Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(2):191–200. doi: 10.1111/j.1582-4934.2004.tb00274.x

Inorganic phosphate homeostasis and the role of dietary phosphorus

Eiji Takeda 1,, Hironori Yamamoto 1, Kunitaka Nashiki 1, Tadatoshi Sato 1, Hidekazu Arai 1, Yutaka Taketani 1
PMCID: PMC6740209  PMID: 15256067

Abstract

Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium‐dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by Pi, parathyroid hormone and by 1,25‐dihydroxyvitamin D. Recent studies of inherited and acquired hypophosphatemia [X‐linked hypophosphatemic rickets/osteomalacia (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and tumor‐induced rickets/osteomalacia (TIO)], which exhibit similar biochemical and clinical features, have led to the identification of novel genes, PHEX and FGF23, that play a role in the regulation of Pi homeostasis. The PHEX gene, which is mutated in XLH, encodes an endopeptidase, predominantly expressed in bone and teeth, but not in kidney. FGF‐23 may be a substrate of this endopeptidase and may therefore accumulate in patients with XLH. In the case of ADHR mutations in the furin cleavage site, which prevent the processing of FGF‐23 into fragments, lead to the accumulation of a “stable” circulating form of the peptide which also inhibits renal Pi reabsorption. In the case of TIO, ectopic overproduction of FGF‐23 overwhelms its processing and degradation by PHEX, leading to the accumulation of FGF‐23 in the circulation and inhibition of renal Pi reabsorption. Mice homozygous for severely hypomorphic alleles of the Klotho gene exhibit a syndrome resembling human aging, including atherosclerosis, osteoporosis, emphysema, and infertility. The KLOTHO locus is associated with human survival, defined as postnatal life expectancy, and longevity, defined as life expectancy after 75. In considering the relationship of klotho expression to the dietary Pi level, the klotho protein seemed to be negatively controlled by dietary Pi.

Keywords: phosphate, sodium dependent phosphate cotransporter, PHEX, FGF23, Klotho, aging

References: References

  • 1. Takeda E., Taketani Y., Morita K., Tatsumi S., Kanako K., Nii T., Yamamoto H., Miyamoto K., Molecular mechanisms of mammalian inorganic phosphate homeostasis, Vol 40, Advan. Enzyme Regul., Elsevier Science, Great Bitain , pp 285–302, 2000. [DOI] [PubMed] [Google Scholar]
  • 2. Kos C.H., Tihy F., Murer H., Lemieux N., Tenenhouse H.S., Comparative mapping of Na+‐phosphate cotransporter genes, NPT1 and NPT2, in human and rabbit, Cytogenet. Cell Genet., 75: 22–24, 1996. [DOI] [PubMed] [Google Scholar]
  • 3. Biber J., Custer M.W., Werner A., Kaissling B., Murer H., Localization of NaPi‐1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by irnmunohistochemistry, Pflugers Arch., 424: 210–215, 1993. [DOI] [PubMed] [Google Scholar]
  • 4. Soumounou Y., Gauthier C., Tenenhouse H. S., Murine and human type I Na‐phosphate cotransporter genes: structure and promoter activity. Am. J. Physiol., 281: F1082–F1091, 2001. [DOI] [PubMed] [Google Scholar]
  • 5. Broer S., Schuster A., Wagner C. A., Broer A., Forster I., Biber J., Murer H., Werner A., Lang F., Busch A. E., Chloride conductance and Pi transport are separate functions induced by the expression of NaPi‐ 1 in Xenopus oocytes, J. Membr. Biol., 164: 71–77, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Kavanaugh M.P., Miller D.G., Zhang W., Law W., Kozak S.L., Kabat D., Miller A.D., Cell‐surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are in‐ducible sodiumphosphate symporters, Proc Natl. Acad. Sci. USA, 91: 7071–7075, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Xu H., Bai L., Collins J.F., Ghishan F.K., Age‐dependent regulation of rat intestinal type 11b sodium‐phosphate cotransporter by 1, 25‐ (OH) 2 vitamin D3, Am. J. Physiol., 282: C487–C493, 2002. [DOI] [PubMed] [Google Scholar]
  • 8. Hernando N., Sheikh S., Karim‐Jimenez Z., Galliker H., Forgo J., Biber J., Murer H., Asymmetrical targeting of type II Na‐Pi cotransporters in renal and intestinal epithelial cell lines, Am. J. Physiol., 278: F361–F368., 2000. [DOI] [PubMed] [Google Scholar]
  • 9. Segawa H., Kaneko I., Takahashi A., Kuwahata M., Ito M., Ohkido I., Tatsumi S., Miyamoto K., Growthrelated renal type II Na/Pi cotransporter, J. Biol. Chem., 277: 19665–19672, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Lotscher M., Scarpetta Y., Levi M., Halaihel N., Wang H., Zajicek H. K., Biber J., Murer H., Kaissling B., Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement, J. Clin. Invest., 104: 483–494, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Rasmussen H., Tenenhouse H.S., Mendelian hypophosphatemias, In: Scriver CR, Beaud et al. Sly WS, Valle D. (eds) The metabolic and molecular basis of inherited dlsease. McGraw Hill, New York , 3717–3745, 1995. [Google Scholar]
  • 12. Tenenhouse H.S., X‐Iinked hypophosphatemia: a homologous disorder in humans and mice, Nephrol. Dial. Transplant., 14: 333–341, 1999. [DOI] [PubMed] [Google Scholar]
  • 13. Tenenhouse H.S., Econs M.J., Mendelian hypophosphatemias, In: Scriver CR, Beaudt al. Sly WS, Valle D. (eds) The metabolic and molecular basis of inherited disease, McGraw Hill, New York , 5039–5067, 2001. [Google Scholar]
  • 14. Meyer R.A. Jr., Tenenhouse H.S., Meyer M.H., Klugerman A.H., The renal phosphate transport defect in normal mice parabiosed to X‐Iinked hypophosphatemic mice persists after parathyroidectomy, J. Bone Miner. Res., 4: 523–532, 1989. [DOI] [PubMed] [Google Scholar]
  • 15. Nesbitt T., Coffman T.M., Grifflths R., Drezner M.K., Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic renal defect, J. Clin. Invest., 89: 1453–1459, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Morgan J.M., Hawley W.L., Chenoweth A.I., Retan W.J., Diethelm A.G., Renal transplantation in hypophosphatemia with vitamin D‐resistant rickets, Arch. Intern. Med., 134: 549–552, 1974. [PubMed] [Google Scholar]
  • 17. Econs M.J., McEnery P.T., Autosomal dominant h phosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder, J. Clin. Endocrinol. Metab., 82: 674–681, 1997. [DOI] [PubMed] [Google Scholar]
  • 18. Econs M.J., McEnery P.T., Lennon F., Speer M.C., Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13, J. Clin. Invest., 100: 2653–2657, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. The ADHR Consortium , Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF 23, Nat. Genet., 26: 345–348, 2000. [DOI] [PubMed] [Google Scholar]
  • 20. Yamashita T. Masazumi Y., Itoh N., Identification of a novel fibroblast growth factor, FGF‐23. preferentially expressed in the ventrolateral thalamic nucleus of the brain, Biochem. Biophys. Res. Commun., 277: 494–498, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Shimada T., Mizutani S., Muto T., Yoneya T., Hino R., Takeda S., Takeuchi Y., Fujita T., Fukumoto S., Yamashita T., Cloning and characterization of FGF23 as a causative factor of tumor‐induced osteomalacia, Proc. Natl. Acad. Sci. USA, 98: 6500–6505, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. White K.E., Carn G., Lorenz‐Depiereux B., Benet‐Pages A., Strom T.M., Econs M.J., Autosomal‐dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF‐23, Kidney. Int., 60: 2079–2086, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Bowe A. E., Finnegan R., Jan de Beur S. M., Cho J., Levine M. A., Kumar R., Schiavi S. C., Fgf‐23 inhibits renal tubular phosphate transport and is a phexsubstrate, Biochem. Biophys. Res. Commun., 284: 977–981, 2001. [DOI] [PubMed] [Google Scholar]
  • 24. Drezner M. K., Tumor‐induced osteomalacia, In: Favus M. J., ed. Primer on maletabolic bone diseases and disorders of mineral metabolism, ed 4. Philadelphia : Lippincott‐Raven, 319–337, 1999. [Google Scholar]
  • 25. Cai Q., Hodgson S. F., Kao P. C., Lennon V. A., Klee G. G., Zinsmiester A. R., Kumar R., Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia, N. Engl. J. Med., 330: 1645–1649, 1994. [DOI] [PubMed] [Google Scholar]
  • 26. Wilkins G. E., Granleese S., Hegele R. G., Holden J., Anderson D. W., Bondy G., Oncogenic osteomalacia: evidence for a humoral phosphaturic factor, J. Clin. Endocrinol. Metab., 80: 1628–1634, 1995. [DOI] [PubMed] [Google Scholar]
  • 27. Nelson A. E., Namkung H. J., Patava J., Wilkinson M. R., Chang A. C., Reddel R. R., Robinson B. G., Mason R. S., Characteristics of tumor cell bioactivity in oncogenic osteomalacia., Mol. Cell. Endocrinol., 124: 17–23, 1996. [DOI] [PubMed] [Google Scholar]
  • 28. Rowe P. S., Ong A. C., Cockerill F. J., Goulding J. N., Hewison M., Candidate 56 and 58 kDa protein (s) responsible for mediating the renal defects in oncogenic hypophosphatemic osteomalacia, Bone, 18: 159–169, 1996. [DOI] [PubMed] [Google Scholar]
  • 29. Jonsson K., Mannstadt M., Miyauchi A., Yang I. M., Stein G., Ljunggren O., Juppner H., Extracts from tumors causing oncogenic osteomalacia inhibit phosphate uptake in opossum kidney cells. J. Endocrinol., 169: 612–620, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Popovtzer M. M., Tumor‐induced hypophosphatemic osteomalacia (TIO): evidence for a phosphaturic cyclic AMP‐independent action of tumor extract, Clin. Res., 29: 418A, 1981. [Google Scholar]
  • 31. Prie D., Huart V., Bakouh N., Planelles G., Dellis O., Gerard B., Hulin P., Benque‐Blanchet F., Silvec C., Grandchamp B., Friedlander G., Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodi‐um‐phosphate cotransporter, N. Engl. J. Med., 347: 983–991, 2002. [DOI] [PubMed] [Google Scholar]
  • 32. Evans W. E., Ichikawa S., Davis S. I., Econs M. J., A missense mutation in FGFR1 causes a novel syndrome: Craniofacial dysplasia with hypophosphatemia (CFDH), J. Bone Miner. Res., 18: S4, 2003. [Google Scholar]
  • 33. The Hyp Consortium , A gene (PEX) with homologies to endopeptidases is mutated in patients with X‐Iinked hypophosphatemic rickets, Nat. Genet., 11: 130–136, 1995. [DOI] [PubMed] [Google Scholar]
  • 34. Roques B. P., Noble F., Dauge V., Fournie‐Zaluski M., Beaumont A., Neutral endopeptidase 24. 11:structure, inhibition, and experimental and clinical pharmacology, Physiol. Rev., 45: 87–133, 1993. [PubMed] [Google Scholar]
  • 35. Xu D., Emoto N., Giaid A., Slaughter C., Kaw S., DeWit D., Yanagisawa M., ECE‐1: a membrane‐bound metalloprotease that catalyzes the proteolytic ac‐tivation of big endothelin‐1, Cell, 78: 473–485, 1994. [DOI] [PubMed] [Google Scholar]
  • 36. Lipman M. L., Panda D., Bennett H. P., Henderson J. E., Shane E., Shen Y., Goltzman D., Karaplis A. C., Cloning of human PEX cDNA. Expression, subcellular localization, and endopeptidase activity, J. Biol. Chem., 273: 13729–13737, 1998. [DOI] [PubMed] [Google Scholar]
  • 37. Beck L., Soumounou Y., Martel J., Krishnamurthy G., Gauthier C., Goodyer C. G., Tenenhouse H. S., Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X‐Iinked hypo‐phosphatemic mice, J. Clin. Invest., 99: 1200–1209, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Ruchon A. F., Marcinkiewicz M., Siegfried G., Tenen‐house H. S., DesGroseillers L., Crine P., Boileau G., Pex mRNA is localized in developing mouse osteoblasts and odontoblasts., J. Histochem. Cytochem., 46: 459–468, 1998. [DOI] [PubMed] [Google Scholar]
  • 39. Du L., Desbarats M., Viel J., Glorieux F. H., Cawthorn C., Ecarot B., cDNA cloning of the murine Pex gene implicated in X‐linked hypophosphatemia and evidence for expression in bone, Genomics, 36: 22–28, 1996. [DOI] [PubMed] [Google Scholar]
  • 40. Blydt‐Hansen T. D., Tenenhouse H. S., Goodyer P., PHEX expression in parathyroid gland and parathyroid hormone dysregulation in X‐linked hypophosphatemia, Pediatr. Nephrol., 13: 607–611, 1999. [DOI] [PubMed] [Google Scholar]
  • 41. Shih N. R., Jo O. D., Yanagawa N., Effects of PHEX anti‐sense in human osteoblast cells, J. Am. Soc. Nephrol., 13: 394–399, 2002. [DOI] [PubMed] [Google Scholar]
  • 42. Sabbagh Y., Londowski J. M., Mathiesen D., Gauthier C., Boileau G., Tenenhouse H. S., Poeschla E. M., Kumar R., Stable transfection of PHEX in hypophosphatemic (Hyp) osteoblasts using a viral vector partially corrects the mutant cell phenotype. Implications for gene therapy, J. Am. Soc. Nephrol., 11: 413A, 2000. 10703665 [Google Scholar]
  • 43. White K. E., Jonsson K. B., Carn G., Hampson G., Spector T. D., Mannstadt M., Lorenz‐Depiereux B., Miyauchi A., Yang I. M., Ljunggren O., Meitinger T., Strom T. M., Juppner H., Econs M. J., The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting., J. Clin. Endocrinol. Metab., 86: 497–500, 2001. [DOI] [PubMed] [Google Scholar]
  • 44. Shimada T., Kakitani M., Hasegawa H., Yamazaki Y., Ohguma A., Takeuchi Y., Fujita T., Fukumoto S., Tomizuka K., Yamashita T., Targeted ablation of FGF‐23 causes hyperphosphatemia, increased 1, 25‐dihydroxyvitamin D level and severe growth retardation, J. Bone. Miner. Res., 17(Suppl 1): S168, 2002. [Google Scholar]
  • 45. Shimada T., Muto T., Hasegawa H., Yamazaki Y., Takeuchi Y., Fujita T., Fukumoto S., Yamashita T., FGF‐23 is a novel regulator of mineral homeostasis with unique properties controlling vitamin D metabolism and phosphate reabsorption, J. Bone. Miner. Res., 17(Suppl 1): S425, 2002. [Google Scholar]
  • 46. Strewler G. J., FGF‐23, hypophosphatemia, and rickets: has phosphatonin been found Proc. Natl. Acad. Sci. USA, 98: 5945–5946, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Kuro‐o M., Matsumura Y., Aizawa H., Kawaguchi H., Suga T., Utsugi T., Ohyama Y., Kurabayashi M., Kaname T., Kume E., Iwasaki H., Iida A., Shiraki‐Iida T., Nishikawa S., Nagai R., Nabeshima Y., Mutation of the klotho gene leads to a syndrome resembling ageing. Nature (London), 390: 45–51, 1997. [DOI] [PubMed] [Google Scholar]
  • 48. Matsumura Y., Aizawa H., Shiraki‐Iida T., Nagai R., Kuro‐o M., Nabeshima Y., Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein, Biochem. Biophys. Res. Commun., 242: 626–630, 1998. [DOI] [PubMed] [Google Scholar]
  • 49. Nagai R., Saito Y., Ohyama Y., Aizawa H., Suga T., Nakamura T., Kurabayashi M., Kuroo M., Endothelial dysfunction in the klotho mouse and down‐regulation of klotho gene expression in various animal models of vascular and metabolic diseases, Cell. Mol. Life. Sci., 57: 738–746, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Saito Y., Nakamura T., Ohyama Y., Suzuki T., Iida A., Shiraki‐Iida T., Kuro‐o M., Nabeshima Y., Kurabayashi M., Nagai R., in vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome, Biochem. Biophys. Res. Commun., 276: 767–772, 2000. [DOI] [PubMed] [Google Scholar]
  • 51. Morishita K., Shirai A., Kubota M., Katakura Y., Nabeshima Y., Takeshige K., Kamiyal T., The progression of aging in klotho mutant mice can be modified by dietary phosphorus and zinc, J. Nutr., 131: 3182–3188, 2001. [DOI] [PubMed] [Google Scholar]
  • 52. Arking D.E., Krebsovat A., Macek M. Sr., Macek M. Jr., Arking A., Mian I.S., Fried L., Hamosh A., Dey S., McIntosh I., Dietz H.C., Association of human aging with a functional variant of klotho, Proc. Natl. Acad. Sci. USA, 99: 856–861, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Calvo M.S., Park Y.K., Changing phosphorus content of the U.S. diet: Potential for adverse effects on bone, J. Nutr., 126: 1168S–1180S, 1996. [DOI] [PubMed] [Google Scholar]
  • 54. Takeda E., Sakamoto K., Yokota K., Shinohara M., Taketani Y., Morita K., Yamamoto H., Miyamoto K., Shibayama M., Phosphorus supply per capita from food in Japan between 1960 and 1995, J. Nutr. Sci. Vitaminol., 48: 102–108, 2002. [DOI] [PubMed] [Google Scholar]
  • 55. Calvo M.S., Dietary phosphorus, calcium metabolism, and bone, J. Nutr., 123: F1627–F1633, 1993. [DOI] [PubMed] [Google Scholar]
  • 56. Tucker K.L., Troy L., Morita K., Cupples L.A., Hannan M.T., Kiel D.P., Carbonated beverage consumption and bone mineral density, J. Bone Miner. Res., 18: S241, 2003. [Google Scholar]
  • 57. Martinez I., Saracho R., Montenegro J., Liach F., The importance of dietary calcium and phosphorus in the secondary hyperparathyroidism of patients with early renal failure, Am. J. Kindney. Dis., 29: 496–502, 1997. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES