Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(1):11–20. doi: 10.1111/j.1582-4934.2003.tb00198.x

Tetrathiomolybdate anticopper therapy for Wilson's disease inhibits angiogenesis, fibrosis and inflammation

G J Brewer 1,
PMCID: PMC6740133  PMID: 12767257

Abstract

The need for agents to lower body copper in Wilson's disease, a disease which results from copper toxicity has been the driving force for the development of the effective anticopper drugs penicillamine, trientine, zinc, and now tetrathiomolybdate (TM). Because of its rapid action, potency, and safety, TM is proving to be a very effective drug for initial treatment of acutely ill Wilson's disease patients. Beyond this, TM has antiangiogenic effects, because many proangiogenic cytokines require normal levels of copper. This has led to use of TM in cancer, where it is generally effective in animal tumor models, and has shown efficacy in preliminary clinical studies. Most recently, it has been found that TM has antifibrotic and antiinflammatory effects through inhibition of profibrotic and proinflammatory cytokines.

Keywords: tetrathiomolybdate, copper, angiogenesis, fibrosis, inflammation

References

  • 1. Brewer G.J., Recognition, diagnosis and management of Wilson's disease, PSEBM, 223: 39–49, 2000. [DOI] [PubMed] [Google Scholar]
  • 2. Scheinberg I.H., Sternlieb I., Wilson's Disease In: Smith LH, Jr, ed. Major Problems in Internal medicine. Vol. 23 Philadelphia : W.B. Saunders Company, 1984. [Google Scholar]
  • 3. Brewer, G.J. , Wilson's disease: a clinician's guide to recognition, diagnosis and management. Kluwer Academic Publishers, Boston . 2001. [Google Scholar]
  • 4. Brewer, G.J. , Wilson's Disease for the Patient and Family: A Patients Guide to Wilson's disease and Frequently asked Questions about Copper. Xlibris, Philadelphia . 2001. [Google Scholar]
  • 5. Walshe J.M., Penicillamine. A new oral therapy for Wilson's disease, Am. J. Med., 21: 487–95, 1956. [DOI] [PubMed] [Google Scholar]
  • 6. Walshe J.M., Treatment of Wilson's disease with trientine (triethylene tetramine) dichloride, Lancet., 1: 643–647, 1982. [DOI] [PubMed] [Google Scholar]
  • 7. Schouwink, G. , De hepatocerebrale degeneratie, met een onderzoek naar de zonkstrofwisseling. MD thesis (with a summary in English, French, and German), University of Amsterdam; 1961. [Google Scholar]
  • 8. Hoogenraad T.U., van Den Hamer C.J.A., Koevoet R., De Ruyter Korver E.G.W.M., Oral zinc in Wilson's disease, Lancet., 2: 1262–1263, 1978. [DOI] [PubMed] [Google Scholar]
  • 9. Hoogenraad T.U., van Hattum J., van Den Hamer C.J.A., Management of Wilson's disease with zinc sulfate. Experience in a series of 27 patients. J. Neurol. Sci., 77: 137–146, 1987. [DOI] [PubMed] [Google Scholar]
  • 10. Brewer G.J., Schoomaker E.B., Leichtman D.A., Kruckleberg W.C., Brewer L.F., Myers N., The uses of pharmacologic doses of zinc in the treatment of sickle cell anemia In: Brewer GJ, and Prasad AS, eds. Zinc Metabolism: Current Aspects in Health and Disease, New York : Allan R. Liss, Inc.; 241–258, 1977. [Google Scholar]
  • 11. Prasad A.S., Brewer G.J., Schoomaker E.B., Rabbini P., Hypocupremia induced by zinc therapy in adults, JAMA, 240: 2166–2168, 1978. [PubMed] [Google Scholar]
  • 12. Brewer G.J., Hill G.M., Prasad A.S., Cossack Z.T., Rabbani P., Oral Zinc Therapy for Wilson's disease, Ann. Intern. Med., 99: 314–320, 1983. [DOI] [PubMed] [Google Scholar]
  • 13. Brewer G.J., Dick R.D., Johnson V., Brunberg J.A., Kluin K.J., Fink J.K., Treatment of Wilson's disease with zinc: XV. Long‐term follow‐up studies, J. Lab. Clin. Med., 132: 264–278, 1998. [DOI] [PubMed] [Google Scholar]
  • 14. Brewer G.J., Terry C.A., Aisen A.M., Hill G.M., Worsening of neurologic syndrome in patients with Wilson's disease with initial penicillamine therapy, Arch. Neurol., 44: 490–493, 1987. [DOI] [PubMed] [Google Scholar]
  • 15. Ferguson W.S., Lewis A.L., Waterson S.J., The teart pastures of Somerset. I. The cause and cure of teartness. J. Agri. Sci., 33: 44, 1943. [Google Scholar]
  • 16. Dick A.T., Bull L.B., Some preliminary observations of the effect of molybdenum on copper metabolism in herbivorous animals. Aust. Vet. J., 21: 70, 1945. [DOI] [PubMed] [Google Scholar]
  • 17. Miller R.F., Engel R.W., Interrelations of copper, molybdenum and sulfate sulfur in nutrition. Fed. Proc., 19: 666, 1960. [PubMed] [Google Scholar]
  • 18. Macilese Ammerman C.B., Valsecchi R.M., Dunavant B.G., Davis G.K., Effect of dietary molybdenum and sulfate upon copper metabolism in sheep. J. Nutr., 99: 177, 1969. [DOI] [PubMed] [Google Scholar]
  • 19. Mills C.F., Monty K.J., Ichihara A., Pearson P.B., Metabolic effects of molybendum toxicity in the rat. J. Nutr., 65: 129, 1958. [DOI] [PubMed] [Google Scholar]
  • 20. Cox D.H., Davis G.K., Shirley R.L., Jack F.H., Influence of excess dietary molybdenum on rat and calf liver and heart enzymes. J. Nutr., 70: 63, 1960. [DOI] [PubMed] [Google Scholar]
  • 21. Dick A.T., Dewey D.W., Gawthorne J.M., Thiomolybdates and the copper‐molybdenum‐sulfur interaction in ruminant nutrition. J. Agr. Sci., 85: 567, 1975. [Google Scholar]
  • 22. Mills C.F., El‐Gallad T.T., Bremner I., Effects of molybdate, sulfide, and tetrathiomolybdate on copper metabolism in rats. J. Inorgan. Biochem., 14: 189, 1981. [DOI] [PubMed] [Google Scholar]
  • 23. Bremner I., Mills C.F., Young B.W., Copper metabolism in rats given di‐ or trithiomolybdates. J. Inorg. Biochem., 16: 109, 1982. [DOI] [PubMed] [Google Scholar]
  • 24. Mills C.F., El‐Gallad T.T., Bremner I., Wenham G., Copper and molybdenum absorption by rats given ammonium tetrathiomolybdate. J. Inor. Biochem., 14: 163, 1981. [DOI] [PubMed] [Google Scholar]
  • 25. Gooneratne S.R., Howell J.M., Gawthorne J.M., An investigation of the effects of intravenous administration of thiomolybdate on copper metabolism in chronic Cu‐poisoned sheep. Br. J. Nutr., 46: 469, 1981. [DOI] [PubMed] [Google Scholar]
  • 26. Brewer G.J., Dick R.D., Yuzbasiyan‐Gurkan V., Tanakow R., Young A.B, Kluin K.J., Initial therapy of patients with Wilson's disease with tetrathiomolybdate, Arch. Neurol., 48: 42–47, 1991. [DOI] [PubMed] [Google Scholar]
  • 27. Brewer G.J., Dick R.D., Johnson V., Wang Y, Yuzbasiyan‐Gurkan V, Kluin K.J., Fink J.K., Aisen A., Treatment of Wilson's disease with ammonium tetrathiomolybdate: I. Initial therapy in 17 neurologically affected patients, Arch. Neurol., 51: 545–554, 1994. [DOI] [PubMed] [Google Scholar]
  • 28. Brewer G.J., Johnson V., Dick R.D., Wang Y., Kluin K.J, Fink J.K., Brunberg JA., Treatment of Wilson disease with ammonium tetrathiomolybdate: II. Initial therapy in 33 neurologically affected patients and follow‐up with zinc therapy, Arch. Neurol., 53: 1017–1025, 1996. [DOI] [PubMed] [Google Scholar]
  • 29. Brewer G.J., Hedera P., Kluin K.J., Carlson M., Askari F., Dick R.B., Sitterly J., Fink J.K., Treatment of Wilson disease with tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow‐up with zinc therapy, Arch. Neurol., (in press). [DOI] [PubMed]
  • 30. Mason J., Lamand M., Hynes M.J., 99Mo metabolism in sheep after the intravenous injection of 99Mo thiomolybdates. J. Inorg. Biochem., 19: 153, 1983. [DOI] [PubMed] [Google Scholar]
  • 31. Hynes M., Lamand M., Montel G., Mason J., Some studies on the metabolism and the effects of 99Mo‐ and 35S‐lablled thiomolybdates after tnravenous infusion in sheep. Br. J. Nutr., 52: 149, 1984. [DOI] [PubMed] [Google Scholar]
  • 32. Jones H.B., Gooneratne S.R., Howel J.M., X‐ray microanalysis of liver and kidney in copper loaded sheep with and without thiomolybdate administration. Res. Vet. Sci., 37: 273, 1984. [PubMed] [Google Scholar]
  • 33. Gooneratne S.R., Howell J.M., Gawthorne J.M., Intravenous administration of thiomolybdate for the prevention and treatment of chronic copper poisoning in sheep. Br. J. Nutr., 46: 457, 1981. [DOI] [PubMed] [Google Scholar]
  • 34. Humphries W.R., Mills C.F., Greig A., Roberts L., Inlis D, Halliday G.J., Use of ammonium tetrathiomolybdate in the treatment of copper poisoning in sheep. Vet. Record, 119: 596, 1986. [PubMed] [Google Scholar]
  • 35. Humphries W.R., Morrice P.C., Bremner I., A convenient method for the treatment of chronic copper poisoning in sheep using subcutaneous ammonium tetrathiomolybdate, Vet. Record, 123: 51–53, 1988. [DOI] [PubMed] [Google Scholar]
  • 36. Harper P.I., Walshe J.M., Reversible pancytopenia secondary to treatment with tetrathiomolybdate, Br. J. Haematol., 64: 851–853, 1986. [DOI] [PubMed] [Google Scholar]
  • 37. Folkman J., Tumor angiogenesis: therapeutic implications, N. Eng. J. Med., 285: 1182–1186, 1971. [DOI] [PubMed] [Google Scholar]
  • 38. Folkman J., Klagsburn M., Angiogenic factors, Science 235: 442–447, 1987. [DOI] [PubMed] [Google Scholar]
  • 39. Folkman J., Angiogenesis in cancer, vascular, rheumatoid, and other diseases, Nat. Med. 1: 27–31, 1995. [DOI] [PubMed] [Google Scholar]
  • 40. Brem S., Angiogenesis and cancer control: from concept to therapeutic trial, Canc. Control, 6: 436–458, 1999. [PubMed] [Google Scholar]
  • 41. Beckner M.E., Factors promoting tumor angiogenesis, Canc. Invest. 17: 594–623, 1999. [DOI] [PubMed] [Google Scholar]
  • 42. Susman E., Consensus panel: Antiangiogenesis drugs unlikely as single agents, Oncology Times , June 2001.
  • 43. Susman E., San Antonio Breast cancer symposium. Prediction: Shutting down cancer blood vessels still years away, Oncology Times , April 2002.
  • 44. Dotts T., Is angiogenesis inhibition the future of cancer treatment?, Hem./Onc. Today, March 2002.
  • 45. Parke A., Battacherjee P., Palmer R.M., Lazarus N.R., Characterization and quantification of copper sulfateinduced vascularization of the rabbit cornea, Am. J. Clin. Path., 137: 1121–1142, 1988. [PMC free article] [PubMed] [Google Scholar]
  • 46. Raju K.S., Alesandrii G, Zinche M., Gullino PM., Ceruloplasmin, copper ions, and angiogenesis, J. Natl. Cancer Inst., 69: 1183–1188, 1982. [PubMed] [Google Scholar]
  • 47. Ziche M., Jones J, Gullino P.M., Role of prostaglandin E1 and copper in angiogenesis, J. Natl. Cancer Inst., 69: 475–48, 1982. [PubMed] [Google Scholar]
  • 48. Brem S.S., Zagzag D., Tsanaclis A.M.C., Gatley S., Elkouby M.P., Brein S.E., Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor, Am. J. Path., 137: 1121–1147, 1990. [PMC free article] [PubMed] [Google Scholar]
  • 49. Brem S., Tsanaclis A.M., Zagzag D., Anticopper treatment inhibits pseudopdial protrusion and invasive spread of 9L gliosarcoma cells in the rat brain, Neurosurgery, 26: 391–396, 1990. [DOI] [PubMed] [Google Scholar]
  • 50. Linder M.C., Houle P.A., Isaacs E., Moor J.R., Scott L.E., Copper regulation of ceruloplasmin in copper‐deficient rats, Enzyme, 24: 23–35, 1979. [DOI] [PubMed] [Google Scholar]
  • 51. Merajver S.D, Irani J., van Golen K., Brewer G., Copper depletion as an anti‐angiogenic strategy in HER2‐neu transgenic mice, Proc AACR Special Conference on Angiogenesis and Cancer, B11, 1998.
  • 52. Pan Q., Kleer C., van Golen K., Irani J., Bottema K., Bias C., De Carvalho M., Mesri E., Robins D., Dick R., Brewer G., and Merajver S., Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis, Cancer Research, 62: 4854–4859, 2002. [PubMed] [Google Scholar]
  • 53. Cox C.D., Teknos T.N., Barrios M., Brewer G.J., Dick R.D., Merajver S.D., The role of copper suppression as an antiangiogenic strategy in head and neck squamous cell carcinoma, Laryngoscope, 111: 696–701, 2001. [DOI] [PubMed] [Google Scholar]
  • 54. Khan M.K., Miller M.W., Taylor J., Navkiranjit K.G., Dick R.D., Val Golen K., Brewer G.J., Merajver S.D., Radiotherapy and antiangiogenic TM in lung cancer, Neoplasia, 4: 1–7, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. van Golen K., Bao L., Brewer G., Pienta K., Karadt J, Livant D., Merajver S., Suppression of tumor recurrence and metastasis by a combination of the PHSCN sequence and the antiangiogenic compound tetrathiomolybdate in prostate carcinoma, Neoplasia, 4: 373–379, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Kent M.S., Madewell B.R., Dank G., Dick R., Merajver S.D., Brewer G.J., An anticopper antiangiogenic approach for advanced cancer in spontaneously occurring tumors, using tetrathiomolybdate: a pilot study in a canine animal model, (submitted for publication).
  • 57. Brewer G.J., Dick R.D., Grover D.K., LeClaire V., Tseng M., Wicha M., Pienta K., Redman B.G., Thierry J., Sondak V.K., Strawderman M., LeCarpentier G., Merajver S.D., Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: I. Phase I study, Clinical Cancer Research, 6: 1–10, 2000. [PubMed] [Google Scholar]
  • 58. Connolly D.T., Olander J.V., Heuvelman D., Nelson R., Monsell R., Siegel N., Haymore B.L., Leimgruber R., Feder J., Human vascular permeability factor isolation from U937 cells, J. Biol. Chem., 264: 20017–20024, 1989. [PubMed] [Google Scholar]
  • 59. Engleka K.A., Maciag T., Inactivation of human fibroblast growth factor‐1 (FGF‐1) activity by interaction with copper ions involves FGF‐1 dimer formation induced by coppercatalyzed oxidation, J. Biol. Chem. 267: 11307–11315, 1992. [PubMed] [Google Scholar]
  • 60. Tabata Y., Matsui Y, Ikada Y., Growth factor release from amylopectin hydrogel based on copper coordination, J. Controlled Release, 56: 135–148, 1998. [DOI] [PubMed] [Google Scholar]
  • 61. Höckel M.A., Sasse J., Wissler J.H., Purified monocytederived angiogenic substance (angiotropin) stimulates migration, phenotypic changes, and “tube formation” but not proliferation of capillary endothelial cells in vitro, J. Cell. Phys. 133: 1–13, 1987. [DOI] [PubMed] [Google Scholar]
  • 62. Soncin F., Guitton J.D., Cartwright T, Badet J., Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells, Biochem. Biophys. Res. Com., 136: 604–610, 1997. [DOI] [PubMed] [Google Scholar]
  • 63. Lane T.F., Iruela‐Arispe M.L., Johnson R.S., Sage E.H., SPARC is a source of copper‐binding peptides that stimulate angiogenesis, J. Cell. Bio., 125: 929–943, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Folkman J., Shing Y., Angiogenesis, J. Biol. Chem., 267: 10931–10934, 1992. [PubMed] [Google Scholar]
  • 65. Brewer G.J., Merajver S., Cancer therapy with tetrathiomolybdate: antiangiogenesis by lowering body copper ‐ A Review, Integrative Cancer Therapies (in press). [DOI] [PubMed]
  • 66. Folkman, J. , Angiogenesis in cancer, vascular, rheumatoid, and other diseases, Nat. Med. 1: 27–31, 1995. [DOI] [PubMed] [Google Scholar]
  • 67. Yoshida A., Yoshida, S. , Ishibashi T., Inomata H., Intraocular neovascularization, Histol. Histopathol., 14: 1287–1294, 1999. [DOI] [PubMed] [Google Scholar]
  • 68. Border W.A., Noble N.A., Transforming growth factor beta in tissue fibrosis, N. Engl. J. Med. 331: 1286–1292, 1995. [DOI] [PubMed] [Google Scholar]
  • 69. Duncan M.R., Frazier K.S., Abramson S., Williams S., Klapper H., Huang X., Connective tissue growth factor mediates transforming growth factor α‐induced collagen synthesis: down‐regulation by cAMP, FASEB J., 13: 1774–1786, 1999. [PubMed] [Google Scholar]
  • 70. Francki A., Bradshaw A.D., Bassuk J.A., Howe C.C., Couse W.G. Sage E.H., SPARC regulates the expression of collagen type I and transforming growth factor‐â1 in mesangial cells, J. of Bio. Chem., 274: 32145–32152, 1999. [DOI] [PubMed] [Google Scholar]
  • 71. Phan S.H., Kunkel S.L., Lung cytokine production in bleomycin‐induced pulmonary fibrosis, Exp. Lung. Res., 18: 29–43, 1992. [DOI] [PubMed] [Google Scholar]
  • 72. Brewer G., Phan S., Tetrathiomolybdate anticopper therapy protects against bleomycin‐pulmonary fibrosis in mice, J. Invest. Med., 50: 227A, 2002. [DOI] [PubMed] [Google Scholar]
  • 73. Brewer G.J., Ullenbruch M.R., Dick R., Olivarez L. Phan S.H., Tetrathiomolybdate therapy protects against bleomycin‐pulmonary fibrosis in mice, J. Lab. Clin. Med., (in press). [DOI] [PubMed]
  • 74. Askari F., Brewer G., Tetrathiomolybdate anticopper therapy protects against concanavalin A liver damage in mice, J. Invest. Med., 50: 220A, 2002. [Google Scholar]
  • 75. Brewer G.J., Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson's disease, EBM 226: 665–673, 2001. [DOI] [PubMed] [Google Scholar]
  • 76. Criscione L.G., St Clair E.W., Tumor necrosis factoralpha antagonists for the treatment of rheumatic diseases, Cur. Opin. Rheu., 14: 204–211, 2002. [DOI] [PubMed] [Google Scholar]
  • 77. Hurley L.S., Keen C.L., Teratogenic effects of copper in Nriagu J.O., ed., Copper in the Environment. Pat II: Health Effects, John Wiley & Sons, New York , 1979, pp. 33–56. [Google Scholar]
  • 78. Rucker R.B., Kosonen T., Clegg M.S., Mitchell A.E., Rucker B.R., Uriu‐Hare J.Y., Keen C.L., Copper, lysyl oxidase, and extracellular matrix protein cross‐linking. Am. J. Clin. Nutr., 67(Suppl.): 996S–1002S, 1998. [DOI] [PubMed] [Google Scholar]
  • 79. Danks D.M., Copper defiency in humans. Annu. Rev. Nutr. 8: 235–257, 1988. [DOI] [PubMed] [Google Scholar]
  • 80. Percival, S.S. , Copper and immunity, Am. J. Clin. Nutr., 67(Suppl.): 1064S–1068S 1998. [DOI] [PubMed] [Google Scholar]
  • 81. Bala S., Failla M.L., Copper deficiency reversibly impairs DNA synthesis in activated T lymphocytes by limiting interleukin 2 activity, Proc. Natl. Acad. Sci., 89: 6794–6797, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Klevay L.M., Lack of a recommended dietary allowance for copper may be hazardous to your health, J. Am. Coll. Nutr., 17: 322–326, 1998. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES