Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(1):45–58. doi: 10.1111/j.1582-4934.2004.tb00259.x

Molecular mechanisms of neuroprotective action of immunosuppressants ‐ facts and hypotheses

Bozena Kaminska 1,, Katarzyna Gaweda‐Walerych 1, Malgorzata Zawadzka 1
PMCID: PMC6740149  PMID: 15090260

Abstract

Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target ‐ calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA‐induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non‐neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post‐ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506‐mediated neuroprotection in ischemia.

Keywords: FK506, cyclosporin A, calcineurin, neuroprotection, microglia, proinflammatory cytokines, ischemia

References

  • 1. Rao A., Luo C., Hogan P.G., Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15: 707–747, 1997. [DOI] [PubMed] [Google Scholar]
  • 2. Liu J., Farmer J.D. Jr., Lane W.S., Friedman J., Weissman I., Schreiber S.L., Calcineurin is a common target of cyclophilin‐cyclosporin A and FKBP‐FK506 complexes, Cell, 66: 807–815, 1991. [DOI] [PubMed] [Google Scholar]
  • 3. Clipstone N.A., Crabtree G.R., Identification of calcineurin as a key signalling enzyme in T‐lymphocyte activation, Nature, 357: 695–697, 1992. [DOI] [PubMed] [Google Scholar]
  • 4. Steiner J.P., Dawson T.M., Fotuhi M., Glatt C.E., Snowman A.M., Cohen N., Snyder S.H., High brain densities of the immunophilin FKBPs colocalized with calcineurin, Nature, 358: 584–587, 1992. [DOI] [PubMed] [Google Scholar]
  • 5. Snyder S.H. and Sabatini D.M., Immunophilins and the nervous system, Nat Med., 1: 32–37, 1995. [DOI] [PubMed] [Google Scholar]
  • 6. Guo X., Dillma J.F. 3rd, Dawson V.L., Dawson T.M., Neuroimmunophilines: novel neuroprotective and neurodegenerative targets, Ann. Neurol., 50: 6–16, 2001. [DOI] [PubMed] [Google Scholar]
  • 7. Shiga Y., Onodera H., Matsuo Y., Kogure K., Cyclosporin A protects against ischemia‐reperfusion injury in the brain, Brain Res., 595: 145–148, 1992. [DOI] [PubMed] [Google Scholar]
  • 8. Arii T., Kamiya T., Arii K., Ueda M., Nito C., Katsura K.I., Katayama Y., Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rat: therapeutic time window for FK506 transient focal ischemia, Neurol. Res., 23: 755–760, 2001. [DOI] [PubMed] [Google Scholar]
  • 9. Uchino H, Elmer E, Uchino K, Lindvall O, Siesjo BK., Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat, Acta Physiol Scand., 155: 469–71, 1995. [DOI] [PubMed] [Google Scholar]
  • 10. Yagita Y., Kitagawa K., Matsushita K., Taguchi A., Mabuchi T., Ohtsuki T., Yanagihara T., Matsumoto M., Effect of immunosuppressant FK506 on ischemiainduced degeneration of hippocampal neurons in gerbils, Life Sci., 59: 1643–1650, 1996. [DOI] [PubMed] [Google Scholar]
  • 11. Furuichi Y., Katsuta K., Maeda M., Ueyama N., Moriguchi A., Matsuoka N., Goto T., Yanagihara T., Neuroprotective action of tacrolimus (FK506) in focal and global cerebral ischemia in rodents: dose dependency, therapeutic time window and long‐term efficacy, Brain Res., 965: 137–145, 2003. [DOI] [PubMed] [Google Scholar]
  • 12. Tokime T., Nozaki K., Kikuchi H., Neuroprotective effect of FK506, an immunosuppressant, on transient global ischemia in gerbil, Neurosci. Lett., 206: 81–84, 1996. [DOI] [PubMed] [Google Scholar]
  • 13. Tanaka K., Fukuuchi Y., Nozaki H., Nagata E., Kondo T., Koyama S., Dembo T., Calcineurin inhibitor, FK506, prevents reduction in the binding capacity of cyclic AMP‐dependent protein kinase in ischemic gerbil brain, J. Cereb. Blood Flow Metab., 17: 412–420, 1997. [DOI] [PubMed] [Google Scholar]
  • 14. Takamatsu H., Tsukada H., Noda A., Kakiuchi T., Nishiyama S., Nishimura S., Umemura K., FK506 attenuates early ischemic neuronal death in a monkey model of stroke, J. Nucl. Med., 42: 1833–40, 2001. [PubMed] [Google Scholar]
  • 15. Sharkey J., Butcher S.P., Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia, Nature, 371: 336–9, 1994. [DOI] [PubMed] [Google Scholar]
  • 16. Butcher S.P., Henshall D.C., Teramura Y., Iwasaki K., Sharkey J., Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an anti‐excitotoxic mechanism, J. Neurosci., 17: 6939–6946, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Buki A., Okonkwo D.O., Povlishock J.T. Buki A., Okonkwo D.O., Povlishock J.T., Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury, J Neurotrauma, 16: 511–21, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Okonkwo DO, Povlishock JT., An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury, J Cereb Blood Flow Metab., 19: 443–51, 1999. [DOI] [PubMed] [Google Scholar]
  • 19. Singleton RH, Stone JR, Okonkwo DO, Pellicane AJ, Povlishock JT., The immunophilin ligand FK506 attenuates axonal injury in an impact‐acceleration model of traumatic brain injury, J Neurotrauma, 18: 607–14, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Rosenstiel P, Schramm P, Isenmann S, Brecht S, Eickmeier C, Burger E, Herdegen T, Sievers J, Lucius R., Differential effects of immunophilin‐ligands (FK506 and V‐10,367) on survival and regeneration of rat retinal ganglion cells in vitro and after optic nerve crush in vivo, J Neurotrauma, 20: 297–307, 2003. [DOI] [PubMed] [Google Scholar]
  • 21. Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH., Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia, Proc. Natl. Acad. Sci. U S A., 91: 3191–5, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Gold BG, Katoh K, Storm‐Dickerson T., The immunosuppressant FK506 increases the rate of axonal regeneration in rat sciatic nerve, J Neurosci., 15: 7509–16, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Steiner J.P., Connolly M.A., Valentine H.L., Hamilton G.S., Dawson T.M., Hester L., Snyder S.H., Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A, Nat Med., 3: 421–8, 1997. [DOI] [PubMed] [Google Scholar]
  • 24. Emborg M.E., Shin P., Roitberg B., Sramek J.G., Chu Y., Stebbins G.T., Hamilton J.S., Suzdak P.D., Steiner J.P., Kordower J.H., Systemic administration of the immunophilin ligand GPI 1046 in MPTP‐treated monkeys, Exp Neurol., 168: 171–82, 2001. [DOI] [PubMed] [Google Scholar]
  • 25. Eberling J.L., Pivirotto P., Bringas J., Steiner J.P., Kordower J.H., Chu Y., Emborg M.E., Bankiewicz K.S., The immunophilin ligand GPI‐1046 does not have neuroregenerative effects in MPTP‐treated monkeys, Exp Neurol., 178: 236–42, 2002. [DOI] [PubMed] [Google Scholar]
  • 26. Nottingham S, Knapp P, Springer J., FK506 treatment inhibits caspase‐3 activation and promotes oligodendroglial survival following traumatic spinal cord injury, Exp Neurol., 177: 242–51, 2002. [DOI] [PubMed] [Google Scholar]
  • 27. Madsen JR, MacDonald P, Irwin N, Goldberg DE, Yao GL, Meiri KF, Rimm IJ, Stieg PE, Benowitz LI., Tacrolimus (FK506) increases neuronal expression of GAP‐43 and improves functional recovery after spinal cord injury in rats., Exp Neurol., 154: 673–83, 1998. [DOI] [PubMed] [Google Scholar]
  • 28. Keswani SC, Chander B, Hasan C, Griffin JW, McArthur JC, Hoke A., FK506 is neuroprotective in a model of antiretroviral toxic neuropathy, Ann Neurol., 53: 57–64, 2003. [DOI] [PubMed] [Google Scholar]
  • 29. Yakel J.L., Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription, Trends Pharmacol. Sci., 18: 124–134, 1997. [DOI] [PubMed] [Google Scholar]
  • 30. Shibasaki F., Hallin U., Uchino H., Calcineurin as a multifunctional regulator, J. Biochem., 131: 1–15, 2002. [DOI] [PubMed] [Google Scholar]
  • 31. Su Q., Zhao M., Weber E., Eugster H.P., Ryffel, B. , Distribution and activity of calcineurin in rat tissues. Evidence for post‐translational regulation of testis‐specific calcineurin, Eur. J. Biochem., 230, 469–474, 1995. [DOI] [PubMed] [Google Scholar]
  • 32. Nichols, R.A. , Suplick, G.R. , Brown, J.M. , Calcineurin‐mediated protein dephosphorylation in brain nerve terminals regulates the release of glutamate, J. Biol. Chem., 269: 23817–23823, 1994. [PubMed] [Google Scholar]
  • 33. Victor, R.G. , Thomas, G.D. , Marban, E. , O'Rourke, B. , Presynaptic modulation of cortical synaptic activity by calcineurin, Proc. Natl. Acad. Sci., 92: 6269–6273. 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Sihra, T.S. , Nairn, A.C. , Kloppenburg, P. , Lin, Z. , Pouzat, C , A role for calcineurin (protein phosphatase‐ 2B) in the regulation of glutamate release, Biochem. Biophys. Res. Commun., 212: 609–616, 1995. [DOI] [PubMed] [Google Scholar]
  • 35. Leist, M. , Nicotera, P. , Apoptosis, excitotoxicity, and neuropathology, Exp. Cell Res., 239: 183–201, 1998. [DOI] [PubMed] [Google Scholar]
  • 36. Asai, A. , Qiu, J.‐H. , Narita, Y. , Chi, S. , Saito, N. , Shinoura, N. , Hamada, H. , Kuchino, Y. & Kirino, T. , High level calcineurin activity predisposes neuronal cells to apoptosis, J. Biol. Chem., 274: 34450–34458. 1999. [DOI] [PubMed] [Google Scholar]
  • 37. Cousin M.A., Robinson P.J., The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis, Trends Neurosci., 24: 659–65, 2001. [DOI] [PubMed] [Google Scholar]
  • 38. Dawson T.M., Steiner J.P., Dawson V.L., Dinerman J.L., Uhl G.R., Snyder S.H., Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity, Proc Natl Acad Sci U S A, 90: 9808–12, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Shibasaki F., McKeon F., Calcineurin functions in Ca(2+)‐activated cell death in mammalian cells, J Cell Biol., 131: 735–43, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Wang H.G., Pathan N., Ethell I.M., Krajewski S., Yamaguchi Y., Shibasaki F., McKeon F., Bobo T., Franke T.F., Reed J.C., Ca2+‐induced apoptosis through calcineurin dephosphorylation of Bad, Science, 284: 339–343, 1999. [DOI] [PubMed] [Google Scholar]
  • 41. Bito H., Deisseroth K., Tsien R.W., CREB phosphorylatoion and dephosphorylation: a Ca2+ and stimulus duration‐dependent switch for hippocampal gene expression, Cell, 87: 1203–1214, 1996. [DOI] [PubMed] [Google Scholar]
  • 42. Beck T., Lindholm D., Castren E., Wree A., Brainderived neurotrofic factor protects against ischemic cell damage in rat hippocampus, J. Cereb. Blood Flow Metab., 14: 689–692, 1994. [DOI] [PubMed] [Google Scholar]
  • 43. Finkbeiner S., Tavazoie S. F., Maloratsky A., Jacob K.M., Harris K.M., Greenberg M.E., CREB: a major mediator of neuronal neurotrophin, Neuron, 19: 1031–47, 1997. [DOI] [PubMed] [Google Scholar]
  • 44. Hong F., Lee J., Song J.W., Lee S.J., Ahn H., Cho J.J., Ha J., Kim S.S., Cyclosporin A blocks muscle differentiation by inducing oxidative stress and inhibiting the peptidyl‐ prolyl‐cis‐trans isomerase activity of cyclophilin A: cyclophilin A protects myoblasts from cyclosporin A‐ induced cytotoxicity, FASEB J., 16: 1633–5, 2002. [DOI] [PubMed] [Google Scholar]
  • 45. Alvarez‐Arroyo M.V., Yague S., Wenger R.M., Pereira D.S., Jimenez S., Gonzalez‐Pacheco F.R., Castilla M.A., Deudero J.J., Caramelo C., Cyclophilin‐mediated pathways in the effect of cyclosporin A on endothelial cells: role of vascular endothelial growth factor, Circ Res., 91: 202–9, 2002. [DOI] [PubMed] [Google Scholar]
  • 46. Waldmeier P.C., Feldtrauer J.J., Qian T., Lemasters J.J., Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811, Mol Pharmacol., 62: 22–9, 2002. [DOI] [PubMed] [Google Scholar]
  • 47. Crompton M., The mitochondrial permeability transition pore and its role in cell death, Biochem J., 341: 233–249, 1999. [PMC free article] [PubMed] [Google Scholar]
  • 48. Khaspekov L., Friberg H., Halestrap A.P., Viktorov I., Wieloch T., Cyclosporin A and its nonimmunosuppressive analogue N‐Me‐Val‐4‐cyclosporin A mitigate glucose/oxygen deprivation‐induced damage to rat cultured hippocampal neurons, Eur. J. Neurosci., 11: 3194–3198, 1999. [DOI] [PubMed] [Google Scholar]
  • 49. Hovland A.R., La Rosa F.G., Hovland P.G., Cole W.C., Kumar A., Prasad J.E., Prasad K.N., Cyclosporin A regulates the levels of cyclophilin A in neuroblastoma cells in culture, Neurochem Int., 35: 229–35, 1999. [DOI] [PubMed] [Google Scholar]
  • 50. Lin D.T., Lechleiter J.D., Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization, J. Biol. Chem., 277: 31134–41, 2002. [DOI] [PubMed] [Google Scholar]
  • 51. Brecht S., Schwarze K., Waetzig V., Christner C., Heiland S., Fischer G., Sartor K., Herdegen T., Changes in peptidyl‐prolyl cis/trans isomerase activity and FK506 binding protein expression following neuroprotection by FK506 in the ischemic rat brain, Neuroscience, 120: 1037–48, 2003. [DOI] [PubMed] [Google Scholar]
  • 52. Friberg H., Ferrand‐Drake M., Bengtsson F., Halestrap A.P., Wieloch T., Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death, J. Neurosci., 18: 5151–5159, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Matsumoto S., Isshiki A., Watanabe Y., Wieloch T., Restricted clinical efficacy of cyclosporin A on rat transient middle cerebral artery occlusion, Life Sci., 72: 591–600, 2002. [DOI] [PubMed] [Google Scholar]
  • 54. Yoshimoto T., Uchino H., He Q.P., Li P.A., Siesjo B.K., Cyclosporin A, but not FK506, prevents the downregulation of phosphorylated Akt after transient focal ischemia in the rat, Brain Res., 899: 148–158, 2001. [DOI] [PubMed] [Google Scholar]
  • 55. Bochelen D., Rudin M., Sauter A., Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury, J. Pharmacol. Exp. Ther., 288: 653–659, 1999. [PubMed] [Google Scholar]
  • 56. Uchino H., Elmer E., Uchino K., Li P.A., He Q.P., Smith M.L., Siesjo B.K., Amelioration by cyclosporin A of brain damage in transient forebra in ischemia in the rat, Brain Res., 812: 216–26, 1998. [DOI] [PubMed] [Google Scholar]
  • 57. Uchino H., Minamikawa‐Tachino R., Kristian T., Perkins G., Narazaki M., Siesjo B.K., Shibasaki F., Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition, Neurobiol. Dis., 10: 219–233, 2002. [DOI] [PubMed] [Google Scholar]
  • 58. Hossmann K.A., Viability thresholds and the penumbra of focal ischemia, Ann. Neurol., 36: 557–565, 1994. [DOI] [PubMed] [Google Scholar]
  • 59. Charriaut‐Marlanque C., Margaill I., Represa I., Popovici T., Plotkine M., Ben‐Ari Y., Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis, J. Cereb. Blood Flow Metab., 16: 186–194, 1996. [DOI] [PubMed] [Google Scholar]
  • 60. MacManus J.P., Hill I.E., Huang Z.G., Rasquinha I., Xue D., Buchan A.M., DNA damage consistent with apoptosis in transient focal ischaemic neocortex, Neuroreport, 5: 493–496, 1994. [DOI] [PubMed] [Google Scholar]
  • 61. Linnik M.D., Zobrist R.H., Hatfield M.D., Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats, Stroke, 24: 2002–2008, 1993. [DOI] [PubMed] [Google Scholar]
  • 62. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC., Upregulation of bax protein levels in neurons following cerebral ischemia, J Neurosci., 15: 6364–76, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Pusinelli W.A., The therapeutic window in ischemic brain injury, Curr. Opin. Neurol., 8: 3–5, 1995. [DOI] [PubMed] [Google Scholar]
  • 64. Lutsep H., Clark W., Current status of neuroprotective agents in the treatment of acute ischemic stroke, Curr. Opin. Investig. Drugs, 2: 1732–1736, 2001. [DOI] [PubMed] [Google Scholar]
  • 65. Dirnagl U., Iadecola C., Moskowitz M.A., Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 22: 391–7, 1999. [DOI] [PubMed] [Google Scholar]
  • 66. Davalos A., Castillo J., Noya M., Duration of glutamate release after acute ischemic storke, Storke, 28: 708–710, 1997. [DOI] [PubMed] [Google Scholar]
  • 67. Dalkara T., Yoshida T., Irikura K., Moskowitz M.A., Dual role of nitric oxide in focal cerebral ischemia, Neuropharmacology, 33: 1447–1452, 1994. [DOI] [PubMed] [Google Scholar]
  • 68. Huang Z., Huang P.L., Panahian N., Dalkara T., Fishman M.C., Moskowitz M.A., Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase, Science, 265: 1883–1885, 1994. [DOI] [PubMed] [Google Scholar]
  • 69. Toung T.J., Bhardway A., Dawson V.L., Dawson T.M., Traystman R.J., Hurn P.D., Neuroprotective FK506 does not alter in vivo nitric oxide production during ischemia and early reperfusion, Stroke, 30: 1279–1285, 1999. [DOI] [PubMed] [Google Scholar]
  • 70. Miyata K., Omori N., Uchino H., Yamaguchi T., Isshiki A., Shibasaki F., Involvement of the brainderived neurotrophic factor/TrkB pathway in neuroprotective effect of cyclosporin A in forebrain ischemia, Neuroscience, 105: 571–578, 2001. [DOI] [PubMed] [Google Scholar]
  • 71. Morioka T., Kalehua A.N., Streit W.J., Characterization of microglial reaction after middle cerebral artery occlusion in rat brain, J. Comp. Neurol., 327: 23–32, 1993. [DOI] [PubMed] [Google Scholar]
  • 72. Rothwell N.J., Cytokines ‐ killers in the brain?, J. Physiol., 514: 3–17, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Barone F.C., Arvin B., White R.F., Miller A., Webb C.L., Willette R.N., Lysko P.G., Feuerstein G.Z., Tumor necrosis factor‐alpha. A mediator of focal ischemic brain injury, Stroke, 28: 1233–44, 1997. [DOI] [PubMed] [Google Scholar]
  • 74. Wilde GJ, Pringle AK, Sundstrom LE, Mann DA, Iannotti F., Attenuation and augmentation of ischaemiarelated neuronal death by tumour necrosis factor‐alpha in vitro, Eur J Neurosci., 12: 3863–70, 2000. [DOI] [PubMed] [Google Scholar]
  • 75. Takeda A., Onodera H., Sugimoto A., Kogure K., Obinata M., Shibahara S., Coordinated expression of messenger RNAs for nerve growth factor, brain‐derived neurotrofic factor and neurotrofin‐3 in the rat hippocampus following transient forebrain ischemia, Neurosci., 55: 23–31, 1993. [DOI] [PubMed] [Google Scholar]
  • 76. Bethel A., Kirsch J.R., Koehler R.C., Finklestein S.P., Traystman R.J., Intravenous basic fibroblast growth factor decreased brain injury resulting from focal ischemia in cats, Stroke, 28: 609–616, 1997. [DOI] [PubMed] [Google Scholar]
  • 77. Kiprianova I., Freiman T.M., Desiderato S., Schwab S., Galmbacher R., Gillardon F., Spranger M., Brainderived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat, J. Neurosci. Res., 56: 21–27, 1999. [DOI] [PubMed] [Google Scholar]
  • 78. Larsson E., Nanobashvili A., Kokaia Z., Lindvall O., Evidence for neuroprotective effects of endogenous brain‐derived neurotrophic factor after global forebrain ischemia in rats, J. Cereb., Blood Flow Metab., 19: 1220–1228, 1999. [DOI] [PubMed] [Google Scholar]
  • 79. Ishimaru H., Takahashi A., Ikarashi Y., Maruyama Y., NGF delays rather then prevents the cholinergic terminal damage and delayed neuronal death in the hippocampus after ischemia, Brain Res., 789: 194–200, 1998. [DOI] [PubMed] [Google Scholar]
  • 80. Block F., Peters M., Nolden‐Koch M., Expression of IL‐6 in the ischemic penumbra, Neuroreport., 11: 963–967, 2000. [DOI] [PubMed] [Google Scholar]
  • 81. Krupinski J., Kumar P., Kumar S., Path F.R.C., Kaluza J., Increased expression of TGF‐beta1 in brain tissue after ischemic stroke in humans, Stroke, 27: 852–857, 1996. [DOI] [PubMed] [Google Scholar]
  • 82. Rothwell N., Luheshi G.N., Interleukin 1 in the brain: biology, pathology and therapeutic target, Trends Neurosci., 23: 618–625, 2000. [DOI] [PubMed] [Google Scholar]
  • 83. Martin‐Villalba A., Herr I., Jeremias I., Hahne M., Brandt R., Vogel J., Schenkel J., Herdegen T., Debatin K.M., CD95 ligand (Fas‐L/APO‐1L) and tumor necrosis factor‐related apoptosis‐inducing ligand mediate ischemia‐induced apoptosis in neurons, J. Neurosci., 19: 3809–3817, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Bolanos JP, Almeida A., Roles of nitric oxide in brain hypoxia‐ischemia, Biochim Biophys Acta., 1411: 415–36, 1999. [DOI] [PubMed] [Google Scholar]
  • 85. Loihl AK, Murphy S., Expression of nitric oxide synthase‐2 in glia associated with CNS pathology, Prog Brain Res., 118: 253–67, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Bal‐Price A, Brown GC., Inflammatory neurodegeneration mediated by nitric oxide from activated glia‐inhibiting neuronal respiration, causing glutamate release and excitotoxicity, J Neurosci., 21: 6480–91, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Kaminska B., Pyrzynska B., Figiel I., Lis A., Dziembowska M., Mosieniak G., The effects of cyclosporin A on glial and neuronal cells in vitro‐ looking for CsA targets. Immunophilin‐ligands as a novel treatment in neurodegenerative disorders, Eds. Gold, Fischer, Herdegen, Prous Science, 189–197, 2000.
  • 88. Pyrzynska B., Lis A., Mosieniak G., Kaminska B., Cyclosporin A‐sensitive signalling pathway involving calcineurin regulates survival of reactive astrocytes, Neurochem. Int., 38: 409–415, 2001. [DOI] [PubMed] [Google Scholar]
  • 89. Zawadzka M., Kaminska B., Immunosuppressant FK506 affects multiple signalling pathways and modulates gene expression in astrocytes, Mol. Cell. Neurosci., 22: 202–209, 2003. [DOI] [PubMed] [Google Scholar]
  • 90. Wakita H., Tomimoto H., Akiguchi I., Kimura J., Dose‐dependent, protective effect of FK506 against white matter changes in the rat brain after chronic cerebral ischemia, Brain Res., 792: 105–113, 1998. [DOI] [PubMed] [Google Scholar]
  • 91. Schielke G.P., Yang G.Y., Shivers B.D., Betz A.L., Reduced ischemic brain injury in interleukin‐1 beta converting enzyme‐deficient mice, J. Cereb. Blood Flow Metab., 18: 180–185, 1998. [DOI] [PubMed] [Google Scholar]
  • 92. Touzani O., Boutin H., Chuquet J., Rothwell N., Potential mechanisms of interleukin‐1 involvement in cerebral ischaemia, J. Neuroimmunol., 100: 203–215, 1999. [DOI] [PubMed] [Google Scholar]
  • 93. Boutin H., LeFeuvre R.A., Horai R., Asano M., Iwakura Y., Rothwell N.J., Role of IL‐1alpha and IL‐1beta in ischemic brain damage, J. Neurosci., 21: 5528–5534, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Maeda M., Furuichi Y., Ueyama N., Moriguchi A., Satoh N., Matsuoka N., Goto T., Yanagihara T., A combined treatment with tacrolimus (FK506) and recombinant tissue plasminogen activator for thrombotic focal cerebral ischemia in rats: increased neuroprotective efficacy and extended therapeutic time window, J. Cereb Blood Flow Metab., 22: 1205–11, 2002. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES