Abstract
As we enter the information age we hold strong beliefs in the benefits of digital technology applied to pathology: numerical representation offers objectivity. Digital knowledge may indeed lead to significant information discovery, and, processing systems might be designed to allow a true evolution of capabilities. Questions arise whether the methodology underlying quantitative analysis provides the information that we need and whether it is appropriate for some of the problems encountered in diagnostic and prognostic histopathology. While one certainly would not dispute the value of statistical procedures, the clinical needs call for individual patient targeted prognosis.
Keywords: image analysis, pathology, quantitation
References
- 1. Da Silva V., Montironi R., Thompson D., Bartels H.G., Vaught L., Hamilton P.W., Bartels P.H., Chromatin texture in high grade prostatic intraepithelial neoplasia and early invasive carcinoma, Anal. Quant. Cytol. Histol., 21: 113–120, 1999. [PubMed] [Google Scholar]
- 2. Bartels P.H., Montironi R., Hamilton P.W., Thompson D., Vaught L., Bartels H.G., Chromatin texture signatures in nuclei from prostate lesions, Anal. Quant. Cytol. Histol., 20: 407–416, 1998. [PubMed] [Google Scholar]
- 3. Mairinger T., Mikuz G., Gschwendtner A., Nuclear chromatin texture analysis of nonmalignant tissue can detect adjacent prostatic adenocarcinoma, Prostate, 41: 12–19, 1999. [DOI] [PubMed] [Google Scholar]
- 4. Irinopolou T., Rigaut J.P., Toward objective prognostic grading of prostatic carcinoma using image analysis, Anal. Quant. Cytol. Histol., 15: 341–344, 1993. [PubMed] [Google Scholar]
- 5. Jorgensen T., Yogesan K., Tveter K.J., Skjorten F., Danielsen H.E., Nuclear texture analysis: a new prognostic tool in metastatic prostate cancer, Cytometry, 24: 277–283, 1996. [DOI] [PubMed] [Google Scholar]
- 6. Bartels P.H., Montironi R., Hamilton P.W., Thompson D., Vaught L., Bartels H. G., Nuclear chromatin texture in prostatic lesions. I. PIN and adenocarcinoma, Anal. Quant. Cytol. Histol., 20: 389–396, 1998. [PubMed] [Google Scholar]
- 7. Bartels P.H., et al., Kariometry of secretory cell nuclei in high‐grade PIN lesions, Prostate, 48: 144–145, 2001. [DOI] [PubMed] [Google Scholar]
- 8. Bartels P.H., Montironi R., Hamilton P.W., Thompson D., Vaught L., Bartels H. G., Nuclear chromatin texture in prostatic lesions. II. PIN and malignancy associated changes, Anal. Quant. Cytol. Histol., 20: 397–406, 1998. [PubMed] [Google Scholar]
- 9. Montironi R., Mazzucchelli R., Bostwick D.G., Hamilton P.W., Sakr W. A., Thompson D., Bartels P.H., Recent advances in the quantitative morphological evaluation of prostate neoplasia, J. Urol. Path., 12: 133–168, 2000. [Google Scholar]
- 10. Becker R. L., Applications of neural networks in histopathology, Pathologica, 87: 246–254, 1995. [PubMed] [Google Scholar]
- 11. Burke H.B., Goodman P.H., Rosen D.B., Henson D.E., Weinstein J.N., Harrel F.E., Marks J.R., Winchester D.P., Bostwick D.G., Artificial neural networks improve the accurancy of cancer survival prediction, Cancer, 79: 857–862, 1997. [DOI] [PubMed] [Google Scholar]
- 12. Hamilton P.W., Bartels P.H., Anderson N.H., Thompson D., Montironi R., Sloan J.M., Patient‐based prediction of survival in colorectal cancer patients, Anal. Quant. Cytol. Histol., 21: 283–291, 1999. [PubMed] [Google Scholar]
- 13. Bartels P.H., Thompson D., Weber J.E., Diagnostic and prognostic decision support systems, Pathologica, 87: 115–130, 1995. [PubMed] [Google Scholar]
- 14. Jass J., Love S., Northover J., A new prognostic classification for rectal cancer, Lancet, 1: 1333–1335, 1987. [DOI] [PubMed] [Google Scholar]
- 15. Dukes C.E., The classification of cancer of the rectum, J. Pathol. Bacteriol., 35: 323–332, 1932. [Google Scholar]
- 16. Cover T.M., Hart P.E., Nearest neighbor pattern classification, IEEE Trans. Inform. Theory, 13: 21–27, 1967. [Google Scholar]
- 17. Pomante R., Colanzi P., Mazzucchelli R., Santinelli A., Montironi R., Decision support systems in diagnostic prostate pathology (with emphasis on Bayesian Belief Networks), Acta. Urol. Ital., 12: 331–341, 1998. [Google Scholar]
- 18. Bartels P.H., Thompson D., Montironi R., Hamilton P.W., Scarpelli M., Diagnostic decision support for prostate lesions, Pathol. Res. Pract., 191: 945–957, 1995. [DOI] [PubMed] [Google Scholar]
- 19. Bartels P.H., Thompson D., Montironi R., Mariuzzi G., Hamilton P.W., Automated reasoning system in histopathologic diagnosis and prognosis of prostate cancer and its precursors, Eur. Urol., 30: 222–233, 1996. [DOI] [PubMed] [Google Scholar]
- 20. Bartels P.H., Thompson D., Bibbo M., Weber J.E., Bayesian belief networks in quantitative histopathology, Anal. Quant. Cytol. Histol., 14: 459–473, 1992. [PubMed] [Google Scholar]
- 21. Mazzucchelli R., et al., Urothelial papillary lesions. Development of a belief network for diagnosis and grading, Anticancer Res., 21: 1157–1162, 2001. [PubMed] [Google Scholar]
- 22. Montironi R., Pomante R., Colanzi P., Thompson D., Hamilton P.W., Bartels P.H., Diagnostic distance of high grade prostatic intraephitelial neoplasia from normal prostate and adenocarcinoma, J. Clin. Pathol., 50: 775–782, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Montironi R., Bartels P.H., Thompson D., Bartels H. G., Scarpelli M., Prostatic intraepithelial neoplasia. Quantitatioin of the basal cell layer with machine vision system, Path. Res. Pract., 191: 917–923, 1995. [DOI] [PubMed] [Google Scholar]