Abstract
Adenosine is a powerful modulator of neuronal function in the mammalian central nervous system. During a variety of insults to the brain, adenosine is released in large quantities and exerts a neuroprotective influence largely via the A1 receptor, which inhibits glutamate release and neuronal activity. Using novel enzyme‐based adenosine sensors, which allow high spatial and temporal resolution recordings of adenosine release in real time, we have investigated the release of adenosine during hypoxia/ischemia in the in vitro hippocampus. Our data reveal that during the early stages of hypoxia adenosine is likely released per se and not as a precursor such as cAMP or an adenine nucleotide. In addition, repeated hypoxia results in reduced production of extracellular adenosine and this may underlie the increased vulnerability of the mammalian brain to repetitive or secondary hypoxia/ischemia.
Keywords: adenosine, inosine, glutamate, hypoxia, ischemia, seizure, epilepsy, TBI, purines, purinoceptor, ATP, nucleotides, nucleosides
References
- 1. Porkka‐Heiskanen, T. , Adenosine in sleep and wakefulness, Ann. Med, 31: 125–129, 1999. [DOI] [PubMed] [Google Scholar]
- 2. Sawynok, J. Liu, X.J. , Adenosine in the spinal cord and periphery: release and regulation of pain, Prog. Neurobiol., 69: 313–340, 2003. [DOI] [PubMed] [Google Scholar]
- 3. Brundege, J.M. Dunwiddie, T.V. , Role of adenosine as a modulator of synaptic activity in the central nervous system, Adv. Pharmacol., 39: 353–391, 1997. [DOI] [PubMed] [Google Scholar]
- 4. Mubagwa, K. Flameng, W. , Adenosine, adenosine receptors and myocardial protection: an updated overview, Cardiovasc. Res., 52: 25–39, 2001. [DOI] [PubMed] [Google Scholar]
- 5. Dale, N. , Resetting intrinsic purinergic modulation of neural activity: an associative mechanism?, J. Neurosci., 22: 10461–10469, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Ralevic, V. Burnstock, G. , Receptors for purines and pyrimidines, Pharmacol. Rev., 50: 413–492, 1998. [PubMed] [Google Scholar]
- 7. Fredholm, B.B. , IJzerman, A.P. , Jacobson, K.A. , Klotz, K.N. , Linden, J. , International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors, Pharmacol. Rev., 53: 527–552, 2001. [PMC free article] [PubMed] [Google Scholar]
- 8. Fredholm, B.B. , Irenius, E. , Kull, B. , Schulte, G. , Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells, Biochem. Pharmacol., 61: 443–448, 2001. [DOI] [PubMed] [Google Scholar]
- 9. Jin, X. , Shepherd, R. K. , Duling, B. R. , Linden, J. , Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation, J. Clin. Invest, 100: 2849–2857, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Ribeiro, J. A. , Sebastiao, A.M. , de Mendoça, A. , Adenosine receptors in the nervous system: pathophysiological implications, Prog. Neurobiol., 68: 377–392, 2002. [DOI] [PubMed] [Google Scholar]
- 11. Maia, L. de Mendonça, A. , Does caffeine intake protect from Alzheimer's disease Eur. J. Neurol., 9: 377–382, 2002. [DOI] [PubMed] [Google Scholar]
- 12. Hauser, R.A. , Hubble, J.P. , Truong, D.D. , Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD, Neurology, 61: 297–303, 2003. [DOI] [PubMed] [Google Scholar]
- 13. Bara‐Jimenez, W. , Sherzai, A. , Dimitrova, T. , Favit, A. , Bibbiani, F. , Gillespie, M. , Morris, M.J. , Mouradian, M.M. , Chase, T.N. , Adenosine A2A receptor antagonist treatment of Parkinson's disease, Neurology, 61: 293–296, 2003. [DOI] [PubMed] [Google Scholar]
- 14. Blum, D. , Hourez, R. , Galas, M.C. , Popoli, P. , Schiffmann, S. N. , Adenosine receptors and Huntington's disease: implications for pathogenesis and therapeutics, Lancet Neurol., 2: 366–374, 2003. [DOI] [PubMed] [Google Scholar]
- 15. Weigand, M.A. , Michel, A. , Eckstein, H.H. , Martin, E. , Bardenheuer, H.J. , Adenosine: a sensitive indicator of cerebral ischemia during carotid endarterectomy, Anesthesiology, 91: 414–421, 1999. [DOI] [PubMed] [Google Scholar]
- 16. Laghi‐Pasini, F. , Guideri, F. , Picano, E. , Parenti, G. , Petersen, C. , Varga, A. , Di Perri, T. , Increase in plasma adenosine during brain ischemia in man: a study during transient ischemic attacks, and stroke, Brain Res. Bull., 51: 327–330, 2000. [DOI] [PubMed] [Google Scholar]
- 17. Robertson, C.L. , Bell, M.J. , Kochanek, P.M. , Adelson, P.D. , Ruppel, R.A. , Carcillo, J.A. , Wisniewski, S.R. , Mi, Z. , Janesko, K.L. , Clark, R.S. , Marion, D.W. , Graham, S.H. , Jackson, E.K. , Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity, Crit Care Med., 29: 2287–2293, 2001. [DOI] [PubMed] [Google Scholar]
- 18. Clark, R.S. , Carcillo, J.A. , Kochanek, P.M. , Obrist, W.D. , Jackson, E.K. , Mi, Z. , Wisneiwski, S.R. , Bell, M.J. , Marion, D.W. , Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans, Neurosurgery, 41: 1284–1292, 1997. [DOI] [PubMed] [Google Scholar]
- 19. During, M.J. Spencer, D.D. , Adenosine: a potential mediator of seizure arrest and postictal refractoriness, Ann. Neurol., 32: 618–624, 1992. [DOI] [PubMed] [Google Scholar]
- 20. Matsumoto K., Graf R., Rosner G., Shimada N., Heiss W.D., Flow thresholds for extracellular purine catabolite elevation in cat focal ischemia, Brain Res., 579: 309–314, 1992. [DOI] [PubMed] [Google Scholar]
- 21. Hass, H.L. Selbach, O. , Functions of neuronal adenosine receptors, Naunyn Schmiedebergs Arch. Pharmacol., 362: 375–381, 2000. [DOI] [PubMed] [Google Scholar]
- 22. de Mendonça, A. , Sebastiao, A.M. , Ribeiro, J.A. , Inhibition of NMDA receptor‐mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation, NeuroReport, 6: 1097–1100, 1995. [DOI] [PubMed] [Google Scholar]
- 23. de Mendonça, A. , Sebastiao, A.M. , Ribeiro, J.A. , Adenosine: does it have a neuroprotective role after all?, Brain Res. Rev., 33: 258–274, 2000. [DOI] [PubMed] [Google Scholar]
- 24. Johansson B., Halldner L., Dunwiddie T.V., Masino S.A., Poelchen W., Gimenez‐Llort L., Escorihuela R.M., Fernandez‐Teruel A., Wiesenfeld‐Hallin Z., Xu X.J., Hardemark A., Betsholtz C., Herlenius E., Fredholm B.B., Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor, Proc. Natl. Acad. Sci. USA, 98: 9407–9412, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Sweeney, M.I. , Neuroprotective effects of adenosine in cerebral ischemia: window of opportunity, Neurosci. Biobehav. Rev., 21: 207–217, 1997. [DOI] [PubMed] [Google Scholar]
- 26. von Lubitz, D.K. , Lin, R.C. , Melman, N. , Ji, X.D. , Carter, M.F. , Jacobson, K.A. , Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia, Eur. J. Pharmacol., 256: 161–167, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. von Lubitz, D.K. , Simpson, K.L. , Lin, R.C. , Right thing at a wrong time? Adenosine A3 receptors and cerebroprotection in stroke, Ann. NY Acad. Sci., 939: 85–96, 2001. [DOI] [PubMed] [Google Scholar]
- 28. von Lubitz, D. K. , Adenosine in the treatment of stroke: yes, maybe, or absolutely not?, Expert Opin. Investig. Drugs, 10: 619–632, 2001. [DOI] [PubMed] [Google Scholar]
- 29. Fedorova, I.M. , Jacobson, M.A. , Basile, A. , Jacobson, K.A. , Behavioral characterization of mice lacking the A3 adenosine receptor: sensitivity to hypoxic neurodegeneration, Cell Mol. Neurobiol., 23: 431–447, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Chen, J.F. , Huang, Z. , Ma, J. , Zhu, J. , Moratalla, R. , Standaert, D. , Moskowitz, M.A. , Fink, J.S. , Schwarzschild, M.A. , A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice, J. Neurosci., 19: 9192–9200, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Aden, U. , Halldner, L. , Lagercrantz, H. , Dalmau, I. , Ledent, C. , Fredholm, B. B. , Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice, Stroke, 34: 739–744, 2003. [DOI] [PubMed] [Google Scholar]
- 32. Lopes, L.V. , Cunha, R.A. , Kull, B. , Fredholm, B.B. , Ribeiro, J.A. , Adenosine A2A receptor facilitation of hipocampal synaptic transmission is dependent on tonic A1 receptor inhibition, Neuroscience, 112: 319–329, 2002. [DOI] [PubMed] [Google Scholar]
- 33. Dunwiddie, T.V. , Diao, L. , Kim, H.O. , Jiang, J.L. , Jacobson, K.A. , Activation of hippocampal adenosine A3 receptors produces a desensitization of A1 receptor‐mediated responses in rat hippocampus, J. Neurosci., 17: 607–614, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Rebola, N. , Sebastiao, A.M. , de Mendonça, A. , Oliveira, C.R. , Ribeiro, J.A. , Cunha, R.A. , Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats, J. Neurophysiol., 90: 1295–1303, 2003. [DOI] [PubMed] [Google Scholar]
- 35. Frenguelli, B.G. , Llaudet, E. , Dale, N. , High‐resolution real‐time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices., J. Neurochem., 86: 1506–1515, 2003. [DOI] [PubMed] [Google Scholar]
- 36. Sebastiao, A.M. Ribeiro, J.A. , Fine‐tuning neuromodulation by adenosine, Trends Pharmacol. Sci., 21: 341–346, 2000. [DOI] [PubMed] [Google Scholar]
- 37. Dunwiddie, T. V. Masino, S. A. , The role and regulation of adenosine in the central nervous system, Annu. Rev. Neurosci., 24: 31–55, 2001. [DOI] [PubMed] [Google Scholar]
- 38. Robertson, S.J. , Ennion, S.J. , Evans, R.J. , Edwards, F.A. , Synaptic P2X receptors, Curr. Opin. Neurobiol., 11: 378–386, 2001. [DOI] [PubMed] [Google Scholar]
- 39. Zimmermann, H. , Extracellular metabolism of ATP and other nucleotides, Naunyn Schmiedebergs Arch. Pharmacol., 362: 299–309, 2000. [DOI] [PubMed] [Google Scholar]
- 40. Manzoni, O.J. , Manabe, T. , Nicoll, R. A. , Release of adenosine by activation of NMDA receptors in the hippocampus, Science, 265: 2098–2101, 1994. [DOI] [PubMed] [Google Scholar]
- 41. Mitchell, J.B. , Lupica, C.R. , Dunwiddie, T.V. , Activity‐dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus, J. Neurosci., 13: 3439–3447, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Brager, D.H. Thompson, S.M. , Activity‐dependent release of adenosine contributes to short‐term depression at CA3‐CA1 synapses in rat hippocampus, J. Neurophysiol., 89: 22–26, 2003. [DOI] [PubMed] [Google Scholar]
- 43. Harvey, J. Lacey, M.G. , A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release, J. Neurosci., 17: 5271–5280, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Hugel, S. Schlichter, R. , Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors, J. Physiol. (Lond.), 2003. [DOI] [PMC free article] [PubMed]
- 45. Dunwiddie, T.V. , Adenosine and suppression of seizures, Adv. Neurol., 79: 1001–1010, 1999. [PubMed] [Google Scholar]
- 46. Phillis, J.W. , O'Regan, M.H. , Perkins, L.M. , Adenosine 5′‐triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex, Neurosci. Lett., 151: 94–96, 1993. [DOI] [PubMed] [Google Scholar]
- 47. Pedata, F. , Latini, S. , Pugliese, A.M. , Pepeu, G. , Investigations into the adenosine outflow from hippocampal slices evoked by ischemia‐like conditions, J. Neurochem., 61: 284–289, 1993. [DOI] [PubMed] [Google Scholar]
- 48. Dale, N. , Pearson, T. , Frenguelli, B.G. , Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice, J. Physiol. (Lond.), 526: 143–155, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Pearson, T. Frenguelli, B.G. , Volume‐regulated anion channels do not contribute extracellular adenosine during the hypoxic depression of excitatory synaptic transmission in area CA1 of rat hippocampus, Eur. J. Neurosci., 12: 3064–3066, 2000. [DOI] [PubMed] [Google Scholar]
- 50. Seki, Y. , Feustel, P.J. , Keller, R.W.J. , Tranmer, B.I. , Kimelberg, H.K. , Inhibition of ischemia‐induced glutamate release in rat striatum by dihydrokinate and an anion channel blocker, Stroke, 30: 433–440, 1999. [DOI] [PubMed] [Google Scholar]
- 51. Phillis, J.W. , Song, D. , O'Regan, M.H. , Inhibition by anion channel blockers of ischemia‐evoked release of excitotoxic and other amono acids from rat cerebral cortex, Brain Res., 758: 9–16, 1997. [DOI] [PubMed] [Google Scholar]
- 52. Phillis, J.W. , Song, D. , O'Regan, M.H. , Tamoxifen, a chloride channel blocker, reduces glutamate and aspartate release from the ischemic cerebral cortex, Brain Res., 780: 352–355, 1998. [DOI] [PubMed] [Google Scholar]
- 53. Rutledge, E.M. , Aschner, M. , Kimelberg, H.K. , Pharmacological characterization of swelling‐induced D‐[3H]aspartate release from primary astrocyte cultures, Am. J. Physiol., 274: C1511–C1520 1998. [DOI] [PubMed] [Google Scholar]
- 54. Nelson, R.M. , Lambert, D.G. , Richard, G.A. , Hainsworth, A.H. , Pharmacology of ischemia‐induced glutamate efflux from rat cerebral cortex in vitro, Brain Res., 964: 1–8, 2003. [DOI] [PubMed] [Google Scholar]
- 55. Juranyi, Z. , Sperlagh, B. , Vizi, E.S. , Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short‐term hypoxia and hypoglycemia in rat hippocampal slices, Brain Res., 823: 183–190, 1999. [DOI] [PubMed] [Google Scholar]
- 56. Parkinson, F.E. , Sinclair, C.J. , Othman, T. , Haughey, N.J. , Geiger, J.D. , Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions, Neuropharmacol., 43: 836–846, 2002. [DOI] [PubMed] [Google Scholar]
- 57. Koos, B.J. , Kruger, L. , Murray, T.F. , Source of extracellular brain adenosine during hypoxia in fetal sheep, Brain Res., 778: 439–442, 1997. [DOI] [PubMed] [Google Scholar]
- 58. Braun, N. , Zhu, Y. , Krieglstein, J. , Culmsee, C. , Zimmermann, H. , Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat, J. Neurosci., 18: 4891–4900, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Ryu, J.K. , Kim, J. , Choi, S.H. , Oh, Y.J. , Lee, Y.B. , Kim, S.U. , Jin, B.K. , ATP‐induced in vivo neurotoxicity in the rat striatum via P2 receptors, NeuroReport, 13: 1611–1615, 2002. [DOI] [PubMed] [Google Scholar]
- 60. Cavaliere, F. , Florenzano, F. , Amadio, S. , Fusco, F.R. , Viscomi, M.T. , D'Ambrosi, N. , Vacca, F. , Sancesario, G. , Bernardi, G. , Molinari, M. , Volonte, C. , Up‐regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists, Neuroscience, 120: 85–98, 2003. [DOI] [PubMed] [Google Scholar]
- 61. Dux, E. , Fastbom, J. , Ungerstedt, U. , Rudolphi, K. , Fredholm, B. B. , Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus, Brain Res., 516: 248–256, 1990. [DOI] [PubMed] [Google Scholar]
- 62. Valtysson, J. , Persson, L. , Hillered, L. , Extracellular ischaemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain, Acta Neurochir.(Wien.), 140: 387–395, 1998. [DOI] [PubMed] [Google Scholar]
- 63. DiGeronimo, R.J. , Gegg, C.A. , Zuckerman, S.L. , Adenosine depletion alters postictal hypoxic cerebral vasodilation in the newborn pig, Am. J. Physiol., 274: H1495–H1501 1998. [DOI] [PubMed] [Google Scholar]
- 64. Zhang, W.L. Lu, G.W. , Changes of adenosine and its A1 receptor in hypoxic preconditioning, Biol. Signals Recept., 8: 275–280, 1999. [DOI] [PubMed] [Google Scholar]
- 65. Matsumoto, K. , Graf, R. , Rosner, G. , Taguchi, J. , Heiss, W.D. , Elevation of neuroactive substances in the cortex of cats during prolonged focal ischemia, J. Cereb. Blood Flow Metab., 13: 586–594, 1993. [DOI] [PubMed] [Google Scholar]
- 66. Phillis, J.W. , O'Regan, M.H. , Estevez, A.Y. , Song, D. , VanderHeide, S.J. , Cerebral energy metabolism during severe ischemia of varying duration and following reperfusion, J. Neurochem., 67: 1525–1531, 1996. [DOI] [PubMed] [Google Scholar]
- 67. Melani, A. , Pantoni, L. , Corsi, C. , Bianchi, L. , Monopoli, A. , Bertorelli, R. , Pepeu, G. , Pedata, F. , Striatal outflow of adenosine, excitatory amino acids, gamma‐aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: correlations with neurological deficit and histopathological damage, Stroke, 30: 2448–2454, 1999. [DOI] [PubMed] [Google Scholar]
- 68. Dale, N. , Gourine, A.V. , Llaudet, E. , Bulmer, D. , Thomas, T. , Spyer, K. M. , Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real‐time measurement in vivo, J. Physiol. (Lond.), 544: 149–160, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Pearson, T. , Nuritova, F. , Caldwell, D. , Dale, N. , Frenguelli, B.G. , A depletable pool of adenosine in area CA1 of the rat hippocampus, J. Neurosci., 21: 2298–2307, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. Fowler, J.C. , Adenosine antagonists delay hypoxia‐induced depressions of neuronal activity in hippocampal brain slice, Brain Res., 490: 378–384, 1989. [DOI] [PubMed] [Google Scholar]
- 71. Gervitz, L.M. , Lutherer, L.O. , Davies, D.G. , Pirch, J.H. , Fowler, J.C. , Adenosine induces initial hypoxic‐ischemic depression of synaptic transmission in the rat hippocampus in vivo, Am. J. Physiol. Regul. Integr. Comp. Physiol., 280: R639–R645 2001. [DOI] [PubMed] [Google Scholar]
- 72. Kato, H. , Kogure, K. , Nakano, S. , Neuronal damage following repeated brief ischemia in the gerbil, Brain Res., 479: 366–370, 1989. [DOI] [PubMed] [Google Scholar]
- 73. Kirino, T. , Ischemic tolerance, J. Cereb. Blood Flow Metab., 22: 1283–1296, 2002. [DOI] [PubMed] [Google Scholar]
- 74. Jenkins, L.W. , Moszynski, K. , Lyeth, B.G. , Lewelt, W. , DeWitt, D.S. , Allen, A. , Dixon, C.E. , Povlishock, J.T. , Majewski, T.J. , Clifton, G.L. , Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury, Brain Res., 477: 211–224, 1989. [DOI] [PubMed] [Google Scholar]
- 75. Gerlach, E. , Marko, P. , Zimmer, H.G. , Pechan, I. , Trendelenburg, C. , Different response of adenine nucleotide synthesis de novo in kidney and brain during aerobic recovery from anoxia and ischemia, Experientia, 27: 876–878, 1971. [DOI] [PubMed] [Google Scholar]
- 76. Barsotti, C. Ipata, P.L. , Pathways for alpha‐D‐ribose utilization for nucleobase salvage and 5‐fluorouracil activation in rat brain, Biochem. Pharmacol., 63: 117–122, 2002. [DOI] [PubMed] [Google Scholar]
- 77. Pauly, D.F. Pepine, C.J. , D‐Ribose as a supplement for cardiac energy metabolism, J. Cardiovasc. Pharmacol. Ther., 5: 249–258, 2000. [DOI] [PubMed] [Google Scholar]
- 78. Lipton, P. , Ischemic cell death in brain neurons, Physiol. Rev., 79: 1431–1568, 1999. [DOI] [PubMed] [Google Scholar]
- 79. Kleihues, P. , Kobayashi, K. , Hossmann, K.A. , Purine nucleotide metabolism in the cat brain after one hour of complete ischemia, J. Neurochem., 23: 417–425, 1974. [DOI] [PubMed] [Google Scholar]
- 80. Onodera, H. , Iijima, K. , Kogure, K. , Mononucleotide metabolism in the rat brain after transient ischemia, J. Neurochem., 46: 1704–1710, 1986. [DOI] [PubMed] [Google Scholar]
- 81. Yager, J.Y. , Brucklacher, R.M. , Vannucci, R.C. , Cerebral energy metabolism during hypoxia‐ischemia and early recovery in immature rats, Am. J. Physiol, 262: H672–H677 1992. [DOI] [PubMed] [Google Scholar]
- 82. Siesjö, B.K. Wieloch, T. , Cerebral metabolism in ischaemia: neurochemical basis for therapy, Br. J. Anaesth., 57: 47–62, 1985. [DOI] [PubMed] [Google Scholar]
- 83. Bell, M.J. , Robertson, C.S. , Kochanek, P.M. , Goodman, J.C. , Gopinath, S.P. , Carcillo, J.A. , Clark, R.S. , Marion, D.W. , Mi, Z. , Jackson, E.K. , Interstitial brain adenosine and xanthine increase during jugular venous oxygen desaturations in humans after traumatic brain injury, Crit Care Med., 29: 399–404, 2001. [DOI] [PubMed] [Google Scholar]
- 84. Kuracka, L. , Kalnovicova, T. , Liska, B. , Turcani, P. , HPLC method for measurement of purine nucleotide degradation products in cerebrospinal fluid, Clin. Chem., 42: 756–760, 1996. [PubMed] [Google Scholar]
- 85. Akdemir, H. , Asik, Z. , Pasaoglu, H. , Karakucuk, I. , Oktem, I.S. , Koc, R.K. , The effect of allopurinol on focal cerebral ischaemia: an experimental study in rabbits, Neurosurg. Rev., 24: 131–135, 2001. [DOI] [PubMed] [Google Scholar]
- 86. Hagberg, H. , Andersson, P. , Lacarewicz, J. , Jacobson, I. , Butcher, S. , Sandberg, M. , Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia, J. Neurochem., 49: 227–231, 1987. [DOI] [PubMed] [Google Scholar]
- 87. Chapman, A.G. , Westerberg, E. , Siesjö, B.K. , The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin‐induced hypoglycemia and recovery, J. Neurochem., 36: 179–189, 1981. [DOI] [PubMed] [Google Scholar]
- 88. Phillis, J.W. , Walter, G.A. , O'Regan, M.H. , Stair, R.E. , Increases in cerebral cortical perfusate adenosine and inosine concentrations during hypoxia and ischemia., J. Cereb. Blood Flow Metab., 7: 679–686, 1987. [DOI] [PubMed] [Google Scholar]
- 89. Phillis, J.W. , Perkins, L.M. , Smith‐Barbour, M. , O'Regan, M.H. , Oxypurinol‐enhanced postischemic recovery of the rat brain involves preservation of adenine nucleotides, J. Neurochem., 64: 2177–2184, 1995. [DOI] [PubMed] [Google Scholar]
- 90. Plaschke, K. , Bardenheuer, H.J. , Weigand, M.A. , Martin, E. , Hoyer, S. , Increased ATP production during long‐term brain ischemia in rats in the presence of propentofylline, Eur. J. Pharmacol., 349: 33–40, 1998. [DOI] [PubMed] [Google Scholar]
- 91. Oliveira, I.J. , Molz, S. , Souza, D.O. , Tasca, C.I. , Neuroprotective effect of GMP in hippocampal slices submitted to an in vitro model of ischemia, Cell Mol. Neurobiol., 22: 335–344, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Lee, K.S. , Schubert, P. , Emmert, H. , Kreutzberg, G.W. , Effect of adenosine versus adenine nucleotides on evoked potentials in a rat hippocampal slice preparation, Neurosci. Lett., 23: 309–314, 1981. [DOI] [PubMed] [Google Scholar]
- 93. Cunha, R.A. , Correia‐de‐Sa, P. , Sebastiao, A.M. , Ribeiro, J.A. , Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides, Br. J. Pharmacol., 119: 253–260, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94. Lu, K.T. Gean, P.W. , Masking of forskolin‐induced long‐term potentiation by adenosine accumulation in area CA1 of the rat hippocampus, Neuroscience, 88: 69–78, 1999. [DOI] [PubMed] [Google Scholar]
- 95. Moroni, F. , Russi, P. , Lombardi, G. , Beni, M. , Carla, V. , Presence of kynurenic acid in the mammalian brain., J. Neurochem., 51: 177–180, 1988. [DOI] [PubMed] [Google Scholar]
- 96. Shepard, P.D. , Joy, B. , Clerkin, L. , Schwarcz, R. , Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat, Neuropsychopharmacology, 28: 1454–1462, 2003. [DOI] [PubMed] [Google Scholar]
- 97. Brundege, J.M. , Diao, L. , Proctor, W.R. , Dunwiddie, T.V. , The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus, Neuropharmacol., 36: 1201–1210, 1997. [DOI] [PubMed] [Google Scholar]
- 98. Dale, N. , Delayed production of adenosine underlies temporal modulation of swimming in frog embryo, J. Physiol. (Lond.), 511: 265–272, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99. Frenguelli, B.G. , The effects of metabolic stress on glutamate receptor‐mediated depolarisations in the in vitro rat hippocampal slice, Neuropharmacol., 36: 981–991, 1997. [DOI] [PubMed] [Google Scholar]
- 100. Gadalla A.E., Pearson, T. , Currie A.J., Dale N., Hawley S.A., Sheehan M., Hirst W., Michel A.D., Randall A., Hardie D.G., Frenguelli B.G., AICA riboside both activates AMP‐activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus, J.Neurochem (in Press), 2004. [DOI] [PubMed]