Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(1):25–48. doi: 10.1111/j.1582-4934.2002.tb00309.x

Regulation of apoptosis by the ubiquitin and proteasome pathway

Cezary Wójcik 1,2,
PMCID: PMC6740140  PMID: 12003667

Abstract

Regulated proteolysis plays important roles in cell physiology as well as in pathological conditions. In most of the cases, regulated proteolysis is carried out by the ubiquitin‐ and proteasome‐dependent proteolytic system, which is also in charge of the bulk of cytoplasmic proteolysis. However, apoptosis or the process of programmed cell death is regulated by a different proteolytic system, i.e. by caspases, a family of specialized cysteine proteases. Nevertheless, there is plenty of evidence of a crosstalk between the apoptotic pathways and the ubiquitin and proteasome system, whose function in apoptosis appears to be very complex. Proteasome inhibitors induce apoptosis in multiple cell types, while in other they are relatively harmless or even prevent apoptosis induced by other stimuli. Proteasomes degrade specific proteins during apoptosis, but on the other hand some components of the proteasome system are degraded by caspases. The knowledge about the involvement of the ubiquitin‐ and proteasome‐dependent system in apoptosis is already clinically exploited, since proteasome inhibitors are being tested as experimental drugs in the treatment of cancer and other pathological conditions, where manipulation of apoptosis is desirable.

Keywords: apoptosis, caspases, proteasome, proteolysis, ubiquitin

References

  • 1. Mayer R. J., The meteoric rise of regulated intracellular proteolysis, Nat. Rev. Mol. Cell Biol., 1: 145–148, 2000. [DOI] [PubMed] [Google Scholar]
  • 2. Rubin D. M., Finley D., Proteolysis. The proteasome: a protein‐degrading organelle?, Curr. Biol., 5: 854–858, 1995. [DOI] [PubMed] [Google Scholar]
  • 3. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules, Cell, 78: 761–71, 1994. [DOI] [PubMed] [Google Scholar]
  • 4. Hochstrasser M., Johnson P. R., Arendt C. S., Amerik A. Y., Swaminathan S., Swanson R., Li S. J., Laney J., Pals‐Rylaarsdam R., Nowak J., Connerly P. L., The Saccharomyces cerevisiae ubiquitin‐proteasome system, Philos. Trans. R. Soc. Lond B Biol. Sci., 354: 1513–1522, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Drexler H. C. A., Programmed cell death and the proteasome, Apoptosis, 3: 1–7, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Orlowski R. Z., The role of the ubiquitinproteasome pathway in apoptosis., Cell Death Differ, 6: 303–313 1999. [DOI] [PubMed] [Google Scholar]
  • 7. Grimm L. M., Osborne B. A., Apoptosis and the proteasome, Results Probl Cell Differ, 23: 209–28, 1999. [DOI] [PubMed] [Google Scholar]
  • 8. Wojcik C., Proteasomes in apoptosis: villains or guardians?, Cell Mol. Life Sci., 56: 908–917, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Jesenberger V., Jentsch S., Deadly encounter: ubiquitin meets apoptosis, Nat. Rev. Mol. Cell Biol., 3: 112–121, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Etlinger J. D., Goldberg A. L., A soluble ATP‐dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Proc. Natl. Acad. Sci. U. S. A, 74: 54–58, 1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Hershko A., Ciechanover A., Varshavsky A., Basic Medical Research Award. The ubiquitin system, Nat. Med., 6: 1073–1081, 2000. [DOI] [PubMed] [Google Scholar]
  • 12. Wu R. S., Kohn K. W., Bonner W. M., Metabolism of ubiquitinated histones, J. Biol. Chem., 256: 5916–20, 1981. [PubMed] [Google Scholar]
  • 13. Strous G. J., Govers R., The ubiquitin‐proteasome system and endocytosis, J. Cell Sci., 112: 1417–23, 1999. [DOI] [PubMed] [Google Scholar]
  • 14. Finley D., Bartel B., Varshavsky A., The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature, 338: 394–401, 1989. [DOI] [PubMed] [Google Scholar]
  • 15. Ciechanover A., Hod Y., Hershko A., A heat‐stable polypeptide component of an ATP‐dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun., 81: 1100–5, 1978. [DOI] [PubMed] [Google Scholar]
  • 16. Hershko A., Ciechanover A., The ubiquitin system, Annu. Rev. Biochem., 67: 425–79, 1998. [DOI] [PubMed] [Google Scholar]
  • 17. Ciechanover A., Breitschopf K., Hatoum O. A., Bengal E., Degradation of MyoD by the ubiquitin pathway: regulation by specific DNA‐binding and identification of a novel site for ubiquitination, Mol. Biol. Rep., 26: 59–64, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Pickart C. M., Mechanisms underlying ubiquitination, Annu. Rev. Biochem., 70: 503–533, 2001. [DOI] [PubMed] [Google Scholar]
  • 19. Pickart C. M., Ubiquitin in chains, Trends Biochem. Sci., 25: 544–548, 2000. [DOI] [PubMed] [Google Scholar]
  • 20. Coffino P., Antizyme, a mediator of ubiquitinindependent proteasomal degradation, Biochimie, 83: 319–323 2001. [DOI] [PubMed] [Google Scholar]
  • 21. Kamitani T., Kito K., Fukuda‐Kamitani T., Yeh E. T., Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1, J. Biol. Chem., 276: 46655–46660, 2001. [DOI] [PubMed] [Google Scholar]
  • 22. Andrea A. D., Pellman D., Deubiquitinating enzymes: a new class of biological regulators, Crit. Rev. Biochem. Mol. Biol., 33: 337–52, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Wilkinson K. D., Regulation of ubiquitin‐dependent processes by deubiquitinating enzymes, FASEB J., 11: 1245–56, 1997. [DOI] [PubMed] [Google Scholar]
  • 24. Hendil K. B., The 19 S multicatalytic “prosome” proteinase is a constitutive enzyme in HeLa cells, Biochem. Int., 17: 471–7, 1988. [PubMed] [Google Scholar]
  • 25. Arrigo A. P., Tanaka K., Goldberg A. L., Welch W. J., Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature, 331: 192–4, 1988. [DOI] [PubMed] [Google Scholar]
  • 26. Bochtler M., Ditzel L., Groll M., Hartmann C., Huber R., The proteasome, Annu. Rev. Biophys. Biomol. Struct., 28: 295–317, 1999. [DOI] [PubMed] [Google Scholar]
  • 27. Demartino G. N., Slaughter C. A., The proteasome, a novel protease regulated by multiple mechanisms, J. Biol. Chem., 274: 22123–6, 1999. [DOI] [PubMed] [Google Scholar]
  • 28. Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H. D., Huber R., Structure of 20S proteasome from yeast at 2.4 A resolution [see comments], Nature, 386: 463–71, 1997. [DOI] [PubMed] [Google Scholar]
  • 29. Wilk S., Orlowski M., Cation‐sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme., J. Neurochem., 35: 1172–82, 1980. [DOI] [PubMed] [Google Scholar]
  • 30. Wilk S., Orlowski M., Evidence that pituitary cation‐sensitive neutral endopeptidase is a multicatalytic protease complex, J. Neurochem., 40: 842–9, 1983. [DOI] [PubMed] [Google Scholar]
  • 31. Orlowski M., Wilk S., Catalytic activities of the 20 S proteasome, a multicatalytic proteinase complex, Arch. Biochem. Biophys., 383: 1–16, 2000. [DOI] [PubMed] [Google Scholar]
  • 32. Lowe J., Stock D., Jap B., Zwickl P., Baumeister W., Huber R., Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution [see comments], Science, 268: 533–9, 1995. [DOI] [PubMed] [Google Scholar]
  • 33. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L., Inhibition of proteasome activities and subunit‐specific amino‐terminal threonine modification by lactacystin, Science, 268: 726–31, 1995. [DOI] [PubMed] [Google Scholar]
  • 34. Arendt C. S., Hochstrasser M., Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active‐site formation, Proc. Natl. Acad. Sci. U S A, 94: 7156–61, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Fruh K., Gossen M., Wang K., Bujard H., Peterson P. A., Yang Y., Displacement of housekeeping proteasome subunits by MHC‐encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex, EMBO J., 13: 3236–44, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Fruh K., Yang Y., Antigen presentation by MHC class I and its regulation by interferon gamma, Curr. Opin. Immunol., 11: 76–81, 1999. [DOI] [PubMed] [Google Scholar]
  • 37. Kloetzel P. M., Soza A., Stohwasser R., The role of the proteasome system and the proteasome activator PA28 complex in the cellular immune response, Biol. Chem., 380: 293–7, 1999. [DOI] [PubMed] [Google Scholar]
  • 38. Demartino G. N., Proske R. J., Moomaw C. R., Strong A. A., Song X., Hisamatsu H., Tanaka K., Slaughter C. A., Identification, purification, and characterization of a PA700‐dependent activator of the proteasome, J. Biol. Chem., 271: 3112–8, 1996. [DOI] [PubMed] [Google Scholar]
  • 39. Glickman M. H., Rubin D. M, Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V. A., Finley D., A subcomplex of the proteasome regulatory particle required for ubiquitin‐conjugate degradation and related to the COP9‐signalosome and eIF3, Cell, 94: 615–23, 1998. [DOI] [PubMed] [Google Scholar]
  • 40. Glickman M. H., Rubin D. M., Fried V. A., Finley D., The regulatory particle of the Saccharomyces cerevisiae proteasome, Mol. Cell. Biol., 18: 3149–62, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Dubiel W., Pratt G., Ferrell K., Rechsteiner M., Purification of an 11 S regulator of the multicatalytic proteinase., J. Biol. Chem., 267: 22369–22377, 1992. [PubMed] [Google Scholar]
  • 42. Ma C. P., Slaughter C. A., Demartino G. N., Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain), J. Biol. Chem., 267: 10515–10523, 1992. [PubMed] [Google Scholar]
  • 43. Rechsteiner M., Realini C., Ustrell V., The proteasome activator 11 S REG (PA28) and class I antigen presentation, Biochem. J., 345 Pt 1: 1–15, 2000. [PMC free article] [PubMed] [Google Scholar]
  • 44. Tanahashi N., Yokota K., Ahn J. Y., Chung C. H., Fujiwara T., Takahashi E., Demartino G. N., Slaughter C. A., Toyonaga T., Yamamura K., Shimbara N., Tanaka K., Molecular properties of the proteasome activator PA28 family proteins and gamma‐interferon regulation, Genes Cells, 2: 195–211, 1997. [DOI] [PubMed] [Google Scholar]
  • 45. Chu‐Ping M., Slaughter C. A., Demartino G. N., Purification and characterization of a protein inhibitor of the 20S proteasome (macropain), Biochim. Biophys. Acta, 1119: 303–11, 1992. [DOI] [PubMed] [Google Scholar]
  • 46. Scherrer K., Prosomes, subcomplexes of untranslated mRNP, Molec. Biol. Rep., 14: 1–9, 1990. [DOI] [PubMed] [Google Scholar]
  • 47. Pamnani V., Haas B., Puhler G., Sanger H. L., Baumeister W., Proteasome‐associated RNAs are non‐specific, Eur. J. Biochem., 225: 511–9, 1994. [DOI] [PubMed] [Google Scholar]
  • 48. Seemuller E., Lupas A., Stock D., Lowe J., Huber R., Baumeister W., Proteasome from Thermoplasma acidophilum: a threonine protease, Science, 268: 579–582, 1995. [DOI] [PubMed] [Google Scholar]
  • 49. Lee D. H., Goldberg A. L., Proteasome inhibitors: valuable new tools for cell biologists., Trends Cell Biol, 8: 397–403, 1998. [DOI] [PubMed] [Google Scholar]
  • 50. Wojcik C., Inhibition of the proteasome as a therapeutic approach, Drug Discov. Today, 4: 188–192, 1999. [DOI] [PubMed] [Google Scholar]
  • 51. Kisselev A. F., Goldberg A. L., Proteasome inhibitors: from research tools to drug candidates, Chem. Biol., 8: 739–758, 2001. [DOI] [PubMed] [Google Scholar]
  • 52. Orlowski M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system, Biochemistry, 29: 10289–97, 1990. [DOI] [PubMed] [Google Scholar]
  • 53. Figueiredo‐Pereira M. E., Berg K. A, Wilk S., A new inhibitor of the chymotrypsin‐like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin‐protein conjugates in a neuronal cell, J. Neurochem., 63: 1578–81, 1994. [DOI] [PubMed] [Google Scholar]
  • 54. Spaltenstein A., Leban J. J., Huang J. J., Reinhardt K. R., Viveros O. H., Sigafoos J., Crouch R., Design and synthesis of novel protease inhibitors. Tripeptide a', b'‐epoxyketones as nanomolar inactivators of the proteasome., Tetrahedron Lett., 37: 1343–6, 1996. [Google Scholar]
  • 55. Iqbal M., Chatterjee S., Kauer J. C., Das M., Messina P., Freed B., Biazzo W., Siman R., Potent inhibitors of proteasome, J. Med. Chem., 38: 2276–7, 1995. [DOI] [PubMed] [Google Scholar]
  • 56. Lum R. T., Kerwar S. S., Meyer S. M., Nelson M. G., Schow S. R., Schiffman D., Wick M. M., Joly A., A new class of proteasome inhibitors that prevent NFkB activation., Biochem. Pharmacol., 55: 1391–1397, 1998. [DOI] [PubMed] [Google Scholar]
  • 57. Adams J., Proteasome inhibition in cancer: development of PS‐341, Semin. Oncol., 28: 613–619, 2001. [DOI] [PubMed] [Google Scholar]
  • 58. Meng L., Mohan R., Kwok B. H., Elofsson M., Sin N., Crews C. M., Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity, Proc. Natl. Acad. Sci. USA, 96: 10403–10408, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Meng L., Kwok B. H., Sin N., Crews C. M., Eponemycin exerts its antitumor effect through the inhibition of proteasome function, Cancer Res, 59: 2798–801, 1999. [PubMed] [Google Scholar]
  • 60. Kroll M., Arenzana‐Seisdedos F., Bachelerie F., Thomas D., Friguet B., Conconi M., The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome, Chem. Biol., 6: 689–98, 1999. [DOI] [PubMed] [Google Scholar]
  • 61. Nam S., Smith D. M., Dou Q. P., Tannic Acid Potently Inhibits Tumor Cell Proteasome Activity, Increases p27 and Bax Expression, and Induces G(1) Arrest and Apoptosis, Cancer Epidemiol. Biomarkers Prev., 10: 1083–1088, 2001. [PubMed] [Google Scholar]
  • 62. Andre P., Groettrup M., Klenerman P., de Giuli R., Booth B. L., Jr. , Cerundolo V., Bonneville M., Jotereau F., Zinkernagel R. M., Lotteau V., An inhibitor of HIV‐1 protease modulates proteasome activity, antigen presentation, and T cell responses, Proc. Natl. Acad. Sci. USA, 95: 13120–4, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Rao S., Porter D. C., Chen X., Herliczek T., Lowe M., Keyomarsi K., Lovastatin‐mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl‐CoA reductase, Proc. Natl. Acad. Sci. USA, 96: 7797–802, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Wojcik C., Bury M., Stoklosa T., Giermasz A., Feleszko W., Mlynarczuk I., Pleban E., Basak G., Omura S., Jakobisiak M., Lovastatin and simvastatin are modulators of the proteasome, Int. J. Biochem. Cell Biol., 32: 957–965, 2000. [DOI] [PubMed] [Google Scholar]
  • 65. Isoe T., Naito M., Hirai R., Tsuruo T., Inhibition of ubiquitin‐ATP‐dependent proteolysis and ubiquitination by cisplatin, Anticancer Res., 11: 1905–9, 1991. [PubMed] [Google Scholar]
  • 66. Isoe T., Naito M., Shirai A., Hirai R., Tsuruo T., Inhibition of different steps of the ubiquitin system by cisplatin and aclarubicin, Biochim. Biophys. Acta, 1117: 131–5, 1992. [DOI] [PubMed] [Google Scholar]
  • 67. Figueiredo‐Pereira M. E., Chen W. E., Li J., Johdo O., The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsinlike activity of the bovine pituitary 20 S proteasome, J. Biol. Chem., 271: 16455–9, 1996. [DOI] [PubMed] [Google Scholar]
  • 68. Kiyomiya K., Matsuo S., Kurebe M., Proteasome is a carrier to translocate doxorubicin from cytoplasm into nucleus, Life Sci., 62: 1853–60, 1998. [DOI] [PubMed] [Google Scholar]
  • 69. Piccinini M., Tazartes O., Mezzatesta C., Ricotti E., Bedino S., Grosso F., Dianzani U., Tovo P. A., Mostert M., Musso A., Rinaudo M. T., Proteasomes are a target of the anti‐tumour drug vinblastine, Biochem. J., 356: 835–841, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Schwartz L. M., Myer A., Kosz L., Engelstein M., Maier C., Activation of polyubiquitin gene expression during developmentally programmed cell death, Neuron, 5: 411–9, 1990. [DOI] [PubMed] [Google Scholar]
  • 71. Imajoh‐Ohmi S., Kawaguchi T., Sugiyama S., Tanaka K., Omura S., Kikuchi H., Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells, Biochem Biophys Res Comm, 217: 1070–7, 1995. [DOI] [PubMed] [Google Scholar]
  • 72. Almond J. B., Snowden R. T., Hunter A., Dinsdale D., Cain K., Cohen G. M., Proteasome inhibitor‐induced apoptosis of B‐chronic lymphocytic leukaemia cells involves cytochrome c release and caspase activation, accompanied by formation of an approximately 700 kDa Apaf‐1 containing apoptosome complex, Leukemia, 15: 1388–1397, 2001. [DOI] [PubMed] [Google Scholar]
  • 73. Soligo D., Servida F., Delia D., Fontanella E., Lamorte G., Caneva L. Fumiatti R., Lambertenghi D. G., The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI, Br. J. Haematol., 113: 126–135, 2001. [DOI] [PubMed] [Google Scholar]
  • 74. Bold R. J., Virudachalam S., McConkey D. J., Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome, J. Surg. Res., 100: 11–17, 2001. [DOI] [PubMed] [Google Scholar]
  • 75. Lee M., Hyun D. H., Marshall K. A., Ellerby L. M., Bredesen D. E., Jenner P., Halliwell B., Effect of overexpression of Bcl‐2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome, Free Radic. Biol. Med., 31: 1550–1559, 2001. [DOI] [PubMed] [Google Scholar]
  • 76. Traenckner E. B., Wilk S. Baeuerle P.A., A proteasome inhibitor prevents activation of NF‐kappa B and stabilizes a newly phosphorylated form of I kappa B‐alpha that is still bound to NF‐kappa B, EMBO J., 13: 5433–41, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Wang C. Y., Mayo M. W., Baldwin A. S. Jr., TNF‐and cancer therapy‐induced apoptosis: potentiation by inhibition of NFkB., Science, 274: 787–789, 1996. [DOI] [PubMed] [Google Scholar]
  • 78. Delic J., Masdehors P., Omura S., Cosset J. M., Dumont J., Binet J. L., Magdelenat H., The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo‐ and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF‐alpha‐initiated apoptosis, Br. J. Canc., 77: 1103–7, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Fujita E., Mukasa T., Tsukahara T., Arahata K., Omura S., Momoi T., Enhancement of CPP32‐like activity in the TNF‐treated U937 cells by the proteasome inhibitors, Biochem Biophys. Res. Comm., 224: 74–9, 1996. [DOI] [PubMed] [Google Scholar]
  • 80. Fujihara S., Ward C., Dransfield I., Hay R., Uings I., Hayes B., Farrow S., Haslett C., Rossi A., Inhibition of nuclear factor‐B activation un‐masks the ability of TNF‐α to induce human eosinophil apoptosis, Eur. J. Immunol., 32: 457–466, 2002. [DOI] [PubMed] [Google Scholar]
  • 81. Franco A. V., Zhang X. D., van Berkel E., Sanders J. E., Zhang X. Y., Thomas W. D., Nguyen T., Hersey P., The role of NF‐kappa B in TNF‐related apoptosis‐inducing ligand (TRAIL)‐ induced apoptosis of melanoma cells, J. Immunol., 166: 5337–5345, 2001. [DOI] [PubMed] [Google Scholar]
  • 82. Yabe T., Wilson D., Schwartz J. P., NFκB activation is required for the neuroprotective effects of pigment epithelium‐derived factor (PEDF) on cerebellar granule neurons, J. Biol. Chem., 2001. [DOI] [PubMed]
  • 83. Elliott P. J., Pien C. S., McCormack T. A., Chapman I. D., Adams J., Proteasome inhibition: A novel mechanism to combat asthma, J. Allergy Clin. Immunol., 104: 294–300, 1999. [DOI] [PubMed] [Google Scholar]
  • 84. Wojcik C., Schroeter D., Stoehr M., Wilk S., Paweletz N., An inhibitor of the chymotrypsin‐like activity of the multicatalytic proteinase complex (20S proteasome) induces arrest in G2‐phase and metaphase in HeLa cells, Europ. J. Cell. Biol., 70: 172–8, 1996. [PubMed] [Google Scholar]
  • 85. Machiels B. M., Henfling M. E., Gerards W. L., Broers J. L., Bloemendal H., Ramaekers F. C., Schutte B., Detailed analysis of cell cycle kinetics upon proteasome inhibition, Cytometry, 28: 243–252, 1997. [PubMed] [Google Scholar]
  • 86. Hershko A., Roles of ubiquitin‐mediated proteolysis in cell cycle control, Curr. Opin. Cell Biol., 9: 788–99, 1997. [DOI] [PubMed] [Google Scholar]
  • 87. Shah S. A., Potter M. W., McDade T. P., Ricciardi R., Perugini R. A., Elliott P. J., Adams J., Callery M. P., 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer, J. Cell Biochem., 82: 110–122, 2001. [DOI] [PubMed] [Google Scholar]
  • 88. Shen Y., White E., p53‐dependent apoptosis pathways, Adv. Cancer Res., 82: 55–84, 2001. [DOI] [PubMed] [Google Scholar]
  • 89. Wang X. W., Role of p53 and apoptosis in carcinogenesis, Anticancer Res., 19: 4759–4771, 1999. [PubMed] [Google Scholar]
  • 90. Burns T. F., El Deiry W. S., The p53 pathway and apoptosis, J. Cell Physiol., 181: 231–239, 1999. [DOI] [PubMed] [Google Scholar]
  • 91. Fang S., Jensen J. P., Ludwig R. L., Vousden K. H., Weissman A. M., Mdm2 is a RING fingerdependent ubiquitin protein ligase for itself and p53, J. Biol. Chem., 275: 8945–8951, 2000. [DOI] [PubMed] [Google Scholar]
  • 92. Cho J. W., Park J. C., Lee J. C., Kwon T. K., Park J. W., Baek W. K., Suh S. I., Suh M. H., The levels of MDM2 protein are decreased by a proteasomemediated proteolysis prior to caspase‐3‐dependent pRb and PARP cleavages, J. Korean Med. Sci., 16: 135–139, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. MacLaren A. P., Chapman R. S., Wyllie A. H., Watson C. J., p53‐dependent apoptosis induced by proteasome inhibition in mammary epithelial cells, Cell Death. Differ., 8: 210–218, 2001. [DOI] [PubMed] [Google Scholar]
  • 94. Herrmann J. L., Briones F. Jr., Brisbay S., Logothetis C. J., McDonnell T. J., Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl‐2 and p53, Oncogene, 17: 2889–99, 1998. [DOI] [PubMed] [Google Scholar]
  • 95. An B., Goldfarb R. H., Siman R., Dou Q. P., Novel dipeptidyl proteasome inhibitors overcome Bcl‐2 protective function and selectively accumulate the cyclin‐dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts, Cell Death Differ., 5: 1062–75, 1998. [DOI] [PubMed] [Google Scholar]
  • 96. Wagenknecht B., Hermisson M., Eitel K. Weller M., Proteasome inhibitors induce p53/p21‐independent apoptosis in human glioma cells, Cell Physiol. Biochem., 9: 117–125, 1999. [DOI] [PubMed] [Google Scholar]
  • 97. Seluanov A., Gorbunova V., Falcovitz A., Sigal A., Milyavsky M., Zurer I., Shohat G., Goldfinger N., Rotter V., Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53, Mol. Cell Biol., 21: 1552–1564, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98. Fukazawa T., Fujiwara T., Uno F., Teraishi F., Kadowaki Y., Itoshima T., Takata Y., Kagawa S., Roth J. A., Tschopp J., Tanaka N., Accelerated degradation of cellular FLIP protein through the ubiquitin‐ proteasome pathway in p53‐mediated apoptosis of human cancer cells, Oncogene, 20: 5225–5231, 2001. [DOI] [PubMed] [Google Scholar]
  • 99. Gregory M. A., Hann S. R., c‐Myc proteolysis by the ubiquitin‐proteasome pathway: stabilization of c‐Myc in Burkitt's lymphoma cells, Mol. Cell Biol., 20: 2423–2435, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Tani E., Kitagawa H., Ikemoto H., Matsumoto T., Proteasome inhibitors induce Fas‐mediated apoptosis by c‐Myc accumulation and subsequent induction of FasL message in human glioma cells, FEBS Lett., 504: 53–58, 2001. [DOI] [PubMed] [Google Scholar]
  • 101. Kim K., Proteasome inhibitors sensitize human vascular smooth muscle cells to Fas (CD95)‐mediated death, Biochem. Biophys. Res. Commun., 281: 305–310, 2001. [DOI] [PubMed] [Google Scholar]
  • 102. Suzuki Y., Nakabayashi Y., Takahashi R., Ubiquitin‐protein ligase activity of X‐linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase‐3 and enhances its antiapoptotic effect in Fas‐induced cell death, Proc. Natl. Acad. Sci. USA, 98: 8662–8667, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Tenev T., Marani M., McNeish I., Lemoine N. R., Pro‐caspase‐3 overexpression sensitises ovarian cancer cells to proteasome inhibitors, Cell Death. Differ., 8: 256–264, 2001. [DOI] [PubMed] [Google Scholar]
  • 104. Martin M. C., Dransfield I., Haslett C., Rossi A. G., Cyclic AMP regulation of neutrophil apoptosis occurs via a novel PKA‐ independent signaling pathway, J. Biol. Chem., 2001. [DOI] [PubMed] [Google Scholar]
  • 105. Lee M. H., Hyun D. H., Jenner P., Halliwell B., Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production, J. Neurochem., 78: 32–41, 2001. [DOI] [PubMed] [Google Scholar]
  • 106. Pleban E., Bury M., Mlynarczuk I., Wojcik C., Effects of proteasome inhibitor PSI on neoplastic and non‐transformed cell lines, Folia Histochem. Cytobiol., 39: 133–134, 2001. [PubMed] [Google Scholar]
  • 107. Sadoul R., Fernandez P. A., Quiquerez A. L., Martinou I., Maki M., Schroter M., Becherer J. D., Irmler M., Tschopp J., Martinou J. C., Involvement of the proteasome in the programmed cell death of NGF‐deprived sympathetic neurons, EMBO J., 15: 3845–52, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 108. Grimm L. M., Goldberg A. L., Poirier G. G., Schwartz L. M., Osborne B. A., Proteasomes play an essential role in thymocyte apoptosis, EMBO J., 15: 3835–44, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 109. Tabata M., Tabata R., Grabowski D. R., Bukowski R. M., Ganapathi M. K., Ganapathi R., Roles of NF‐kappaB and 26 S proteasome in apoptotic cell death induced by topoisomerase I and II poisons in human nonsmall cell lung carcinoma, J. Biol. Chem., 276: 8029–8036, 2001. [DOI] [PubMed] [Google Scholar]
  • 110. Tanimoto Y., Kizaki H., Proteasome inhibitors block ras/ERK signaling pathway resulting in the downregulation of Fas ligand expression during activation‐induced cell death in T cells, J. Biochem., 131: 319–326, 2002. [DOI] [PubMed] [Google Scholar]
  • 111. Dallaporta B., Pablo M., Maisse C., Daugas E., Loeffler M., Zamzami N., Kroemer G., Proteasome activation as a critical event of thymocyte apoptosis, Cell Death. Differ., 7: 368–373, 2000. [DOI] [PubMed] [Google Scholar]
  • 112. Distelhorst C. W., Recent insights into the mechanism of glucocorticosteroid‐induced apoptosis, Cell Death. Differ., 9: 6–19, 2002. [DOI] [PubMed] [Google Scholar]
  • 113. Wallace A. D., Cidlowski J. A., Proteasome‐mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids, J. Biol. Chem., 276: 42714–42721, 2001. [DOI] [PubMed] [Google Scholar]
  • 114. Hirsch T., Dallaporta B., Zamzami N., Susin S. A., Ravagnan L., Marzo I., Brenner C., Kroemer G., Proteasome activation occurs at an early, premitochondrial step of thymocyte apoptosis, J. Immunol., 161: 35–40, 1998. [PubMed] [Google Scholar]
  • 115. Beyette J., Mason G. G., Murray R. Z., Cohen G. M., Rivett A. J., Proteasome activities decrease during dexamethasone‐induced apoptosis of thymocytes, Biochem J, 332: 315–20, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. He H., Qi X. M., Grossmann J., Distelhorst C. W., c‐Fos degradation by the proteasome. An early, Bcl‐2‐regulated step in apoptosis, J. Biol. Chem., 273: 25015–9, 1998. [DOI] [PubMed] [Google Scholar]
  • 117. Ivanov V. N., Nikolic‐Zugic J., Biochemical and kinetic characterization of the glucocorticoid‐induced apoptosis of immature CD4+CD8+ thymocytes, Int. Immunol., 10: 1807–17, 1998. [DOI] [PubMed] [Google Scholar]
  • 118. Grassilli E., Benatti F., Dansi P., Giammarioli A. M., Malorni W., Franceschi C., Desiderio M. A., Inhibition of proteasome function prevents thymocyte apoptosis: involvement of ornithine decarboxylase, Biochem. Biophys. Res. Comm., 250: 293–7, 1998. [DOI] [PubMed] [Google Scholar]
  • 119. Gil‐Gomez G., Berns A., Brady H. J., A link between cell cycle and cell death: Bax and Bcl‐2 modulate Cdk2 activation during thymocyte apoptosis, EMBO J., 17: 7209–7218, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Yang Y., Fang S., Jensen J. P., Weissman A. M., Ashwell J. D., Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli, Science, 288: 874–877, 2000. [DOI] [PubMed] [Google Scholar]
  • 121. Bannerman D. D., Tupper J. C., Ricketts W. A., Bennett C. F., Winn R. K., Harlan J. M., A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide‐induced apoptosis, J. Biol. Chem., 276: 14924–14932, 2001. [DOI] [PubMed] [Google Scholar]
  • 122. Richter B. W., Duckett C. S., The IAP proteins: caspase inhibitors and beyond, Sci. STKE., 2000: E1‐2000. [DOI] [PubMed]
  • 123. Yang Y. L., Li X. M., The IAP family: endogenous caspase inhibitors with multiple biological activities, Cell Res., 10: 169–177, 2000. [DOI] [PubMed] [Google Scholar]
  • 124. Mahoney J. A., Odin J. A., White S. M., Shaffer D., Koff A., Casciola‐Rosen L., Rosen A., The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis, Biochem. J., 361: 587–595, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Koegl M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., Jentsch S., A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly, Cell, 96: 635–644, 1999. [DOI] [PubMed] [Google Scholar]
  • 126. Pizzuti A., Novelli G., Ratti A., Amati F., Mari A., Calabrese G., Nicolis S., Silani V., Marino B., Scarlato G., Ottolenghi S., Dallapiccola B., UFD1L, a developmentally expressed ubiquitination gene, is deleted in CATCH 22 syndrome, Hum. Mol. Genet., 6: 259–265, 1997. [DOI] [PubMed] [Google Scholar]
  • 127. Dai R. M., Li C. C., Valosin‐containing protein is a multi‐ubiquitin chain‐targeting factor required in ubiquitin‐proteasome degradation, Nat. Cell Biol., 3: 740–744, 2001. [DOI] [PubMed] [Google Scholar]
  • 128. Ye Y., Meyer H. H., Rapoport T. A., The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol, Nature, 414: 652–656, 2001. [DOI] [PubMed] [Google Scholar]
  • 129. Araya R., Takahashi R., Nomura Y., Yeast twohybrid screening using constitutive‐active caspase‐7 as bait in the identification of PA28gamma as an effector caspase substrate, Cell Death. Differ., 9: 322–328, 2002. [DOI] [PubMed] [Google Scholar]
  • 130. Li J., Gao X., Ortega J., Nazif T., Joss L., Bogyo M., Steven A. C., Rechsteiner M., Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta, EMBO J., 20: 3359–3369, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Murata S., Kawahara H., Tohma S., Yamamoto K., Kasahara M., Nabeshima Y., Tanaka K., Chiba T., Growth retardation in mice lacking the proteasome activator PA28gamma, J. Biol. Chem., 274: 38211–38215, 1999. [DOI] [PubMed] [Google Scholar]
  • 132. Mullally J. E., Moos P. J., Edes K., Fitzpatrick F. A., Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway, J. Biol. Chem., 276: 30366–30373, 2001. [DOI] [PubMed] [Google Scholar]
  • 133. Migone T. S., Humbert M., Rascle A., Sanden D., D'Andrea A., Johnston J. A., The deubiquitinating enzyme DUB‐2 prolongs cytokine‐induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal, Blood, 98: 1935–1941, 2001. [DOI] [PubMed] [Google Scholar]
  • 134. Mimnaugh E. G., Kayastha G., McGovern N. B., Hwang S. G., Marcu M. G., Trepel J., Cai S. Y., Marchesi V. T., Neckers L., Caspase‐dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli, Cell Death. Differ., 8: 1182–1196, 2001. [DOI] [PubMed] [Google Scholar]
  • 135. Neves D. D., Rehen S. K., Linden R., Differentiation‐dependent sensitivity to cell death induced in the developing retina by inhibitors of the ubiquitin‐proteasome proteolytic pathway, Eur. J. Neurosci., 13: 1938–1944, 2001. [DOI] [PubMed] [Google Scholar]
  • 136. Guzman M. L., Neering S. J., Upchurch D., Grimes B., Howard D. S., Rizzieri D. A., Luger S. M., Jordan C. T., Nuclear factor‐kappaB is constitutively activated in primitive human acute myelogenous leukemia cells, Blood, 98: 2301–2307, 2001. [DOI] [PubMed] [Google Scholar]
  • 137. Perletti L., Kopf E., Carre L., Davidson I., Coordinate regulation of RARgamma2, TBP, and TAFII135 by targeted proteolysis during retinoic acid‐induced differentiation of F9 embryonal carcinoma cells, BMC. Mol. Biol., 2: 2: 4 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138. Wójcik C., Schroeter D., Wilk S., Lamprecht J., Paweletz N., Ubiquitin‐mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin‐like activity of the proteasome, Eur. J. Cell Biol., 71: 311–8, 1996. [PubMed] [Google Scholar]
  • 139. Johnston J. A., Ward C. L., Kopito R. R., Aggresomes: a cellular response to misfolded proteins, J. Cell Biol., 143: 1883–98, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Wojcik C., An inhibitor of the chymotrypsin‐like activity of the proteasome (PSI) induces similar morphological changes in various cell lines, Folia Histochem. Cytobiol., 35: 211–214, 1997. [PubMed] [Google Scholar]
  • 141. Wojcik C., On the spatial organization of ubiquitindependent proteolysis in HeLa cells, Folia Histochem. Cytobiol., 35: 117–118, 1997. [PubMed] [Google Scholar]
  • 142. Rideout H. J., Larsen K. E., Sulzer D., Stefanis L., Proteasomal inhibition leads to formation of ubiquitin/alpha‐synuclein‐immunoreactive inclusions in PC12 cells, J. Neurochem., 78: 899–908, 2001. [DOI] [PubMed] [Google Scholar]
  • 143. Bence N. F., Sampat R. M., Kopito R. R., Impairment of the ubiquitin‐proteasome system by protein aggregation, Science, 292: 1552–1555, 2001. [DOI] [PubMed] [Google Scholar]
  • 144. Volbracht C., Leist M., Kolb S. A., Nicotera P., Apoptosis in caspase‐inhibited neurons, Mol. Med., 7: 36–48, 2001. [PMC free article] [PubMed] [Google Scholar]
  • 145. Kuusisto E., Suuronen T., Salminen A., Ubiquitinbinding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells, Biochem. Biophys. Res. Commun., 280: 223–228, 2001. [DOI] [PubMed] [Google Scholar]
  • 146. Hauser H. P., Bardroff M., Pyrowolakis G., Jentsch S., A giant ubiquitin‐conjugating enzyme related to IAP apoptosis inhibitors, J. Cell Biol., 141: 1415–22, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. de Vrij F. M., Sluijs J. A., Gregori L., Fischer D. F., Hermens W. T., Goldgaber D., Verhaagen J., van Leeuwen F. W., Hol E. M., Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death, FASEB J., 15: 2680–2688, 2001. [DOI] [PubMed] [Google Scholar]
  • 148. Tanaka Y., Engelender S., Igarashi S., Rao R. K., Wanner T., Tanzi R. E., Sawa A., Dawson L., Dawson T. M., Ross C. A., Inducible expression of mutant alpha‐synuclein decreases proteasome activity and increases sensitivity to mitochondria‐dependent apoptosis, Hum. Mol. Genet., 10: 919–926, 2001. [DOI] [PubMed] [Google Scholar]
  • 149. Anton L. C., Schubert U., Bacik I., Princiotta M. F., Wearsch P.A. Gibbs J., Day P. M., Realini C, Rechsteiner M. C., Bennink J. R., Yewdell J. W., Intracellular localization of proteasomal degradation of a viral antigen, J. Cell Biol., 146: 113–124, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150. Jana N. R., Zemskov E. A., Wang G., Nukina N., Altered proteasomal function due to the expression of polyglutamine‐ expanded truncated N‐terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release, Hum. Mol. Genet., 10: 1049–1059, 2001. [DOI] [PubMed] [Google Scholar]
  • 151. Sherman M. Y., Goldberg A. L., Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases, Neuron, 29: 15–32, 2001. [DOI] [PubMed] [Google Scholar]
  • 152. Kopito R. R., Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol., 10: 524–530, 2000. [DOI] [PubMed] [Google Scholar]
  • 153. Matsuzawa S., Takayama S., Froesch B. A., Zapata J. M., Reed J. C., p53‐inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by Bag‐1, EMBO J., 17: 2736–47, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154. Sondermann H., Scheufler C., Schneider C., Hohfeld J., Hartl F. U., Moarefi I., Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors, Science, 291: 1553–1557, 2001. [DOI] [PubMed] [Google Scholar]
  • 155. Luders J., Demand J., Hohfeld J., The ubiquitinrelated BAG‐1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome, J. Biol. Chem., 275: 4613–4617, 2000. [DOI] [PubMed] [Google Scholar]
  • 156. Murata S., Minami Y., Minami M., Chiba T., Tanaka K., CHIP is a chaperone‐dependent E3 ligase that ubiquitylates unfolded protein, EMBO Rep., 2: 1133–1138, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Demand J., Alberti S., Patterson C., Hohfeld J., Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling, Curr. Biol., 11: 1569–1577, 2001. [DOI] [PubMed] [Google Scholar]
  • 158. Fabunmi R. P., Wigley W. C., Thomas P. J., Demartino G. N., Activity and regulation of the centrosome‐associated proteasome, J. Biol. Chem., 275: 409–413, 2000. [DOI] [PubMed] [Google Scholar]
  • 159. Wigley W. C., Fabunmi R. P., Lee M. G., Marino C. R., Muallem S., Demartino G. N., Thomas P. J., Dynamic association of proteasomal machinery with the centrosome, J. Cell Biol., 145: 481–490, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Ashok B. T., Kim E., Mittelman A., Tiwari R. K., Proteasome inhibitors differentially affect heat shock protein response in cancer cells, Int. J. Mol. Med., 8: 385–390, 2001. [DOI] [PubMed] [Google Scholar]
  • 161. Kobayashi Y., Sobue G., Protective effect of chaperones on polyglutamine diseases, Brain Res. Bull., 56: 165–168, 2001. [DOI] [PubMed] [Google Scholar]
  • 162. Nimmanapalli R., O'Bryan E., Bhalla K., Geldanamycin and its analogue 17‐allylamino‐17‐demethoxygeldanamycin lowers Bcr‐Abl levels and induces apoptosis and differentiation of Bcr‐ Ablpositive human leukemic blasts, Cancer Res., 61: 1799–1804, 2001. [PubMed] [Google Scholar]
  • 163. Pajonk F., McBride W. H., The Proteasome in Cancer Biology and Treatment, Radiat. Res., 156: 447–459, 2001. [DOI] [PubMed] [Google Scholar]
  • 164. Shah S. A., Potter M. W., Callery M. P., Ubiquitin proteasome pathway: implications and advances in cancer therapy, Surg. Oncol., 10: 43–52, 2001. [DOI] [PubMed] [Google Scholar]
  • 165. Orlowski R. Z., Eswara J. R., Lafond‐Walker A., Grever M. R., Orlowski M., Dang C. V., Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor, Cancer Res, 58: 4342–8, 1998. [PubMed] [Google Scholar]
  • 166. Stoklosa T., Golab J., Wójcik C., Jalili A., Marczak M., Giermasz A., Januszko P., Balkowiec E., Jakóbisiak M., Wilk S., Antitumor effect of proteasome inhibitor dependent on p53 induction and angiogenesis inhibition, Third Workshop on Proteasomes, Clermont‐Ferrand, France, March 1999.
  • 167. Sunwoo J. B., Chen Z., Dong G., Yeh N., Crowl B. C., Sausville E., Adams J., Elliott P., van Waes C., Novel proteasome inhibitor PS‐341 inhibits activation of nuclear factor‐ kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma, Clin. Cancer Res., 7: 1419–1428, 2001. [PubMed] [Google Scholar]
  • 168. Sun J., Nam S., Lee C. S., Li B., Coppola D., Hamilton A. D., Dou Q. P., Sebti S. M., CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A‐549 in nude mice, Cancer Res., 61: 1280–1284, 2001. [PubMed] [Google Scholar]
  • 169. Hideshima T., Richardson P., Chauhan D., Palombella V. J., Elliott P. J., Adams J., Anderson K. C., The proteasome inhibitor PS‐341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells, Cancer Res., 61: 3071–3076, 2001. [PubMed] [Google Scholar]
  • 170. Meiners S., Laule M., Rother W., Guenther C., Prauka I., Muschick P., Baumann G., Kloetzel P. M., Stangl K., Ubiquitin‐proteasome pathway as a new target for the prevention of restenosis, Circulation, 105: 483–489, 2002. [DOI] [PubMed] [Google Scholar]
  • 171. Pervan M., Pajonk F., Sun J. R., Withers H. R., McBride W. H., Molecular pathways that modify tumor radiation response, Am. J. Clin. Oncol., 24: 481–485, 2001. [DOI] [PubMed] [Google Scholar]
  • 172. Russo S. M., Tepper J. E., Baldwin A. S. Jr., Liu R., Adams J., Elliott P., Cusack J. C. Jr., Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF‐kappaB, Int. J. Radiat. Oncol. Biol. Phys., 50: 183–193, 2001. [DOI] [PubMed] [Google Scholar]
  • 173. Oyaizu H., Adachi Y., Okumura T., Okigaki M., Oyaizu N., Taketani S., Ikebukuro K., Fukuhara S., Ikehara S., Proteasome inhibitor 1 enhances paclitaxel‐induced apoptosis in human lung adenocarcinoma cell line, Oncol. Rep., 8: 825–829, 2001. [DOI] [PubMed] [Google Scholar]
  • 174. Cusack J. C. Jr., Liu R., Houston M., Abendroth K., Elliott P. J., Adams J., Baldwin A. S. Jr., Enhanced chemosensitivity to CPT‐11 with proteasome inhibitor PS‐341: implications for systemic nuclear factorkappaB inhibition, Cancer Res., 61: 3535–3540, 2001. [PubMed] [Google Scholar]
  • 175. Milligan S. A., Nopajaroonsri C., Inhibition of NF‐kappa B with proteasome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro Anticancer Res., 21: 39–44, 2001. [PubMed] [Google Scholar]
  • 176. Golab J., Stoklosa T., Czajka A., Dabrowska A., Jakobisiak M., Zagozdzon R., Wojcik C., Marczak M., Wilk S., Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice, Anticancer Res., 20: 1717–1721, 2000. [PubMed] [Google Scholar]
  • 177. Wojcik C., Mlynarczuk I., Hoser G., Kawiak J., Stoklosa T., Golab J., Wilk S., A combination of retinoic acid and proteasome inhibitors for the treatment of leukemias is potentially dangerous., Blood, 94: 1827–1828, 1999. [PubMed] [Google Scholar]
  • 178. Brophy V. A., Tavare J. M., Rivett A. J., Treatment of COS‐7 cells with proteasome inhibitors or gammainterferon reduces the increase in caspase 3 activity associated with staurosporine‐induced apoptosis, Arch. Biochem. Biophys., 397: 199–205, 2002. [DOI] [PubMed] [Google Scholar]
  • 179. Stoklosa T., Wójcik C., Golab J., Giermasz A., Wilk S., Inhibition of proteasome, apoptosis and sensitization to tumour necrosis factor alpha: do they always go together?, Br. J. Cancer, 79: 375–376, 1999. [PubMed] [Google Scholar]
  • 180. Glas R., Bogyo M., McMaster J. S., Gaczynska M., Ploegh H. L., A proteolytic system that compensates for loss of proteasome function, Nature, 392: 618–622, 1998. [DOI] [PubMed] [Google Scholar]
  • 181. Wang E. W., Kessler B. M., Borodovsky A., Cravatt B. F., Bogyo M., Ploegh H. L., Glas R., Integration of the ubiquitin‐proteasome pathway with a cytosolic oligopeptidase activity, Proc. Natl. Acad. Sci. USA, 97: 9990–9995, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182. Geier E., Pfeifer G., Wilm M., Lucchiari‐Hartz M., Baumeister W., Eichmann K., Niedermann G., A giant protease with potential to substitute for some functions of the proteasome, Science, 283: 978–81, 1999. [DOI] [PubMed] [Google Scholar]
  • 183. Bury M., Mlynarczuk I., Pleban E., Hoser G, Kawiak J., Wojcik C., Effects of an inhibitor of tripeptidyl peptidase II (Ala‐Ala‐Phe‐chloromethylketone) and its combination with an inhibitor of the chymotrypsin‐like activity of the proteasome (PSI) on apoptosis, cell cycle and proteasome activity in U937 cells, Folia Histochem. Cytobiol., 39: 131–132, 2001. [PubMed] [Google Scholar]
  • 184. Princiotta M. F., Schubert U., Chen W., Bennink J. R., Myung J., Crews C. M., Yewdell J. W., Cells adapted to the proteasome inhibitor 4‐hydroxy‐ 5‐iodo‐3‐ nitrophenylacetyl‐Leu‐Leu‐leucinal‐vinyl sulfone require enzymatically active proteasomes for continued survival, Proc. Natl. Acad. Sci. USA, 98: 513–518, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185. Gavioli R., Frisan T., Vertuani S., Bornkamm G. W., Masucci M. G., c‐myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells, Nat. Cell Biol., 3: 283–288, 2001. [DOI] [PubMed] [Google Scholar]
  • 186. Wojcik C., Demartino G. N., Analysis of Drosophila 26 S proteasome using RNA interference, J. Biol. Chem., 277: 6188–6197, 2002. [DOI] [PubMed] [Google Scholar]
  • 187. Tomkinson B., Tripeptidyl peptidases: enzymes that count, Trends Biochem. Sci., 24: 355–359, 1999. [DOI] [PubMed] [Google Scholar]
  • 188. Huang Y., Shin N. H., Sun Y., Wang K. K., Molecular cloning and characterization of a novel caspase‐3 variant that attenuates apoptosis induced by proteasome inhibition, Biochem. Biophys. Res. Commun., 283: 762–769, 2001. [DOI] [PubMed] [Google Scholar]
  • 189. Adams J., Palombella V. J., Sausville E. A., Johnson J., Destree A., Lazarus D. D., Maas J., Pien C. S., Prakash S., Elliott P. J., Proteasome inhibitors: a novel class of potent and effective antitumor agents, Cancer Res, 59: 2615–22, 1999. [PubMed] [Google Scholar]
  • 190. Wójcik C., Ubiquitin‐ and proteasome‐dependent proteolytic pathway as an emerging theapeutic target, Emerging Therapeutic Targets, 4: 1–23, 2000. [Google Scholar]
  • 191. Luo H., Wu Y., Qi S., Wan X., Chen H., Wu J., A proteasome inhibitor effectively prevents mouse heart allograft rejection, Transplantation, 72: 196–202, 2001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES