoe D., Koo E., Trafficking of cell surface β‐ amyloid precursor protein: Retrograde and transcytotic transport in cultured neurons, J. Cell Biol., 129: 431, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Santiago‐Garcia J., Mas‐Oliva J., Innerarity T., Pitas R., Secreted forms of the amyloid‐beta precursor protein are ligands for the class A scavenger receptor, J. Biol. Chem., 276: 30655–61, 2001. [DOI] [PubMed] [Google Scholar]
  • 28. Amaratunga A., Fine R., Generation of amyloidogenic C‐terminal fragments during rapid axonal transport in vivo of β‐amyloid precursor protein in the optic nerve, J. Biol. Chem., 270: 17268–17272, 1995. [DOI] [PubMed] [Google Scholar]
  • 29. Lyckman A., Confaloni A., Thinakaran G., Sisodia S., Moya K., Post‐translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system, J. Biol. Chem., 273: 11100–11106, 1998. [DOI] [PubMed] [Google Scholar]
  • 30. Storey E., Beyreuther K., Masters C., Alzheimer's disease amyloid precursor protein on the surface of cortical neurons in primary culture co‐localizes with adhesion patch components, Brain Res., 735: 217–231, 1996. [DOI] [PubMed] [Google Scholar]
  • 31. Kamal A., Stokin G., Yang Z., Xia C.‐H., Goldstein L., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin‐1, Neuron, 26: 449–459, 2000. [DOI] [PubMed] [Google Scholar]
  • 32. Gunawardena S., Goldstein L., Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila, Neuron, 32: 389–401, 2001. [DOI] [PubMed] [Google Scholar]
  • 33. Bogdanovic N., Davidsson P., Volkmann I., Winblad B., Blennow K., Growth‐associated protein GAP‐43 in the frontal cortex and in the hippocampus in Alzheimer's disease: an immunohistochemical and quantitative study, J. Neural Transm., 107: 463–478, 2000. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES