Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(2):235–243. doi: 10.1111/j.1582-4934.2002.tb00190.x

The adenylosuccinate synthetase‐1 gene is activated in the hypertrophied heart

H Y Wen 1, Y Xia 1, M E Young 2, H Taegtmeyer 2, R E Kellems 1,
PMCID: PMC6740216  PMID: 12169208

Abstract

Adenylosuccinate synthetase 1 (ADSS1) functions as an important component in adenine nucleotide biosynthesis and is abundant in the heart. Here we report that the Adssl gene is up‐regulated in two in vivo rodent models of surgically induced cardiac hypertrophy. In addition, we examined an in vitro hypertrophy system of rat neonatal cardiomyocytes treated with angiotensin II to study Adssl gene regulation. We show that this stimulus triggers a signaling cascade that results in the activation of the Adssl gene. The induction of Adssl gene expression was blocked by cyclosporin A in vitro, suggesting that calcineurin, a calmodulin activated phosphatase, is involved in this signaling pathway. Consistent with this view we provide evidence that the induction of Adss1 by angiotension II requires the presence of an NFAT binding site located 556 base pairs upstream of the Adssl transcription start site. We propose that ADSS1 plays a role in the development of cardiac hypertrophy through its function in adenine nucleotide biosynthesis.

Keywords: cardiac hypertrophy, adenylosuccinate synthetase 1, gene regulation, signaling pathway, calcineurin, nuclear factor of activated T cells, angiotensin II, rodent

References

  • 1. Molkentin J.D., Lu J.R., Antos C.L., Markhan B., Richardson J., Robbins J., Grant S.R., Olson E.N., A Calcineurin‐dependent transcription pathway for cardiac hypertorphy, Cell, 93: 215–228, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Sugden P.H., Signaling in myocardial hypertorphy: life after calcineurn Circ. Res., 84: 633–646, 1999. [DOI] [PubMed] [Google Scholar]
  • 3. Bustamante J.O., Rukundin A., Sachs F., Stretch‐activated channels in heart cells: relevance to cardiac hypertophy, J. Cardivasc. Pharamcoal., 17: 110–113, 1991. [DOI] [PubMed] [Google Scholar]
  • 4. Hongo K., White E., Orchard C.H., Effect of Stretch on contraction and the Ca2+ transient in ferret ventricular muscles during hypoxia and aciodosis. Am. J. Physiol., 269: C690, 1995. [DOI] [PubMed] [Google Scholar]
  • 5. Marban E., Kitakaze M., Kusuoka H., Porterfield J.K., Yue D.T., Chacko V.P., Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts, Proc. Natl. Acad. Sci. U. S. A., 84: 6005–6009, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Marban E., Kusuoka H., Maximal Ca2+‐activated force and myofilament Ca2+ sensitivity in intact mammalian hearts. Differential effects of inorganic phosphate and hydrogen ions, J. Gen. Physiol., 90: 609–623, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Zimmer H.G., Steinkopff G., Gerlach E., Effect of triiodothyronine on the biosynthesis of adenine nucleotides and proteins in the rat heart, Adv. Exp. Med. Biol., 5: 50–58, 1977. [DOI] [PubMed] [Google Scholar]
  • 8. Zimmer H.G., Trendelenburg C., Gerlach E., Acceleration of adenine nucleotide synthesis de novo during development of cardiac hypertrophy, J. Mol. Cell. Cardiol., 4: 279–282, 1972. [DOI] [PubMed] [Google Scholar]
  • 9. Kleinman L.H., Wechsler A.S., Rembert J.C., Fedor J.M., Greenfield J.C. Jr., A reproducible model of moderate to severe concentric left ventricular hypertrophy, Am. J. Physiol., 234 H515–519, 1978. [DOI] [PubMed] [Google Scholar]
  • 10. Abdellatif M., Packer S.E., Michael L.H., Zhang D., Charng M.J., Schneider M.D., A Rasdependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: implications for cardiac hypertrophy, Mol. Cell. Biol., 18: 6729–6736, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Xia Y., Buja L.M., McMillin J.B., Change in expression of heart carnitine palmitoyltransferase I isoforms with electrical stimulation of cultured rat neonatal cardiac myocytes, J. Biol. Chem., 271: 12082–12087, 1996. [DOI] [PubMed] [Google Scholar]
  • 12. Lewis A.L., Guicherit O.M., Datta S.K., Hanten G.R., Kellems R.E., Structure and expression of the murine muscle adenylosuccinate synthetase gene, J. Biol. Chem., 271: 22647–22656, 1996. [DOI] [PubMed] [Google Scholar]
  • 13. Depre C., Shipley G.L., Chen W., Han Q., Doenst T., Moore M.L., Stepkowski S., Davies P.J., Taegtmeyer H., Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy, Nat. Med., 4: 1269–1275, 1998. [DOI] [PubMed] [Google Scholar]
  • 14. Chin E.R., Olson E.N., Richardson J.A., Yang Q., Humphries C., Shelton J.M., Wu H., Zhu W., Bassel‐Duby R., Williams R.S., A calcineurindependent transcriptional pathway controls skeletal muscle fiber type, Genes Dev., 12: 2499–2509, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Hogan P.G., Rao A., Transcriptional regulation. Modification by nuclear export?, Nature, 398: 200–201, 1999. [DOI] [PubMed] [Google Scholar]
  • 16. Luo Z., Shyu K.G., Gualberto A., Walsh K., Calcineurin inhibitors and cardiac hypertrophy, Nat. Med., 4: 1092–1093, 1998. [DOI] [PubMed] [Google Scholar]
  • 17. Rao A., Luo C., Hogan P.G., Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15: 707–747, 1997. [DOI] [PubMed] [Google Scholar]
  • 18. Izumo S., Lompre A.M., Matsuoka R., Koren G., Schwartz K., Nadal‐Ginard B., Mahdavi V., Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone‐induced signals, J. Clin. Invest., 79: 970–977, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Schwartz K., de la Bastie D., Bouveret P., Oliviero P., Alonso S., Buckingham M., Alpha‐skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts, Circ. Res., 59: 551–555, 1986. [DOI] [PubMed] [Google Scholar]
  • 20. Morkin E., Control of cardiac myosin heavy chain gene expression, Microsc. Res. Tech., 50: 522–531, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Gassmann M.G., Stanzel A., Werner S., Growth factor‐regulated expression of enzymes involved in nucleotide biosynthesis: a novel mechanism of growth factor action, Oncogene, 18: 6667–6676, 1999. [DOI] [PubMed] [Google Scholar]
  • 22. Iancu C.V, Borza T., Choe J.Y., Fromm H.J., Honzatko R.B., Recombinant mouse muscle adenylosuccinate synthetase. Overexpression, kinetics, and crystal structure, J. Biol. Chem., 276: 42146–42152, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Jenkins R.L., McDaniel H.G., Digerness S., Parrish S.W., Ong R.L., Adenine nucleotide metabolism in hearts of diabetic rats. Comparison to diaphragm, liver, and kidney, Diabetes, 37: 629–636, 1988. [DOI] [PubMed] [Google Scholar]
  • 24. Lai L.W., Hart I.M., Patterson D., A gene correcting the defect in the CHO mutant Ade ‐H, deficient in a branch point enzyme (adenylosuccinate synthetase) of de novo purine biosynthesis, is located on the long arm of chromosome 1, Genomics, 9: 322–328, 1991. [DOI] [PubMed] [Google Scholar]
  • 25. Zimmer H.G., Gerlach E., Changes of myocardial adenine nucleotide and protein synthesis during development of cardiac hypertrophy, Basic Res. Cardiol., 72: 241–246, 1977. [DOI] [PubMed] [Google Scholar]
  • 26. Komuro I., Katoh Y., Kaida T., Shibazaki Y., Kurabayashi M., Hoh E., Takaku F., Yazaki Y., Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation, J. Biol. Chem., 266: 1265–1268, 1991. [PubMed] [Google Scholar]
  • 27. Lewis A.L., Xia Y., Datta S.K., McMillin J. R.E. Kellems R.E., Combinatorial interactions regulate cardiac expression of the murine adenylosuccinate synthetase 1 gene, J. Biol. Chem., 274: 14188–14197, 1999. [DOI] [PubMed] [Google Scholar]
  • 28. Wu H., Naya F.J., McKinsey T.A., Mercer B., Shelton J.M., Chin E.R., Simard A.R., Michel R.N., Bassel‐Duby R., Olson E.N., Williams R.S., MEF2 responds to multiple calcium‐regulated signals in the control of skeletal muscle fiber type, Embo. J., 19: 1963–1973, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Molkentin J.D., Lin Q., Duncan S.A., Olson E.N., Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis, Genes Dev., 11: 1061–1072, 1997. [DOI] [PubMed] [Google Scholar]
  • 30. Robbins J., Regulation of cardiac gene expression during development, Cardiovasc. Res., 31: 16, 1996. [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES