Abstract
There are few information concerning the changes associated with the transition interval when slow growing, primary explanted human cancer cells are displaced by new selected faster growing cells and became an immortal cell line. In a previous paper (J. Cell. Mol. Med., 5: 49–59, 2001) we described the TV cell line derived from a laryngeal tumor which harbors human papillomavirus (HPV) gene sequences throughout more than sixty in vitro passages. In this paper we analyze the modifications observed during the crisis interval when significant amount of cells senesce but occasional cells acquire some mutations that make them immortal. Confocal microscopy analysis revealed the heterogeneity of the cells in terms of their size and nucleus/cell ratio. Proliferation capacity was assessed by flow cytometry analyzing DNA content and expression of transferrin receptor (CD71). We discussed the possibility that HPV genome sequences alleviate a proliferation block during the crisis growth arrest of human larynx carcinoma cell line and the possibility that the cells monitor their size and growth by measuring the levels of some protein whose synthesis is coupled to cell development.
Keywords: senescence, immortalization, HPV, cancer cell line
References
- 1. Sõti C., Subbarao Sreedha A., Csermely P., Apoptosis, necrosis and cellular senescence: chaperone occupancy as a potential switch, Aging Cell, 2/1: 39, 2003. [DOI] [PubMed] [Google Scholar]
- 2. Hayflick L., The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 37: 614, 1965. [DOI] [PubMed] [Google Scholar]
- 3. Romanov S.R., Kozakiewicz B.K., Holst C.R., Stampfer M.R., Haupt L.M., Tlsty T.D., Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes, Nature, 409: 633, 2001. [DOI] [PubMed] [Google Scholar]
- 4. Wright W.E., Shay J.W., The two‐stage mechanism controlling cellular senescence and immortalization, Exp. Gerontol., 27: 383, 1992. [DOI] [PubMed] [Google Scholar]
- 5. Mutiu A., Alexiu I., Chivu M., Petica M., Anton G., Bleotu C., Diaconu C., Popescu C., Jucu V., Cernescu C., Detection of human papillomavirus gene sequences in cell lines derived from laryngeal tumors, J. Cell. Mol. Med., 5: 49, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Diaconu C.C., Szathmári M., Kéri G., Venetianer A., Apoptosis is induced in both drug‐sensitive and multidrug‐resistant hepatoma cell by somatostatin analogue TT‐232, Br. J. Cancer, 80: 1197, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Hedley D.W., Friedlander M.L., Taylor I.W., Rugg C.A., Musgrove E.A., Method for analysis of cellular DNA content of paraffin‐embedded pathological material using flow cytometry, J. Histochem., 31: 1333, 1983. [DOI] [PubMed] [Google Scholar]
- 8. Coon J.S., Schwartz D., Summers J.L., Miller A.W. 3rd, Weinstein R.S., Flow cytometric analysis of deparaffinized nuclei in the urinary bladder carcinoma, Cancer 57: 1594, 1986. [DOI] [PubMed] [Google Scholar]
- 9. Manos M.M., Ting Y., Wright D.K., Lewis A.J., Broker T.R., Wolinsky S.M., The use of PCR amplification for the detection of genital HPV, Cancer Cells, 7: 209, 1989. [Google Scholar]
- 10. Anton G., Achim R., Plesa A., Repanovici R., HPV and CMV DNA presence in patients suspected of condylomatosis or papillomatosis, Rom. J. Virol., 49: 83, 1998. [PubMed] [Google Scholar]
- 11. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I, Pereira‐Smith O., Peacocke M., Campisi J., A biomarker that identifies senescent human cells in culture and in aging skin in vivo , Proc. Natl. Acad. Sci. USA, 92: 9363, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Lavia P., Mileo A.M., Giordano A., Paggi M.G., Emerging roles of DNA tumor viruses in cell proliferation: new insights into genomic instability, Oncogene, 22, 6508, 2003. [DOI] [PubMed] [Google Scholar]
- 13. Fitzsimmons S.A., Ireland H., Barr N.I., Cuthbert A. P., Going J.J., Newbold R.F., Parkinson E.K., Human squamous cell carcinomas lose a mortality gene from chromosome 6q14.3 to q15, Oncogene, 22, 1737, 2003. [DOI] [PubMed] [Google Scholar]
- 14. Schmitt Clemens A., Senescence, Apoptosis and Therapy ‐ Cutting the Lifelines of Cancer, Nat. Rev. Cancer, 3: 286, 2003. [DOI] [PubMed] [Google Scholar]
- 15. West G.B., Brown, J.H. , Enquist B.J., The fourth dimension of life: fractal geometry and allometric scaling of organisms, Science, 284: 1677, 1999. [DOI] [PubMed] [Google Scholar]
- 16. Enquist B.J., Niklas K.J., Invariant scaling relations across tree‐dominated communities. Nature 410, 655, 2001. [DOI] [PubMed] [Google Scholar]
- 17. Peller S., Frenkel J., Lapidot T., Kahn J., Rahimi‐Levene N., Yona R., Nissim L., Goldfinger N., Sherman D. J. and Rotter V., The onset of p53‐dependent apoptosis plays a role in terminal differentiation of human normoblasts. Oncogene 22, 4648, 2003. [DOI] [PubMed] [Google Scholar]
- 18. Narita M., Nunez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W., Rbmediated heterocromatin formation and silencing of E2F target genes during cellular senescence, Cell, 113: 703, 2003. [DOI] [PubMed] [Google Scholar]
- 19. Serrano M., Lin A.W., McCurrach M.E., Beach D., Lowe S.W., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a, Cell, 88: 593, 1997. [DOI] [PubMed] [Google Scholar]
- 20. Beausejour C.M., Krtolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J., Reversal of human cellular senescence: roles of the p53 and p16 pathways, EMBO J., 22: 4212, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
