Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(2):161–168. doi: 10.1111/j.1582-4934.2004.tb00271.x

Intracellular calcium signals and control of cell proliferation: how many mechanisms?

L Munaron 1,, S Antoniotti 1, D Lovisolo 1
PMCID: PMC6740139  PMID: 15256064

Abstract

The progression through the cell cycle in non‐transformed cells is under the strict control of extracellular signals called mitogens, that act by eliciting complex cascades of intracellular messengers. Among them, increases in cytosolic free calcium concentration have been long realized to play a crucial role; however, the mechanisms coupling membrane receptor activation to calcium signals are still only partially understood, as are the pathways of calcium entry in the cytosol. This article centers on the role of calcium influx from the extracellular medium in the control of proliferative processes, and reviews the current understanding of the pathways responsible for this influx and of the second messengers involved in their activation.

Keywords: calcium, cell proliferation, calcium channels, cell signaling

References

  • 1. Berridge M. J., Bootman M. D., Lipp P., Calcium: a life and death signal, Nature, 395: 645–648, 1998. [DOI] [PubMed] [Google Scholar]
  • 2. Estacion M., Mordan L., Competence induction by PDGF requires sustained calcium influx by a mechanism distinct from storage‐dependent calcium influx, Cell Calcium, 14: 439–454, 1993. [DOI] [PubMed] [Google Scholar]
  • 3. Kojima I., Mogami H., Ogata E., Role of calcium entry and protein kinase C in the progression activity of insulin‐like growth factor‐I, J. Biol. Chem. 268: 1003–1006, 1993. [PubMed] [Google Scholar]
  • 4. Barbiero G., Munaron G., Antoniotti S., Baccino F. M., Bonelli G., Lovisolo D., Role of mitogen‐induced calcium influx in the control of the cell cycle in Balb‐c 3T3 fibroblasts, Cell Calcium, 18: 542–556, 1995. [DOI] [PubMed] [Google Scholar]
  • 5. Lovisolo D., Distasi C., Antoniotti S., Munaron L., Mitogens and calcium channels, News Physiol. Sci., 12: 279–285, 1997. [Google Scholar]
  • 6. Whitaker M., Larman M. G., Calcium and mitosis, Semin Cell Dev Biol., 12: 53–58, 2001. [DOI] [PubMed] [Google Scholar]
  • 7. Munaron L., Calcium signaling and control of cell proliferation by tyrosine Kinase receptors, Int. J. Mol. Med., 10: 671–676, 2002. [PubMed] [Google Scholar]
  • 8. Berridge M. J., Calcium signalling and cell proliferation, BioEssays 17: 491–500, 1995. [DOI] [PubMed] [Google Scholar]
  • 9. Kahl C. R., Means A. R., Regulation of cell cycle progression by calcium/calmodulin‐dependent pathways, Endocr. Rev., 24: 719–736, 2003. [DOI] [PubMed] [Google Scholar]
  • 10. Santella L., The role of calcium in the cell cycle: facts and hypotheses, Biochem. Biophys. Res. Comm., 244: 317–324, 1998. [DOI] [PubMed] [Google Scholar]
  • 11. Rudolf R., Mongillo M., Rizzuto R., Pozzan T., Looking forward to seeing calcium, Nat. Rev. Mol. Cell. Biol., 4: 579–586, 2003. [DOI] [PubMed] [Google Scholar]
  • 12. Hryshko L. V., Philipson K. D., Sodium‐calcium exchange: recent advances, Basic Res. Cardiol., 92: 45–51, 1997. [DOI] [PubMed] [Google Scholar]
  • 13. Berridge M. J., Inositol trisphosphate and calcium signalling, Nature, 361: 315–325, 1993. [DOI] [PubMed] [Google Scholar]
  • 14. Fill M., Copello J. A., Ryanodine receptor calcium release channels, Physiol Rev., 82: 893–922, 2002. [DOI] [PubMed] [Google Scholar]
  • 15. Estacion M., Mordan L., Expression of voltage‐gated calcium channels correlates with PDGF‐stimulated calcium influx and depends upon cell density in C3H 10T1/2 mouse fibroblasts, Cell Calcium, 14: 161–171, 1993. [DOI] [PubMed] [Google Scholar]
  • 16. Kotturi M. F., Carlow D. A., Lee J. C., Ziltener H. J., Jefferies W. A., Identification and functional characterization of voltage‐dependent calcium channels in T lymphocytes, J. Biol. Chem., 278: 46949–46960, 2003. [DOI] [PubMed] [Google Scholar]
  • 17. Zitt C., Halaszovich C. R., Luckhoff A., The TRP family of cation channels: probing and advancing the concepts of receptor‐activated calcium entry, Progr. Neurobiol., 66: 243–264, 2002. [DOI] [PubMed] [Google Scholar]
  • 18. Kaupp U. B., Seifert R., Cyclic nucleotide‐gated ion channels, Physiol. Rev., 82: 769–824, 2002. [DOI] [PubMed] [Google Scholar]
  • 19. Moini H., Bilsel S., Bekdemir T., Emerk K., 17 beta‐Estradiol increases intracellular free calcium concentrations of human vascular endothelial cells and modulates its responses to acetylcholine, Endothelium, 5: 11–19, 1997. [DOI] [PubMed] [Google Scholar]
  • 20. Epstein R., Calcium‐inducible transmodulation of receptor tyrosine Kinase activity, Cell. Signal., 7: 377–388, 1995. [DOI] [PubMed] [Google Scholar]
  • 21. Lowes V. L., Ip N. Y., Wong Y. H., Integration of signals from receptor tyrosine Kinases and G protein‐coupled receptors, Neurosignals, 11: 5–19, 2002. [DOI] [PubMed] [Google Scholar]
  • 22. Gawler D. J., Points of convergence between Ca2+ and Ras signalling pathways, Biochim. Biophys. Acta, 1448: 171–182, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Vos Q., Lees A., Wu Z. Q., Snapper C. M., Mond J. J., B‐cell activation by T‐cell‐independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms, Immunol. Rev., 176: 154–170, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Byron K. L., Babnigg G., Villereal M. L., Bradykinininduced Ca2+ entry, release, and refilling of intracellular Ca2+ stores, J. Biol. Chem., 267: 108–118, 1992. [PubMed] [Google Scholar]
  • 25. Munaron L., Fiorio Pla A., Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells, J. Cell Physiol., 185: 454–463, 2000. [DOI] [PubMed] [Google Scholar]
  • 26. Kanzaki M., Zhang Y. Q., Mashima H., Li L., Shibata H., Kojima I., Translocation of a calcium‐permeable cation channel induced by insulin‐like growth factor‐I, Nat. Cell Biol., 1: 165–170, 1999. [DOI] [PubMed] [Google Scholar]
  • 27. Golovina V. A., Platoshyn O., Bailey C. L., Wang J., Limsuwan A., Sweeney M., Rubin L. J., Yuan J. X., Upregulated TRP and enhanced capacitative Ca (2+) entry in human pulmonary artery myocytes during proliferation, Am. J. Physiol. Heart Circ. Physiol., 280: H746–H755, 2001. [DOI] [PubMed] [Google Scholar]
  • 28. Vazquez G., Wedel B. J., Trebak M., St John Bird G., Putney J. W. Jr., Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation, J. Biol. Chem., 278: 21649–21654, 2003. [DOI] [PubMed] [Google Scholar]
  • 29. Broad L. M., Cannon T. M., Taylor C. W., A non‐capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin, J. Physiol., 517: 121–134, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Moneer Z., Dyer J. L., Taylor C. W., Nitric oxide co‐ordinates the activities of the capacitative and non‐capacitative Ca2+‐entry pathways regulated by vasopressin, Biochem. J., 370: 439–448, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Shuttleworth T. J., Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations, J. Biol. Chem., 271: 21720–21725, 1996. [DOI] [PubMed] [Google Scholar]
  • 32. Munaron L., Antoniotti S., Distasi C., Lovisolo D., Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb‐c 3T3 fibroblasts, Cell Calcium, 22: 179–188, 1997. [DOI] [PubMed] [Google Scholar]
  • 33. Mignen O., Shuttleworth T. J., I (ARC), a novel arachidonate‐regulated, noncapacitative Ca2+ entry channel, J. Biol. Chem., 275: 9114–9119, 2000. [DOI] [PubMed] [Google Scholar]
  • 34. Fiorio Pla A., Munaron L., Calcium influx, arachidonic acid, and control of endothelial cell proliferation, Cell Calcium, 30: 235–244, 2001. [DOI] [PubMed] [Google Scholar]
  • 35. Antoniotti S., Fiorio Pla A., Pregnolato S., Mottola A., Lovisolo D., Munaron L., Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: A pharmacological approach, J. Cell. Physiol., 197: 370–378, 2003. [DOI] [PubMed] [Google Scholar]
  • 36. Hardie R. C., Regulation of TRP channels via lipid second messengers, Annu. Rev. Physiol., 65: 735–759, 2003. [DOI] [PubMed] [Google Scholar]
  • 37. Merle P. L., Feige J. J., Verdetti J., Basic fibroblast growth factor activates calcium channels in neonatal rat cardiomyocytes, J. Biol. Chem., 270: 17361–17367, 1995. [DOI] [PubMed] [Google Scholar]
  • 38. Distasi C., Torre M., Antoniotti S., Munaron L., Lovisolo D., Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neuron, Eur. J. Neurosci., 10: 2276–2286, 1998. [DOI] [PubMed] [Google Scholar]
  • 39. Kiselyov K., Xu X., Mozhayeva G., Kuo T., Pessah I., Mignery G., Zhu X., Birnbaumer L., Muallem S., Functional interaction between InsP3 receptors and storeoperated Htrp3 channels, Nature, 396: 478–482, 1998. [DOI] [PubMed] [Google Scholar]
  • 40. Ma H. T., Venkatachalam K., Li H. S., Montell C., Kurosaki T., Patterson R. L., Gill D. L., Assessment of the role of the inositol 1, 4, 5‐trisphosphate receptor in the activation of transient receptor potential channels and storeoperated Ca2+ entry channels, J. Biol. Chem., 276: 18888–18896, 2001. [DOI] [PubMed] [Google Scholar]
  • 41. Berkels R., Suerhoff S., Roesen R., Klaus W., Nitric oxide causes a cGMP‐independent intracellular calcium rise in porcine endothelial cells ‐ a paradox Microvasc. Res., 59: 38–44, 2000. [DOI] [PubMed] [Google Scholar]
  • 42. Yao X., Kwan H. Y., Chan F. L., Chan N. W., Huang Y., A protein kinase G‐sensitive channel mediates flow‐induced Ca (2+) entry into vascular endothelial cells, FASEB J., 14: 932–938, 2000. [DOI] [PubMed] [Google Scholar]
  • 43. Dedkova E. N., Blatter L. A., Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells, J. Physiol., 539, 77–91, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Zhang J., Xia S. L., Block E. R., Patel J. M., NO upregulation of a cyclic nucleotide‐gated channel contributes to calcium elevation in endothelial cells, Am. J., Physiol. Cell Physiol., 283: C1080–C1089, 2002. [DOI] [PubMed] [Google Scholar]
  • 45. Watson E. L., Jacobson K. L., Singh J. C., DiJulio D. H., Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide, Cell Signal., 16: 157–165, 2004. [DOI] [PubMed] [Google Scholar]
  • 46. Gandino L., Munaron L., Naldini L., Ferracini R., Magni M., Comoglio P. M., Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene, J. Biol. Chem., 266: 16098–16104, 1991. [PubMed] [Google Scholar]
  • 47. Chyb S., Raghu P., Hardie R. C., Polyunsaturated fatty acids activate the Drosophila light‐sensitive channels TRP and TRPL, Nature, 397: 255–259, 1999. [DOI] [PubMed] [Google Scholar]
  • 48. Hofmann T., Obukhov A. G., Schaefer M., Harteneck C., Gudermann T., Schultz G., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol, Nature, 397: 259–263, 1999. [DOI] [PubMed] [Google Scholar]
  • 49. Wu X., Babnigg G., Zagranichnaya T., Villereal M. L., The role of endogenous human Trp4 in regulating carbacholinduced calcium oscillations in HEK‐293 cells, J Biol Chem., 277: 13597–13608, 2002. [DOI] [PubMed] [Google Scholar]
  • 50. Antoniotti S., Lovisolo D., Fiorio Pla A., Munaron L., Expression and functional role of TRPC1 channels in native endothelial cells, FEBS Lett., 510: 189–195, 2002. [DOI] [PubMed] [Google Scholar]
  • 51. Sweeney M., McDaniel S. S., Platoshyn O., Zhang S., Yu Y., Lapp B. R., Zhao Y., Thistlethwaite P. A., Yuan J. X., Role of capacitative Ca2+ entry in bronchial contraction and remodeling, J. Appl. Physiol., 92: 1594–1602, 2002. [DOI] [PubMed] [Google Scholar]
  • 52. Yu Y., Sweeney M., Zhang S., Platoshyn O., Landsberg J., Rothman A., Yuan JX., PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression, Am. J. Physiol. Cell. Physiol., 284: C316–C330, 2003. [DOI] [PubMed] [Google Scholar]
  • 53. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX., Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation, Am. J. Physiol. Lung Cell. Mol. Physiol., 283: L144–L155, 2002. [DOI] [PubMed] [Google Scholar]
  • 54. Buess M., Engler O., Hirsh H. H., Moroni C., Search for oncogenic regulators in an autocrine tumor model using differential display PCR: identification of novel candidate genes including the calcium channel mtrp6, Oncogene, 18: 1487–1494, 1999. [DOI] [PubMed] [Google Scholar]
  • 55. Magni M., Meldolesi J., Pandiella A., Ionic events induced by epidermal growth factor. Evidence that hyperpolarization and stimulated cation influx play a role in the stimulation of cell growth, J. Biol. Chem., 266: 6329–6335, 1991. [PubMed] [Google Scholar]
  • 56. Hussain M. M., Kotz H., Minasian L., Premkumar A., Sarosy G., Reed E., Zhai S., Steinberg S. M., Raggio M., Oliver V. K., Figg W. D., Kohn E. C., Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer, J. Clin. Oncol., 21: 4356–4363, 2003. [DOI] [PubMed] [Google Scholar]
  • 57. Berridge M. J., Lipp P., Bootman M. D., The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 1: 11–21, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Huser J., Holda J. R., Kockskamper J., Blatter L. A., Focal agonist stimulation results in spatially restricted Ca2+ release and capacitative Ca2+ entry in bovine vascular endothelial cells, J. Physiol., 514: 101–109, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Malli R., Frieden M., Osibow K., Graier W. F., Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation, J. Biol. Chem., 278: 10807–10815, 2003. [DOI] [PubMed] [Google Scholar]
  • 60. Rizzuto R., Pinton P., Brini M., Chiesa A., Filippin L., Pozzan T., Mitochondria as biosensors of calcium microdomains, Cell Calcium, 26: 193–199, 1999. [DOI] [PubMed] [Google Scholar]
  • 61. Pozzan T., Magalhães P., Rizzuto R., The comeback of mitochondria to calcium signalling, Cell Calcium, 28: 279–283, 2000. [DOI] [PubMed] [Google Scholar]
  • 62. Isshiki M., Anderson R. G., Calcium signal transduction from caveolae, Cell Calcium, 26: 201–208, 1999. [DOI] [PubMed] [Google Scholar]
  • 63. Dolmetsch R. E., Xu K., Lewis R. S., Calcium oscillations increase the efficiency and specificity of gene expression, Nature, 392: 933–936, 1998. [DOI] [PubMed] [Google Scholar]
  • 64. Verkhratsky A., Toescu E. C., Endoplasmic reticulum Ca2+ homeostasis and neuronal death, J. Cell. Mol. Med., 7: 351–361, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES