Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(2):151–159. doi: 10.1111/j.1582-4934.2002.tb00183.x

Chromosome‐mediated alterations of the MYC gene in human cancer

N C Popescu 1,, D B Zimonjic 1
PMCID: PMC6740135  PMID: 12169201

Abstract

The step‐wise accumulation of genetic and epigenetic alterations in cancer development includes chromosome rearrangements and viral integration‐mediated genetic alterations that frequently involve proto‐oncogenes. Protooncogenes deregulation lead to unlimited, self‐sufficient cell growth and ultimately generates invasive and destructive tumors. C‐MYC gene, the cellular homologue of the avian myelocitic leukemia virus, is implicated in a large number of human solid tumors, leukemias and lymphomas as well as in a variety of animal neoplasias. Deregulated MYC expression is a common denominator in cancer. Chromosomal rearrangements and integration of oncogenic viruses frequently target MYC locus, causing structural or functional alterations of the gene. In this article, we illustrate how genomic rearrangements and viruses integration affect MYC locus in certain human lymphomas and solid tumors.

Keywords: Breast cancer‐Burkitt's lymphoma, hepatocellular carcinoma, MYC oncogene, chromosome alterations, viral integration, gene activation

References

  • 1. Bishop J. M., The molecular genetics of cancer, Science, 235: 305–311, 1987. [DOI] [PubMed] [Google Scholar]
  • 2. Hanahan D., Weinberg, R. A. , The hallmarks of cancer, Cell, 100: 57–70, 2000. [DOI] [PubMed] [Google Scholar]
  • 3. Rabbitts T. H., Chromosomal translocations in human cancer, Nature, 372: 143–149, 1994. [DOI] [PubMed] [Google Scholar]
  • 4. Mitelman F., Mertens F., Johansson B., A breakpoint map of recurrent chromosomal rearrangements in human neoplasis, Nat. Genet., 15: 417–474, 1997. [DOI] [PubMed] [Google Scholar]
  • 5. Grisham J. W., Interspecies comparison of liver carcinogenesis implications for cancer risk assessment, Carcinogenesis, 18: 59–81, 1996. [DOI] [PubMed] [Google Scholar]
  • 6. Hueber A. O., Evan G. I., Traps to catch unwary oncogenes, Trends Genet., 14: 364–367, 1998. [DOI] [PubMed] [Google Scholar]
  • 7. O'Dwyer M. E., Mauro M. J., and Druker B. J., Recent advancement in the treatment of chronic myelogenous leukemia, Annu. Rev. Med., 53: 369–381, 2002. [DOI] [PubMed] [Google Scholar]
  • 8. Nowell P., Dalla‐Favera R., Finan J., Erikson J., Croce C., Chromosome translocations, immunoglobulin genes, and neoplasia In Rowley J. D., Ultmann J. E. (eds). Chromosomes and cancer: from molecules to man. New York : Academic Press; 1983, pp. 165–181. [Google Scholar]
  • 9. Dalla‐Favera R., Bregni M., Erikson J., Patterson D., Gallo R. C., Croce C. M., Human c‐myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. U. S. A., 79: 7824–7827, 1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Pelicci P. G., Knowles D. M. D., Magrath I., Dalla‐Favera R., Chromosomal breakpoints and structural alterations of the c‐myc locus differ in endemic and sporadic forms of Burkitt lymphoma, Proc. Natl. Acad. Sci. U. S. A., 83: 2984–2988, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Croce C. M., Nowell P. C., Molecular basis of B‐cell neoplasia, Blood, 55: 1–7, 1985. [PubMed] [Google Scholar]
  • 12. Croce C. M., Role of chromosome translocation in human neoplasia, Cell, 49: 155–156, 1987. [DOI] [PubMed] [Google Scholar]
  • 13. Haluska F. G., Tsujimoto Y., Russo G., Isobe M., Croce C. M., Molecular genetics of lymphoid tumorigenesis, Prog. Nucleic Acid Res. Mol. Biol., 36: 269–280, 1989. [DOI] [PubMed] [Google Scholar]
  • 14. Showe L. C., Ballantine M., Nishikura K., Erikson J., Kaji H., Croce C. M., Cloning and sequencing of a c‐myc oncogene in a Burkitt's lymphoma cell line that is translocated to a germ line alpha switch region, Mol. Cell. Biol., 5: 501–509, 1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Zimonjic D. B., Keck‐Waggoner C. L., Popescu N. C., Novel genomic imbalances and chromosome translocations involving c‐myc gene in Burkitt's lymphoma, Leukemia, 15: 1582–1588, 2001. [DOI] [PubMed] [Google Scholar]
  • 16. Gurtsevitch V. E., O'Conor G. T., Lenoir G. M., Burkitt's lymphoma cell lines reveal different degrees of tumorigenicity in nude mice, Int. J. Cancer., 41: 87–95, 1988. [DOI] [PubMed] [Google Scholar]
  • 17. Forozan F., Mahlamaki E. H., Monni O., Chen Y., Veldman R., Jiang Y., Gooden G. C., Ethier S. P., Kallioniemi A., Kallioniemi O. P., Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data, Cancer Res., 60: 4519–4525, 2000. [PubMed] [Google Scholar]
  • 18. Tirkkonen M. T. M., Karhu R., Kallioniemi A., Isola J., Kallioniemi O. P., Molecular cytogenetics of primary breast cancer by CGH, Genes Chromosomes Cancer, 21: 177–184, 1998. [PubMed] [Google Scholar]
  • 19. Jain A. N., Chin K., Borresen‐Dale A‐L, Erikstein B. K., Lonning P. E., Kaaresen R., Gray J. W., Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival, Proc. Natl. Acad. Sci. U. S. A., 98: 7952–7957, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Alitalo K., Schwab M., Oncogene amplification in tumor cells. Adv. Cancer Res., 47: 235–281, 1986. [DOI] [PubMed] [Google Scholar]
  • 21. Schimke R. T., Gene amplification in cultured cells. J. Biol. Chem., 63: 5989–5992, 1988. [PubMed] [Google Scholar]
  • 22. Pardue M. L., Dynamic instability of chromosomes and genomes, Cell, 66: 427–431, 1991. [DOI] [PubMed] [Google Scholar]
  • 23. Kraus M.H., Popescu N.C., Amsbaugh S.C., King C.R., Overexpression of the Egf receptor‐related proto‐oncogene Erbb‐2 in human mammary tumor cell lines by different molecular mechanisms, EMBO J., 6: 605–610, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Slamon D.J., Clark G.M., Wong S.G., Levin W.J., Ullrich A., McGuire W.L., Human breast cancer: correlation of relapse and survival with amplification of the HER‐2/neu oncogene, Science, 235: 177–182, 1987. [DOI] [PubMed] [Google Scholar]
  • 25. Pegram M.D., Lipton A., Hayes D.F., Weber B. L., Baselga J.M., Tripathy D., Baly D., Baughman S.A., Twaddell T., Glaspy J.A., Slamon D.J., Phase II study of receptor‐enhanced chemosensitivity using recombinant humanized anti‐p185 HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu‐overexpressing metastatic breast cancer refractory to chemotherapy treatment, J. Clin. Oncol., 16: 2659–2671, 1998. [DOI] [PubMed] [Google Scholar]
  • 26. Zimonjic D.B., Keck‐Waggoner C.L., Yuan B.Z., Kraus M.H., Popescu N.C., Profile of genetic alterations and tumoigenicity of human breast cancer cells, Int. J. Oncol., 16: 221–230, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Hahn W.C., Counter C.M., Lundberg A.S., Beijersbergen R.L., Brooks M.W., Weinberg R. A., Creation of human tumor cells with defined genetic elements, Nature, 400: 464–468, 1999. [DOI] [PubMed] [Google Scholar]
  • 28. Zimonjic D.B., Brooks M.W., Popescu N.C., Weinberg R.A., Hahn W.C., Derivation of human tumor cells in vitro without widespread genomic instability, Cancer Res., 61: 8838–8844, 2001. [PubMed] [Google Scholar]
  • 29. Elenbaas B., Spirio L., Koerner F., Fleming M. D., Zimonjic D.B., Donaher J. L., Popescu N. C., Hahn, W. C. , Weinberg R.A., Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells, Genes Dev., 15: 50–65, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Lundin C., Mertens F., Cytogenetics of benign breast lesions, Breast Cancer Res. Treat., 51: 1–15, 1998. [DOI] [PubMed] [Google Scholar]
  • 31. Varmus H., Retroviruses, Science, 240: 1427–1435, 1988. [DOI] [PubMed] [Google Scholar]
  • 32. Peters G., Oncogenes at viral integration sites, Cell Growth Diff., 1: 503–510, 1990. [PubMed] [Google Scholar]
  • 33. Popescu N.C., Chromosome fragility and instability in human cancer, Crit. Rev. Oncog., 5: 121–140, 1994. [DOI] [PubMed] [Google Scholar]
  • 34. Weinberg R.A., Integrated genomes of animal viruses, Ann. Rev. Biochem., 49: 197–226, 1980. [DOI] [PubMed] [Google Scholar]
  • 35. Croce C.M., Integration of oncogenic viruses in mammalian cells, Int. Rev. Cytol., 71: 1–17, 1981. [DOI] [PubMed] [Google Scholar]
  • 36. Popescu N.C., DiPaolo J.A., Amsbaugh S.C., Integration sites of human papilloma‐virus 18 DNA sequences on HeLa cell chromosomes, Cytogenet. Cell Genet., 44: 58–62, 1987. [DOI] [PubMed] [Google Scholar]
  • 37. Popescu N.C., Zimonjic D.B, DiPaolo J.A., Viral integration, fragile sites and protooncogenes in human neoplasia, Hum. Genet., 84: 383–386, 1989. [DOI] [PubMed] [Google Scholar]
  • 38. Zimonjic D.B., Druck T., Ohta M., Kastury K., Croce C.M., Popescu N.C., Huebner K., Positions of chromosome 3p14. 2 fragile sites (FRA3B) within the FHIT gene, Cancer Res., 57: 1166–1170, 1997. [PubMed] [Google Scholar]
  • 39. Lazo P., DiPaolo J.A., Popescu N.C., Amplification of the integrated viral transforming genes of human papillomavirus 18 and 5′ flanking cellular sequence located near the myc proto‐oncogene in HeLa cells, Cancer Res., 49: 4305–4310, 1989. [PubMed] [Google Scholar]
  • 40. Wilke C.M., Hall B.K., Hoge A., Paradee W., Smith D.I., Glover, T.W. , FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites, Hum. Mol. Genet., 5: 187–195, 1996. [DOI] [PubMed] [Google Scholar]
  • 41. Thorland E.C., Myers S.L., Persing D.H., Sarkar G., McGovern R.M., Gostout, B.S. , Smith, D.I. , Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites, Cancer Res., 60: 5916–5921, 2000. [PubMed] [Google Scholar]
  • 42. Popescu N.C., DiPaolo J.A., Cytogenetics of cervical neoplasia, Cancer Genet. Cytogenet., 60: 214–215, 1992. [DOI] [PubMed] [Google Scholar]
  • 43. Riou G., Le M.C., Favre M., Jeannel D., Bowrhis J., Orth G., Human papillomavirus‐negative status and c‐myc gene overexpression: independent prognostic indicators of distant metastasis for early‐stage invasive cervical cancer, J. Natl. Canc. Inst., 84: 1525–1526, 1992. [DOI] [PubMed] [Google Scholar]
  • 44. Kotin R.M., Menninger J.C., Ward D.C., Berns K.I., Mapping and direct visualization of a region‐specific viral DNA integration site on chromosome 19q13‐qter, Genomics, 10: 831–834, 1991. [DOI] [PubMed] [Google Scholar]
  • 45. Samulski R.J., Zhu X., Xiao X., Brook J.D., Housman D.E., Epstein N., Hunter L.A., Targeted integration of adeno‐associated virus (AAV) into human chromosome 19, EMBO J., 10: 3941–3950, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Rivadeneira E.D., Popescu N.C., Zimonjic D.B., Cheng G.S., Nelson P.J., Ross M.D., DiPaolo J. A., Klotman M.E., Sites of recombinant adeno‐associated virus integration, Int. J. Oncol., 12: 805–810, 1998. [DOI] [PubMed] [Google Scholar]
  • 47. Moroy T., Marchio A., Etiemble J., Trepo C., Tiollais P., Buendia M.A., Rearrangement and enhanced expression of c‐myc in hepatocellular carcinoma of hepatitis virus infected woodchucks, Nature, 324: 276–279, 1986. [DOI] [PubMed] [Google Scholar]
  • 48. Mizuno Y., Murukami S., Matsushita F., Unoura M., Kobayasi K., Migita S., Hatori N., Ohno S., Chromosomal assignment of woodchuck hepatitis virus (WHV) DNA integration sites in a woodchuck hepatocellular carcinoma‐derived cell line (WH257GE10), Int. J. Cancer, 43: 652–657, 1989. [DOI] [PubMed] [Google Scholar]
  • 49. Zimonjic D.B., Keck C.L., Thorgeirsson S.S., Popescu N.C., Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology, 29: 1208–1214, 1999. [DOI] [PubMed] [Google Scholar]
  • 50. Murakami H., Sanderson N., Nagy P., Marino P., Merlino G.T., Thorgeirsson S. S., Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c‐myc and TGF‐α in hepatic oncogenesis, Cancer Res., 53: 1719–1723, 1993. [PubMed] [Google Scholar]
  • 51. Santoni‐Rugiu E, Nagy P., Jensen M.R., Factor V. M., Thorgeirsson S.S., Evolution of neoplastic development in the liver of transgenic mice co‐expressing c‐myc and transforming growth factor, Am. J. Pathol., 149: 407–428, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 52. Santoni‐Rugiu E., Jensen M.R., Thorgeirsson S. S., Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c‐myc and transforming growth factor alpha, Cancer Res., 58: 123–134, 1998. [PubMed] [Google Scholar]
  • 53. Sargent L.M., Zhou X., Keck C.L., Sanderson N. D., Zimonjic D.B., Popescu N.C., Thorgeirsson, S.S. , Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c‐myc and transforming growth factor alpha in the liver, Am. J. Path., 154: 1047–1055, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Keck C.L., Zimonjic D.B., Yuan, B.Z. , Thorgeirsson S.S., Popescu N.C., Nonrandom breakpoints of unbalanced chromosome translocations in human hepatocellular carcinoma cell lines, Cancer Genet. Cytogenet., 111: 37–44, 1999. [DOI] [PubMed] [Google Scholar]
  • 55. Popescu N. C., Zimonjic D.B., Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as targets for therapy, Am. J. Med. Genet. , 2002. (In Press). [DOI] [PubMed]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES