Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(2):303–319. doi: 10.1111/j.1582-4934.2005.tb00357.x

Neural stem cells in inflammatory CNS diseases: mechanisms and therapy

T Magnus 1,, M S Rao 1
PMCID: PMC6740148  PMID: 15963251

Abstract

Autoimmune inflammatory diseases of the central nervous system (CNS) are highly complex in their interaction of different cell populations. The main therapy focus in the last years has been the inhibition of the immune system. Recent progress has shown that endogenous as well as transplanted neural stem cells might positively influence the outcome of such diseases. In this review, we discuss the current concept of the underlying pathogenesis with a specific focus on local CNS cells and potential treatment options.

Keywords: matrix metalloproteinases (MMPs), angiogenesis, tumor angiogenesis, MMP inhibitors, extracellular matrix remodeling, tissue inhibitors of metalloproteinases (TIMPs), thrombospondins

References

  • 1. Cajal SR. Degeneration and Regeneration of the Nervous System. Humphrey Milford/Oxford University Press; 1928. 734–60. [Google Scholar]
  • 2. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965; 124: 319–35. [DOI] [PubMed] [Google Scholar]
  • 3. Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA. 1983; 80: 2390–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Alvarez‐Buylla A. Lois C. Neuronal stem cells in the brain of adult vertebrates. Stem Cells 1995; 13: 263–72. [DOI] [PubMed] [Google Scholar]
  • 5. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993; 11: 173–89. [DOI] [PubMed] [Google Scholar]
  • 6. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998; 36: 249–66. [DOI] [PubMed] [Google Scholar]
  • 7. Rao MS. Multipotent and restricted precursors in the central nervous system. Anat Rec. 1999; 257: 137–48. [DOI] [PubMed] [Google Scholar]
  • 8. Weinshenker BG. The natural history of multiple sclerosis. Neurol. Clin. 1995; 13: 119–46. [PubMed] [Google Scholar]
  • 9. Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis.. Nat Rev Neurosci. 2002, 3: 291–301. [DOI] [PubMed] [Google Scholar]
  • 10. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000; 343: 938–52. [DOI] [PubMed] [Google Scholar]
  • 11. Steinman L. Multiple sclerosis: a two‐stage disease. Nat Immunol. 2001; 2: 762–4. [DOI] [PubMed] [Google Scholar]
  • 12. Benoist C, Mathis D, Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry Nat Immunol. 2001; 2: 797–801. [DOI] [PubMed] [Google Scholar]
  • 13. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L. A functional and structural basis for TCR cross‐reactivity in multiple sclerosis. Nat Immunol. 2002; 3: 940–3. [DOI] [PubMed] [Google Scholar]
  • 14. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000; 192: 393–404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Archelos JJ, Hartung HP. Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci. 2000; 23: 317–27. [DOI] [PubMed] [Google Scholar]
  • 16. Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001; 7: 115–21. [DOI] [PubMed] [Google Scholar]
  • 17. Trapp BD, Ransohoff R, Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol. 1999; 12: 295–302. [DOI] [PubMed] [Google Scholar]
  • 18. Bjartmar C, Trapp BD. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol. 2001; 14: 271–8. [DOI] [PubMed] [Google Scholar]
  • 19. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med. 2005; 11: 146–52. [DOI] [PubMed] [Google Scholar]
  • 20. Korn T, Magnus T, Jung S. Interaction with antigen‐specific T cells regulates expression of the lactate transporter MCTI in primary rat astrocytes: specific link between immunity and homeostasis. Gila 2005; 49: 73–83. [DOI] [PubMed] [Google Scholar]
  • 21. Kieseier BC, Hartung HP. Current disease‐modifying therapies in multiple sclerosis. Semin Neurol. 2003; 23: 133–46. [DOI] [PubMed] [Google Scholar]
  • 22. Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then BF, Dose T, Wekerle H, Hohlfeld R. Multiple sclerosis: comparison of copolymer‐1‐ reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci USA. 2000; 97: 7452–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T. Mitoxantrone in progressive multiple sclerosis: a placebo‐controlled, double‐blind, randomised, multicentre trial. Lancet; 2002; 360: 2018–25. [DOI] [PubMed] [Google Scholar]
  • 24. Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, Carreras E, Graus F, Kashyap A, Openshaw H, Schipperus M, Deconinck E, Mancardi G, Marmont A, Hansz J, Rabusin M, Zuazu Nagore FJ, Besalduch J, Dentamaro T, Fouillard L, Hertenstein B, la Nasa G, Musso M, Papineschi F, Rowe JM, Saccardi R, Steck A, Kappos L, Gratwohl A, Tyndall A, Samijn J. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol. 2002; 249: 1088–97. [DOI] [PubMed] [Google Scholar]
  • 25. Lafferty KJ, Woolnough J. The origin and mechanism of the allograft reaction. Immunol Rev. 1977; 35: 231–62. [DOI] [PubMed] [Google Scholar]
  • 26. Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, Russell A, Dougados M, Emery P, Nuamah IF, Williams GR, Becker JC, Hagerty DT, Moreland LW. Treatment of rheumatoid arthritis by selective inhibition of T‐cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003; 349: 1907–15. [DOI] [PubMed] [Google Scholar]
  • 27. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter, JA , Boersma WJ, Claassen E. CD40‐CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA. 1996; 93: 2499–2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Coles AJ, Wing M, Smith S, Coraddu F, Greer S, Taylor C, Weetman A, Hale G, Chatterjee VK, Waldmann H, Compston A. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet 1999. 354: 1691–5. [DOI] [PubMed] [Google Scholar]
  • 29. Coles AJ, Wing MG, Molyneux P, Paolillo A, Davie CM, Hale G, Miller D, Waldmann H, Compston A. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999; 46: 296–304. [DOI] [PubMed] [Google Scholar]
  • 30. Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392: 565–8. [DOI] [PubMed] [Google Scholar]
  • 31. Ransohoff RM. Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines, J Neuroimmunol. 1999; 98: 57–68. [DOI] [PubMed] [Google Scholar]
  • 32. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 1999; 103: 807–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Glabinsk AR, Ransohoff RM. Targeting the chemokine systm for multiple sclerosis treatment. Curr Opin Investing Drugs. 2001; 2: 1712–9. [PubMed] [Google Scholar]
  • 34. Elices MJ. BX‐471 Berlex. Curr Opin Investing Drugs 2002; 3: 865–9. [PubMed] [Google Scholar]
  • 35. Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001; 2: 502–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Kieseier B.. Seifert T, Giovannoni G, Hartung HP. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 1999; 53: 20–5. [DOI] [PubMed] [Google Scholar]
  • 37. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000; 47: 707–17. [DOI] [PubMed] [Google Scholar]
  • 38. Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med. 2003; 349: 139–45. [DOI] [PubMed] [Google Scholar]
  • 39. de Vita S, Zaja F, Sacco S, de Candia A, Fanin R, Ferraccioli G. Efficacy of selective B cell blockade in the treatment of rheumatoid arthritis: evidence for a pathogenetic role of B cells. Arthritis Rheum. 2002; 46: 2029–33. [DOI] [PubMed] [Google Scholar]
  • 40. Rapalino O, Lazarov‐Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med. 1998; 4: 814–21. [DOI] [PubMed] [Google Scholar]
  • 41. Moalem G, Leibowitz‐Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med. 1999; 5: 49–55. [DOI] [PubMed] [Google Scholar]
  • 42. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross‐talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol. 2003; 53: 292–304. [DOI] [PubMed] [Google Scholar]
  • 43. van Bekkum DW. Experimental basis of hematopoietic stem cell transplantation for treatment of autoimmune diseases. J Leukoc Biol. 2002; 72: 609–20. [PubMed] [Google Scholar]
  • 44. Liu Y, Rao MS. Transdifferentiation ‐ fact or artifact. J Cell Biochem. 2003; 88: 29–40. [DOI] [PubMed] [Google Scholar]
  • 45. Sedgwick JD, Schwender S, Gregersen R, Dorries R, Ter MV. Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med. 1993; 177: 1145–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Becher B, Antel JP. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia. 1996; 18: 1–10. [DOI] [PubMed] [Google Scholar]
  • 47. Bo L, Mork S, Kong PA, Nyland H, Pardo CA, Trapp BD. Detection of MHC class II‐antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol. 1994; 51: 135–46. [DOI] [PubMed] [Google Scholar]
  • 48. Aloisi F. Immune function of microglia. Glia. 2001; 36: 165–79. [DOI] [PubMed] [Google Scholar]
  • 49. Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L. CD40‐CD154 interaction and IFN‐gamma are required for IL‐12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells. J Immunol. 1999; 162: 1384–91. [PubMed] [Google Scholar]
  • 50. Matyszak MK, Denis‐Donini S, Citterio S, Longhi R, Granucci F, Ricciardi‐Castagnoli P. Microglia induce myelin basic protein‐specific T cell anergy or T cell activation, according to their state of activation. Eur J Immunol. 1999; 29: 3063–76. [DOI] [PubMed] [Google Scholar]
  • 51. Zehntner SP, Brisebois M, Tran E, Owens T, Fournier S. Constitutive expression of a costimulatory ligand on antigen‐presenting cells in the nervous system drives demyelinating disease. FASEB j.; 2003; 17: 1910–2. [DOI] [PubMed] [Google Scholar]
  • 52. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996; 19: 312–8. [DOI] [PubMed] [Google Scholar]
  • 53. Magnus T, Schreiner B, Korn T, Jack C, Antel JP, Hong G, Ifergan I, Chen L, Bischof F, Bar‐Or A, Wiendl H. Microglial expression of the B7‐family member B7‐H1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci. 2005; 25(11): in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Kempermann G., Neumann H, NEUROSCIENCE: Microglia: The Enemy Within Science 2003; 302: 1689–90. [DOI] [PubMed] [Google Scholar]
  • 55. Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar‐Or A. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol. 2004; 172: 7144–53. [DOI] [PubMed] [Google Scholar]
  • 56. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA. 2003; 100: 13632–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Marin‐Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron 2004; 41: 535–47. [DOI] [PubMed] [Google Scholar]
  • 58. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302: 1760–5. [DOI] [PubMed] [Google Scholar]
  • 59. Fischer HG, Reichmann G. Brain Dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 2001; 166: 2717–26. [DOI] [PubMed] [Google Scholar]
  • 60. Magnus T, Korn T, Jung S. Chronically stimulated microglial cells do no longer alter their immune functions in response to the phagocytosis of apoptotic cells. J. Neuroimmunol. 2004; 155: 64–72. [DOI] [PubMed] [Google Scholar]
  • 61. T'Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N Engl J Med. 2001; 345: 1515–21. [DOI] [PubMed] [Google Scholar]
  • 62. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, de Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A. CXCR4‐activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4: 702–10. [DOI] [PubMed] [Google Scholar]
  • 63. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999; 30: 77–105. [DOI] [PubMed] [Google Scholar]
  • 64. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997; 20: 570–7. [DOI] [PubMed] [Google Scholar]
  • 65. Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol. 1994; 53: 213–20. [DOI] [PubMed] [Google Scholar]
  • 66. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hipocampal neurons by a rho‐dependent mechanism. J Neurosci. 2002; 22: 854–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. D'Souza SD, Alinauskas KA, Antel JP. Ciliary neurotrophic factor selectively protects human oligodendrocytes from tumor necrosis factor‐mediated injury. J Neurosci Res. 1996; 43: 289–98. [DOI] [PubMed] [Google Scholar]
  • 68. Dayton ET, Major EO. Recombinant human interleukin 1 beta induces production of prostaglandins in primary human fetal astrocytes and immortalized human fetal astrocyte cultures. J Neuroimmunol. 1996; 71: 11–8. [DOI] [PubMed] [Google Scholar]
  • 69. Rudge JS, Pasnikowski EM, Holst P, Lindsay RM. Changes in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid. J Neurosci. 1995; 15: 6856–67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Schwartz JP, Nishiyama N. Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull. 1994; 35: 403–7. [DOI] [PubMed] [Google Scholar]
  • 71. Dreyfus CF, Dai X, Lercher LD, Racey BR, Friedman WJ, Black IB. Expression of neurotrophins in the adult spinal cord in vivo. J Neurosci Res. 1999; 56: 1–7. [DOI] [PubMed] [Google Scholar]
  • 72. Messersmith DJ, Murtie JC, Le TQ, Frost EE, Armstrong RC. Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J Neurosci Res. 2000; 62: 241–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Albrecht PJ, Dahl JP, Stoltzfus OK, Levenson R, Levison SW. Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor‐2, to increase motor neuron survival. Exp Neurol. 2002; 173: 46–62. [DOI] [PubMed] [Google Scholar]
  • 74. Bohn MC. Motoneurons crave glial cell line‐derived neurotrophic factor. Exp Neurol. 2004; 190: 263–75. [DOI] [PubMed] [Google Scholar]
  • 75. Zhao Z, Alam S, Oppenheim RW, Prevette DM, Evenson A, Parsadanian A. Overexpression of glial cell line‐derived neurotrophic factor in the CNS rescues motoneurons from programmed cell death and promotes their long‐term survival following axotomy. Exp Neurol. 2004; 190: 356–72. [DOI] [PubMed] [Google Scholar]
  • 76. Meinl E, Aloisi F, Ertl B, Weber F, de Waal MR, Wekerle H, Hohlfeld R. Multiple sclerosis. Immunomodulatory effects of human astrocytes on T cells. Brain 1994; 117 (Pt 6): 1323–32. [DOI] [PubMed] [Google Scholar]
  • 77. Aloisi F, Ria F, Columba‐Cabezas S, Hess H, Penna G, Adorini L. Relative effciency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol. 1999; 29: 2705–14. [DOI] [PubMed] [Google Scholar]
  • 78. Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002; 417: 39–44. [DOI] [PubMed] [Google Scholar]
  • 79. Talbott JF, Loy DN, Liu Y, Qiu MS, Bunge MB, Rao MS, Whittemore SR. Endogenous Nkx2.2(+)/Olig2(+) oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp Neurol. 2005; 192: 11–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Fuchs E, Segre JA. Stem cells: a new lease on life. Cell 2000; 100: 143–55. [DOI] [PubMed] [Google Scholar]
  • 81. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157–68. [DOI] [PubMed] [Google Scholar]
  • 82. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001. 17: 387–403. [DOI] [PubMed] [Google Scholar]
  • 83. Alvarez‐Buylla A, Temple S. Stem cells in the developing and adult nervous system. J Neurobiol. 1998; 36: 105–10. [PubMed] [Google Scholar]
  • 84. Gage FH. Mammalian neural stem cells. Science 2000; 287: 1433–8. [DOI] [PubMed] [Google Scholar]
  • 85. Kalyani AJ, Rao MS. Cell lineage in the developing neural tube. Biochem Cell Biol. 1998; 76: 1051–68. [PubMed] [Google Scholar]
  • 86. Picard‐Riera N, Decker L, Delarasse C, Goude K, Nait‐Oumesmar B, Liblau R, Pham‐Dinh D, Evercooren AB. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA. 2002; 99: 13211–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Wu JP, Kuo JS, Liu YL, Tzeng SF. Tumor necrosis factor‐alpha modulates the proliferation of neural progenitors in the subventricular/ventricular zone of adult rat brain. Neurosci Lett. 2000; 292: 203–6. [DOI] [PubMed] [Google Scholar]
  • 88. Aarum J, Sandberg K, Haeberlein SL, Persson MA. Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA. 2003; 100: 15983–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Wu W, Wong K, Chen J, Jiang Z, Dupuis S, Wu JY, Rao Y. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 1999; 400: 331–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Li HS, Chen JH, Wu W, Fagaly T, Zhou L, Yuan W, Dupuis S, Jiang ZH, Nash W, Gick C, Ornitz DM, Wu JY, Rao Y. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 1999; 96: 807–18. [DOI] [PubMed] [Google Scholar]
  • 91. Zhu Y, Yu T, Zhang XC, Nagasawa T, Wu JY, Rao Y. Role of the chemokine SDF‐1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci. 2002; 5: 719–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez‐Hernandez X, Segal RA, Luster AD. SDF‐1 alpha induces chemotaxis and enhances Sonic hedgehog‐induced proliferation of cerebellar granule cells. Development 2001; 128: 1971–81. [DOI] [PubMed] [Google Scholar]
  • 93. Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, Luster A, Corfas G, Segal RA. BDNF stimulates migration of cerebellar granule cells. Development 2002; 129: 1435–42. [DOI] [PubMed] [Google Scholar]
  • 94. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell‐derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA. 2004; 101: 18117–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95. Sun L, Lee J, Fine HA. Neuronally expresed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest. 2004; 113: 1364–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Al Nimer F, Wennersten A, Holmin S, Meijer X, Wahlberg L, Mathiesen T. MHC expression after human neural stem cell transplantation to brain contused rats. Neuroreport 2004; 15: 1871–5. [DOI] [PubMed] [Google Scholar]
  • 97. Mammolenti M, Gajavelli S, Tsoulfas P, Levy R. Absence of major histocompatibility complex class I On neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymophocytes in vitro. Stem Cells 2004; 22: 1101–10. [DOI] [PubMed] [Google Scholar]
  • 98. McLaren FH, Svendsen C., van Der MP, Joly E. Analysis of neural stem cells by flow cytometry: cellular differentiation modifies patterns of MHC expression. J Neuroimmunol. 2001; 112: 35–46. [DOI] [PubMed] [Google Scholar]
  • 99. Modo M, Rezaie P, Heuschling P, Patel S, Male DK, Hodges H. Transplantation of neural stem cells in a rat model of stroke: assessment of short‐term graft survival and acute host immunological response. Brain Res 2002; 958: 70–82. [DOI] [PubMed] [Google Scholar]
  • 100. Modo M, Mellodew K, Rezaie P. In vitro expression of major histocompatibility class I and class II antigens by conditionally immortalized murine neural stem cells. Neurosci Lett. 2003; 337: 85–8. [DOI] [PubMed] [Google Scholar]
  • 101. Imitola J, Comabella M, Chandraker AK, Dangond F, Sayegh MH, Snyder EY, Khoury SJ. Neural stem/progenitor cells express costimulatory molecules that are differentially regulated by inflammatory and apoptotic stimuli. Am J Pathol. 2004; 164: 1615–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Ben Hur T, Ben Menachem O, Furer V, Einstein O, Mizrachi‐Kol R, Grigoriadis N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003; 24: 623–31. [DOI] [PubMed] [Google Scholar]
  • 103. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002; 110: 429–41. [DOI] [PubMed] [Google Scholar]
  • 104. Wong G, Goldshmit Y, Turnley AM. Interferon‐gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol. 2004; 187: 171–7. [DOI] [PubMed] [Google Scholar]
  • 105. Barish ME, Mansdorf NB, Raissdana SS. Gammainterferon promotes differentiation of cultured cortical and hippocampal neurons. Dev Biol. 1991; 144: 412–23. [DOI] [PubMed] [Google Scholar]
  • 106. Rao MS, Mayer‐Proschel M. Glial‐restricted precursors are derived from multipotent neuroepithelial stem cells. Dev Biol. 1997; 188: 48–63. [DOI] [PubMed] [Google Scholar]
  • 107. Rao MS, Noble M, Mayer‐Proschel M. A tripotential glial precursor cell is present in the developing spinal cord. Proc Natl Acad Sci USA 1998; 95: 3996–4001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Rao M. Stem and precursor cells in the nervous system. J Neurotrauma. 2004; 21: 415–27. [DOI] [PubMed] [Google Scholar]
  • 109. Zhang SC. Defining glial cells druing CNS development. Nat Rev Neurosci. 2001; 2: 840–3. [DOI] [PubMed] [Google Scholar]
  • 110. Levine JM, Stincone F, Lee YS. Development and differentiation of glial precursor cells in the rat cerebellum. Glia. 1993; 7: 307–21. [DOI] [PubMed] [Google Scholar]
  • 111. Aguirre A, Gallo V. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2‐expressing progenitors of the subventricular zone. J Neurosci. 2004; 24: 10530–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Alonso G. NG2 proteoglycan‐expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 2005; 49: 318–38. [DOI] [PubMed] [Google Scholar]
  • 113. Dawson MR, Polito A, Levine JM, Reynolds R. NG2‐expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci. 2003; 24: 476–88. [DOI] [PubMed] [Google Scholar]
  • 114. Levine JM. Increased expression of the NG2 chondroitin‐sulfate proteoglycan after brain injury. J Neurosci. 1994; 14: 4716–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Ong WY, Levine JM. A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan ‐ positive oligodendrocyte precursor cells in the normal and kainate‐lesioned rat hippocampus. Neuroscience 1999; 92: 83–95. [DOI] [PubMed] [Google Scholar]
  • 116. Ohta K, Iwai M, Sato K, Omori N, Nagano I, Shoji M, Abe K. Dissociative increase of oligodendrocyte progenitor cells between young andaged rats after transient cerebral ischemia. Neurosci Lett. 2003; 335: 159–62. [DOI] [PubMed] [Google Scholar]
  • 117. Tanaka K, Nogawa S, Suzuki S, Dembo T, Kosakai A. Upregulation of Oligodendrocyte progenitor cells associated with restoration of mature oligodendrocytes and myelination in peri‐infarct area in the rat brain. Brain Res. 2003; 989: 172–9. [DOI] [PubMed] [Google Scholar]
  • 118. Levine JM, Nishiyama A. The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. Perspect Dev Neurobiol. 1996; 3: 245–59. [PubMed] [Google Scholar]
  • 119. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2‐positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000; 20: 6404–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Reynolds R, Cenci DB, Dawson M I, Levine J. The response of adult oligodendrocyte progenitors to demyelination in EAE. Prog Brain Res. 2001; 132: 165–74. [DOI] [PubMed] [Google Scholar]
  • 121. Carroll WM, Jennings AR. Early recruitment of oligodendrocyte precursors in CNS demyelination. Brain 1994; 117 (Pt 3): 563–78. [DOI] [PubMed] [Google Scholar]
  • 122. Di Bello IC, Dawson MR, Levine JM, Reynolds R. Generation of oligodendroglial progenitors in acute inflammatory demyelinating lesions of the rat brain stem is associated with demyelinating rather than inflammation. J Neurocytol. 1999; 28: 365–81. [DOI] [PubMed] [Google Scholar]
  • 123. Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol. 1998; 37: 413–28. [DOI] [PubMed] [Google Scholar]
  • 124. Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 1998; 121 (Pt 12): 2221–8. [DOI] [PubMed] [Google Scholar]
  • 125. Wolswijk G. Chronic Stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci. 1998; 18: 601–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating Oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002; 346: 165–73. [DOI] [PubMed] [Google Scholar]
  • 127. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, Zalc B, Lubetzki C. Negative regulation of central nervous system myelination by polysialylated‐neural cell adhesion molecule. Proc Natl Acad Sci USA. 2000; 97: 7585–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, Zalc B, Lubetzki C, Re‐expressionof PSA‐NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis Brain 2002; 125: 1972–9. [DOI] [PubMed] [Google Scholar]
  • 129. Wang S, Sdrulla AD, DiSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron. 1998; 21: 63–75. [DOI] [PubMed] [Google Scholar]
  • 130. John GR, Shankar SL, Shafit‐Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF. Multiple sclerosis: reexpression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med. 2002; 8: 1115–21. [DOI] [PubMed] [Google Scholar]
  • 131. Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, Franklin RJ. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate‐determining factor during remyelination. Brain 2004; 127: 1928–41. [DOI] [PubMed] [Google Scholar]
  • 132. Copelman CA, Cuzner ML, Groome N, Diemel LT. Temporal analysis of growth factor mRNA expression in myelinating rat brain aggregate cultures: increments in CNTF, FGF‐2, IGF‐I, and PDGF‐AA mRNA are induced by antibody‐mediated demyelination. Glia 2000; 30: 342–51. [DOI] [PubMed] [Google Scholar]
  • 133. Fernandez M, Giuliani A, Pirondi S, D'Intino G, Giardino L, Aloe L, Levi‐Montalcini R, Calza L. Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease. Proc Natl Acad Sci USA. 2004; 101: 16363–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134. Franklin RJ, Hinks GL, Woodruff RH, O'Leary MT, Wahat roles do growth factors play in CNS remyelination Prog Brain Res. 2001; 132: 185–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Hinks GL, Franklin RJ. Distinctive patterns of PDGF‐A, FGF‐2, IGF‐I, and TGF‐betal1 gene expression during remyelination of experimentally‐induced spinal cord demyelination. Mol Cell Neurosci. 1999; 14: 153–68. [DOI] [PubMed] [Google Scholar]
  • 136. Komoly S, Hudson LD, Webster HD, Bondy CA. Insulin like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 1992; 89: 1894–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H. Toyka K., Sendtner M, Gold R. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med. 2002; 8: 620–4. [DOI] [PubMed] [Google Scholar]
  • 138. Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 1993; 3: 191–7. [DOI] [PubMed] [Google Scholar]
  • 139. Redwine JM, Blinder KL, Armstrong RC. In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res. 1997; 50: 229–37. [DOI] [PubMed] [Google Scholar]
  • 140. Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol. 1998; 37: 413–28. [DOI] [PubMed] [Google Scholar]
  • 141. Tourbah A, Baron‐Van Evercooren A, Oliver L, Raulais D, Jeanny JC, Gumpel M. Endogenous aFGF expression and cellular changes after a demyelinating lesion in the spinal cord of adult normal mice: immunohistochemical study. J Neurosci Res. 1992; 33: 47–59. [DOI] [PubMed] [Google Scholar]
  • 142. Wilson HC, Onischke C, Raine CS. Human oligodendrocyte precursor cells in vitro: phenotypic analysis and differential response to growth factors. Glia. 2003; 44: 153–65. [DOI] [PubMed] [Google Scholar]
  • 143. Woodruff RH, Franklin RJ. Growth factors and remyelination in the CNS. Histol Histopathol. 1997; 12: 459–66. [PubMed] [Google Scholar]
  • 144. Woodruff RH, Fruttiger M, Richardson W., Franklin R.. Platelet‐derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci. 2004; 25: 252–62. [DOI] [PubMed] [Google Scholar]
  • 145. Yao DL, Liu X, Hudson LD, Webster HD. Insulin‐like growth factor I treatment reduces demyelination and upregulates gene expression of myelin‐related proteins in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 1995; 92: 6190–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Foote AK, Blakemore WF. Inflammation stimulates remyelination in areas of chronic demyelination. Brain 2005. [DOI] [PubMed]
  • 147. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF α promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci. 2001; 4: 1116–22. [DOI] [PubMed] [Google Scholar]
  • 148. Andrews T, Zhang P, Bhat NR. TNFalpha potentiates IFNgamma‐induced cell death in oligodendrocyte progenitors. J Neurosci Res. 1998; 54: 574–83. [DOI] [PubMed] [Google Scholar]
  • 149. Hamanoue M, Yoshioka A, Ohashi T, Eto Y, Takamatsu K. NF‐kappaB prevents TNF‐alpha‐induced apoptosis in an oligodendrocyte cell line. Neurochem Res. 2004; 29: 1571–6. [DOI] [PubMed] [Google Scholar]
  • 150. Scurlock B, Dawson G. Differential responses of oligodendrocytes to tumor necrosis factor and other pro‐apoptotic agents: role of ceramide in apoptosis. J Neurosci Res. 1999; 55: 514–22. [DOI] [PubMed] [Google Scholar]
  • 151. Rao MS, Mayer‐Proschel M. Precursor cells for transplantation. Prog Brain Res. 2000; 128: 273–92. [DOI] [PubMed] [Google Scholar]
  • 152. Blakemore WF, Franklin RJ. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant. 2000; 9: 289–94. [DOI] [PubMed] [Google Scholar]
  • 153. Han SS, Liu Y, Tyler‐Polsz C, Rao MS, Fischer I. Transplantation of glial‐restricted precursor cells into the adult spinal cord: survival, glial‐specific differentiation, and preferential migration in white matter. Glia 20042004; 45: 1–16. [DOI] [PubMed] [Google Scholar]
  • 154. Han SS, Kang DY, Mujtaba T, Rao MS, Fischer I. Grafted lineage‐restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol. 2002; 177: 360–75. [DOI] [PubMed] [Google Scholar]
  • 155. Bai H, Suzuki Y, Noda T, Wu S, Kataoka K, Kitada M, Ohta M, Chou H, Ide C. Dissemination and proliferation of neural stem cells on the spinal cord by injection into the fourth ventricle of the rat: a method for cell transplantation. J Neurosci Methods. 2003; 124: 181–7. [DOI] [PubMed] [Google Scholar]
  • 156. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003; 422: 688–94. [DOI] [PubMed] [Google Scholar]
  • 157. Einstein O, Karussis D, Grigoriadis N, Mizrachi‐Kol R, Reinhartz E, Abramsky O, Ben Hur T. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003; 24: 1074–82. [DOI] [PubMed] [Google Scholar]
  • 158. Armstrong RJ, Harrower TP, Hurelbrink CB, McLaughin M, Ratcliffe EL, Tyers P, Richards A, Dunnett SB, Rosser AE, Barker RA. Porcine neural xenografts in the immunocompetent rat: immune response following grafting of expanded neural precursor cells. Neuroscience 2001; 106: 201–16. [DOI] [PubMed] [Google Scholar]
  • 159. Sloan DJ, Wood MJ, Charlton HM. The immune response to intracerebral neural grafts. Trends Neurosci. 1991; 14: 341–6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES