Abstract
Various catalytic antibodies or abzymes have been detected recently in the sera of patients with several autoimmune pathologies, where their presence is most probably associated with autoimmunization. Recently we have shown that DNase, RNase, and polysaccharide‐hydrolyzing activities are associated with IgGs from the sera of patients with multiple sclerosis (MS). Here we present evidence demonstrating that highly purified MS IgGs (but not Igs from the sera of healthy individuals) catalyze specifically hydrolysis of human myelin basic protein (hMBP). In contrast to many known proteases, IgGs do not hydrolyze many other different proteins. Specific inhibitors of acidic and thiol proteases have no remarkable effect on proteolytic activity of IgGs. However, specific inhibitor of serine (PMSF, AEBSF, and benzamidin) and metal‐dependent (EDTA) proteases significantly inhibit activity of proteolytic abzymes. Interestingly, the ratio of serine‐like and metal‐dependent activities of MS IgGs varied very much from patient to patient. The findings speak in favor of the generation by the immune systems of individual MS patients of a variety of polyclonal anti‐MBP IgGs with different catalytic properties.
Keywords: human blood, multiple sclerosis, catalytic IgG, hydrolysis of myelin basic protein
References
- 1. Suzuki H., Recent advances in abzyme studies, J. Biochem. (Tokyo), 115: 623–628, 1994. [DOI] [PubMed] [Google Scholar]
- 2. Tramontano A., Gololobov G., Paul S., Proteolytic antibodies: origins, selection and induction. Chem. Immunol., 77: 1–17, 2000. [DOI] [PubMed] [Google Scholar]
- 3. Gololobov G., Tramontano A., Paul S. Nucleophilic proteolytic antibodies. Appl. Biochem. Biotechnol., 83: 221–231, 2000. [DOI] [PubMed] [Google Scholar]
- 4. Nevinsky G.A., Kanyshkova T.G., Buneva V.N. Natural catalytic antibodies (abzymes) in normalcy and pathology. Biochemistry (Moscow), 65: 1245–1255, 2000. [PubMed] [Google Scholar]
- 5. Nevinsky G.A., Favorova O.O., Buneva V.N. Natural Catalytic Antibodies ‐ New Characters in the Protein Repertoire In: Golemis E., eds. Protein‐protein interactions; a molecular cloning manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor , New York , 2002, pp. 523–534. [Google Scholar]
- 6. Nevinsky G.A., Buneva V.N. Human catalytic RNA‐and DNA‐hydrolyzing antibodies, J. Immunol. Methods, 269: 235–245, 2002. [DOI] [PubMed] [Google Scholar]
- 7. Nevinsky G.A., Buneva V.N. Catalytic antibodies in healthy humans and patients with autoimmune and viral pathologies, J. Cell. Mol. Med., 7: 265–276, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Paul S., Volle D.J., Beach C.M., Johnson D.R., Powell M.J., Massey R.J., Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody, Science, 244: 1158–1162, 1989. [DOI] [PubMed] [Google Scholar]
- 9. Shuster A.M., Gololobov G.V., Kvashuk O.A., Bogomolova A.E., Smirnov I.V., Gabibov A.G., DNA hydrolyzing autoantibodies, Science, 256: 665–667, 1992. [DOI] [PubMed] [Google Scholar]
- 10. Buneva V.N., Andrievskaia O.A., Romannikova I.V., Gololobov G.V., Iadav R.P., Iamkovoi V.I., Nevinskii G.A., Interaction of catalytically active antibodies with oligoribonucleotides. Mol. Biol. (Moscow), 28: 738–743, 1994. [PubMed] [Google Scholar]
- 11. Andrievskaya O.A., Buneva V.N., Naumov V.A., Nevinsky G.A. Catalytic heterogeneity of polyclonal RNA‐hydrolyzing IgM from sera of patients with lupus erythematosus. Med. Sci. Monit., 6: 460–470, 2000. [PubMed] [Google Scholar]
- 12. Andrievskaya O.A., Buneva V.N., Baranovskii A.G., Gal'vita A.V., Benzo E.S., Naumov V.A., Nevinsky G.A., Catalytic diversity of polyclonal RNA‐hydrolyzing IgG antibodies from the sera of patients with lupus erythematosus, Immunol. Lett., 81: 191–198, 2002. [DOI] [PubMed] [Google Scholar]
- 13. Vlassov A., Florentz C., Helm M., Naumov V., Buneva V., Nevinsky G., Giege R., Characterization and selectivity of catalytic antibodies from human serum with RNase activity, Nucl. Acid Research, 26: 5243–5250, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Vlassov A.V., Baranovskii A.G., Kanyshkova T.G., Prints A.V., Zabara V.G., Naumov V.A., Breusov A.A., Buneva V.N., Nevinsky G.A., Substrate specificity of DNA‐ and RNA‐hydrolyzing antibodies from blood of patients with polyarthritis and Hashimoto's thyroiditis. Mol. Biol. (Moscow), 32: 559–569, 1998. [PubMed] [Google Scholar]
- 15. Baranovsky, A.G. , Matushin V.G., Vlassov A.V., Zabara V.G., Naumov V.A., Buneva, V.N. , Nevinsky G.A., DNA‐ and RNA‐hydrolyzing antibodies from the blood of patients with various forms of viral hepatitis, Biochemistry (Moscow), 62: 1358–1366, 1997. [PubMed] [Google Scholar]
- 16. Kozyr A.V., Kolesnikov A., Aleksandrova E.S., Sashchenko L.P., Gnuchev N., Favorov P.V., Kotelnikov M.A., Iakhnina E.I., Astsaturov I.A., Prokaeva T.B., Alekberova Z.S., Suchkov S.V., Gabibov A.G., Novel functional activities of anti‐DNA autoantibodies from sera of patients with lymphoproliferative and autoimmune diseases. Appl. Biochem. Biotechnol., 75: 45–61, 1998. [DOI] [PubMed] [Google Scholar]
- 17. Gololobov G.V., Mikhalap S.V., Starov A.V., Kolesnikov A.F., and Gabibov A. G. Natural targets for DNA‐hydrolyzing antibodies Appl. Biochem. Biotechnol., 47, 305–314, 1994. [DOI] [PubMed] [Google Scholar]
- 18. Neustoev K.N., Ivanen D.R., Kulminskaya A.A., Brumer I.H., Saveliev A.N., Nevinsky G.A. Amylolytic activity and catalytic properties of IgM and IgG antibodies from patients with systemic lupus erythematosus. Human antibodies, 12: 31–34, 2003. [Google Scholar]
- 19. Savel'ev A.N., Eneyskaya E.V., Shabalin K.A., Filatov M.V., Neustroev K.N., Antibodies with amylolytic activity. Protein Peptide Lett., 6: 179–184, 1999. [Google Scholar]
- 20. Li L., Paul S., Tyutyulkova S. Kazatchkine M.D., and Kaveri S. Catalytic activity of anti‐thyroglobulin antibodies. J. Immunol., 154: 3328–3332, 1995. [PubMed] [Google Scholar]
- 21. Kalaga R., Li L., O'Dell J.R., Paul S., Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis. J. Immunol., 155: 2695–2702, 1995. [PubMed] [Google Scholar]
- 22. Matsuura K., Ikoma S., Sugiyama M., Funauchi M., Sinohara H., Amidase and peptidase activities of polyclonal immunoglobulin G present in the sera of patients with rheumatoid arthritis. Appl. Biochem. Biotechnol., 83: 107–113, 2000. [DOI] [PubMed] [Google Scholar]
- 23. Lacroix‐Desmazes S., Moreau A., Sooryanarayana A., Bonnemain C., Stieltjes N., Pashov A., Sultan Y., Hoebeke J., Kazatchkine M.D., Kaveri S.V., Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat. Med., 5: 1044–1047, 1999. [DOI] [PubMed] [Google Scholar]
- 24. Sinohara H., Matsuura K., Does catalytic activity of Bens‐Jones proteins contribute to the pathogenesis of multiple myeloma Appl. Biochem. Biotechnol., 83: 85–94, 2000. [DOI] [PubMed] [Google Scholar]
- 25. Paul S., Kalaga R.S., Gololobov G., Brenneman D., Natural catalytic immunity is not restricted to autoantigenic substrates: identification of a human immunodeficiency virus gp 120‐ cleaving antibody light chain, Appl. Biochem. Biotechnol., 83: 71–82, 2000. [DOI] [PubMed] [Google Scholar]
- 26. Kanyshkova T.G., Semenov D.V., Khlimankov D.Y., Buneva V.N., Nevinsky G.A., DNA‐hydrolyzing activity of the light chain of IgG antibodies from milk of healthy human mothers, FEBS Lett., 416: 23–26, 1997. [DOI] [PubMed] [Google Scholar]
- 27. Nevinsky G.A., Kanyshkova T.G., Semenov D.V., Vlassov A.V., Gal'vita A.V., Buneva V.N., Secretory immunoglobulin A from healthy human mothers' milk catalyzes nucleic acid hydrolysis, Appl. Biochem. Biotechnol., 83: 115–129, 2000. [DOI] [PubMed] [Google Scholar]
- 28. Buneva V.N., Kanyshkova T.G., Vlassov A.V., Semenov D.V., Khlimankov D., Breusova L.R., Nevinsky G.A., Catalytic DNA‐ and RNA‐hydrolyzing antibodies from milk of healthy human mothers, Appl. Biochem. Biotechnol., 75: 63–76, 1998. [DOI] [PubMed] [Google Scholar]
- 29. Semenov D.V., Kanyshkova T.G., Kit Y.Y., Khlimankov D.Y., Akimzhanov A.M., Gorbunov D.A., Buneva V.N., Nevinsky G.A., Human breast milk immunoglobulins G hydrolyze nucleotides, Biochemistry (Moscow), 63: 935–943, 1998. [PubMed] [Google Scholar]
- 30. Semenov D.V., Kanyshkova T.G., Karotaeva N.A., Krasnorutskii M.A., Kuznetsova I.A., Buneva V.N., Nevinsky G.A. Catalytic nucleotide‐hydrolyzing antibodies in milk and serum of clinically healthy human mothers. Med. Sci. Monit., 10: BR23–BR33, 2004. [PubMed] [Google Scholar]
- 31. Kit Y.Y., Semenov D.V., Nevinsky G.A., Phosphorylation of different human milk proteins by immunoglobulin A. Bioch. Mol. Biol. Internat., 39: 521–527, 1996. [DOI] [PubMed] [Google Scholar]
- 32. Nevinsky G.A., Kit Y., Semenov D.V., Khlimankov D., Buneva V.N., Secretory immunoglobulin A from human milk catalyzes milk protein phosphorylation, Appl. Biochem. Biotechnol., 75: 77–91, 1998. [DOI] [PubMed] [Google Scholar]
- 33. Savel'ev A.N., Kanyshkova T.G., Kulminskaya A.A., Buneva V.N., Eneyskaya E.V., Filatov M.V., Nevinsky G.A., Neustroev K.N., Amylolytic activity of IgG and sIgA immunoglobulins from human milk, Clin. Chim. Acta, 314: 141–152, 2001. [DOI] [PubMed] [Google Scholar]
- 34. Boiko A.N., Favorova O.O., Multiple sclerosis: molecular and cellular mechanisms. Mol. Biol. (Mosk), 29: 727–749, 1995. [PubMed] [Google Scholar]
- 35. O'Connor, K.C , Bar‐Or, A. , Hafler D.A. Neuroimmunology of multiple sclerosis, J. Clin. Immunol. 21: 81–92, 2001. [DOI] [PubMed] [Google Scholar]
- 36. Archelos J.J., Storch M.K., Hartung H.P., The role of B cells and autoantibodies in multiple sclerosis. Ann. Neurol. 47: 694–706, 2000. [PubMed] [Google Scholar]
- 37. Hemmer B., Archelos J.J., Hartung H.P., New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci., 3: 291–301, 2002. [DOI] [PubMed] [Google Scholar]
- 38. Cross A.H., Trotter J.L., Lyons J. B cells and antibodies in CNS demyelinating disease, J. Neuroimmunol.; 112: 1–14, 2001. [DOI] [PubMed] [Google Scholar]
- 39. Baranovskii A.G., Kanyshkova T.G., Mogelnitskii A.S., Naumov V.A., Buneva V.N., Gusev E.I., Boiko A.N., Zargarova T.A., Favorova O.O., Nevinsky G.A., Polyclonal antibodies from blood and cerebrospinal fluid of patients with multiple sclerosis effectively hydrolyze DNA and RNA. Biochemistry (Moscow), 63: 1239–1248, 1998. [PubMed] [Google Scholar]
- 40. Baranovskii A.G., Ershova N.A., Buneva V.N., Kanyshkova T.G., Mogelnitskii A.S., Doronin B.M., Boiko A.N., Gusev E.I., Favorova O.O., and Nevinsky G.A. Catalytic heterogeneity of polyclonal DNA‐hydrolyzing antibodies from the sera of patients with multiple sclerosis. Immunol. Lett., 76: 163–167, 2001. [DOI] [PubMed] [Google Scholar]
- 41. Saveliev A.N., Ivanen D.R., Kulminskaya A.A., Ershova N.A., Kanyshkova T.G., Buneva V.N., Mogelnitskii A.S., Doronin B.M., Favorova O.O., Nevinsky G.A., Neustroev K. Amylolytic activity of IgM and IgG antibodies from patients with multiple sclerosis. Immunol. Lett., 86: 291–297, 2003. [DOI] [PubMed] [Google Scholar]
- 42. Ponomarenko N.A., Durova O.M., Vorobiev I.I., Aleksandrova E.S., Telegin G.B., Chamborant O.G., Sidorik L.L., Suchkov S.V., Alekberova Z.S., Gnuchev N.V., Gabibov A.G. Catalytic antibodies in clinical and experimental pathology: human and mouse models. J. Immunol. Methods, 269: 197–211, 2002. [DOI] [PubMed] [Google Scholar]
- 43. Deibler G.E., Boud L.F., Kies M.W. Enzymatic and nonemzymatic degradation of myelin basic protein. Neurochem. Research, 9: 1371–1385, 1984. [DOI] [PubMed] [Google Scholar]
- 44. Poser C.M. The diagnosis of multiple sclerosis. Thieme‐Stratton NY, 1984, pp. 3–13.
- 45. Wurster U., Demonstration of oligoclonal IgG in the unconcentretrated CSF by silver stain, in Stathakos G. (ed): Proceedings of the Intern. Conference on Electrophoresis, Electroforesis'82. Berlin , New York , 1983, pp. 249–258. [Google Scholar]
- 46. Towbin H., Staehelin T., Gordon J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76: 4350–4354, 1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Reindl M., Linington C., Brehm U., Egg, R , Dilitz E., Deisenhammer F., Poewe W., Berger T. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: A comparative study, Brain, 122: 2047–2056, 1999. [DOI] [PubMed] [Google Scholar]
- 48. Terryberry J.W., Thor G., Peter J.B. Autoantibodies in neurodegenerative diseases: Antigen‐specific frequencies and intrathecal analysis. Neurobiol. Aging, 19: 205–216, 1998. [DOI] [PubMed] [Google Scholar]
- 49. Brokstad K.A., Page M., Nyland H., Haaheim L.R. Autoantibodies to myelin basic protein are not present in the serum and CSF of MS patients. Acta Neurol. Scand., 89: 407–411, 1994. [DOI] [PubMed] [Google Scholar]
- 50. Olsson T., Baig S., Hojeberg B., Link H., Antimyelin basic protein and antimyelin antibody‐producing cells in multiple sclerosis, Ann. Neurol., 27: 132–136, 1990. [DOI] [PubMed] [Google Scholar]
- 51. Colombo E., Banki K., Tatum A.H., Daucher J., Ferrante P., Murray R.S., Phillips P.E., Perl A., Comparative analysis of antibody and cell‐mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis, J. Clin. Invest., 99: 1238–1250, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Kamholz J., de Ferra F., Pukkett C., Lazzarini R. Indentification of three forms of human myelin basic protein by cDNA cloning, Proc. Natl. Acad. Sci. USA, 83: 4962–4966, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Enshtein E. The proteins of brain and cerebrospinal fluid in norm and pathology, Myr, Moscow , 1988. [Google Scholar]
- 54. Paul S. Mechanism and functional role of antibody catalysis. Appl. Biochem. Biotechnol., 75: 13–23, 1998. [DOI] [PubMed] [Google Scholar]
- 55. Williamson R.A., Burgoon M.P., Owens G.P., Ghausi O., Leclerc E., Firme L., Carlson S., Corboy J., Parren P.W., Sanna P.P., Gilden D.H., and Burton D.R., Anti‐DNA antibodies are a major component of the intrathecal B cell response in multiple sclerosis, Proc. Natl. Acad. Sci. USA, 98: 1793–1798, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]