Abstract
Angiogenesis, the formation of new vessels, is important in the pathogenesis of rheumatoid arthritis (RA) and other inflammatory diseases. Chemotactic cytokines termed chemokines mediate the ingress of leukocytes, including neutrophils and monocytes into the inflamed synovium. In this review, authors discuss the role of the most important angiogenic factors and angiogenesis inhibitors, as well as relevant chemokines and chemokine receptors involved in chronic inflammatory rheumatic diseases. RA was chosen as a prototype to discuss these issues, as the majority of studies on the role of angiogenesis and chemokines in inflammatory diseases were carried out in arthritis. However, other systemic inflammatory (autoimmune) diseases including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjögren's syndrome (SS), mixed connective tissue disease (MCTD), polymyositis/dermatomyositis (PM/DM) and systemic vasculites are also discussed in this context. As a number of chemokines may also play a role in neovascularizaton, this issue is also described here. Apart from discussing the pathogenic role of angiogenesis and chemokines, authors also review the regulation of angiogenesis and chemokine production by other inflammatory meditors, as well as the important relevance of neovascularization and chemokines for antirheumatic intervention.
Keywords: angiogenesis, chemokine, chemokine receptor, rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, mixed connective tissue disease, Sjögren's syndrome, polymyositis, dermatomyositis, vasculitis
References
- 1. Brenchley P.E., Angiogenesis in inflammatory joint disease: a target for therapeutic intervention [editorial]. Clin. Exp. Immunol., 121: 426, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Walsh D.A., Angiogenesis and arthritis. Rheumatology Oxford, 38: 103, 1999. [DOI] [PubMed] [Google Scholar]
- 3. Paleolog E.M., Fava R.A., Angiogenesis in rheumatoid arthritis: implications for future therapeutic strategies. Springer Semin. Immunopathol, 20: 73, 1998. [DOI] [PubMed] [Google Scholar]
- 4. Szekanecz Z., Koch A.E., Angiogenesis in rheumatoid arthritis In: Rubanyi G.M., ed. Angiogenesis in health and disease. Marcel Dekker, New York , Basel ; 2000, pp 429–450. [Google Scholar]
- 5. Szekanecz Z., Szegedi G., Koch A.E., Angiogenesis in rheumatoid arthritis. J. Invest. Med., 46: 27, 1998. [PubMed] [Google Scholar]
- 6. Koch A.E., Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum, 41: 951, 1998. [DOI] [PubMed] [Google Scholar]
- 7. Colville‐Nash P.R., Scott D.L., Angiogenesis in rheumatoid arthritis: pathogenic and therapeutic implications. Ann. Rheum. Dis, 51: 919, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Szekanecz Z., Halloran M.M., Haskell C.J., Shah M.R., Polverini P.J., Koch A.E., Mediators of angiogenesis: the role of cellular adhesion molecules. Trends Glycosci. Glycotechnol., (TIGG) 58: 73, 1999. [Google Scholar]
- 9. Szekanecz Z., Koch A.E., Chemokines and angiogenesis. Curr. Opin. Rheumatol, 13: 202, 2001. [DOI] [PubMed] [Google Scholar]
- 10. Walchner M., Meurer M., Plewig G., Messer G. Clinical and immunologic parameters during thalidomide treatment of lupus erythematosus. Int. J. Dermatol, 39: 383, 2000. [DOI] [PubMed] [Google Scholar]
- 11. Gavino E.S., Furst D.E., Recombinant relaxin: a review of pharmacology and potential therapeutic use. BioDrugs, 15: 609, 2001. [DOI] [PubMed] [Google Scholar]
- 12. Hebbar M., Peyrat J.P., Hornez L., Hatron P.Y., Hachulla E., Devulder B., Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum, 43: 889, 2000. [DOI] [PubMed] [Google Scholar]
- 13. Ribatti D., Cantatore F.P., Vacca A., D'Amore M., Ria R., Roncali L., Pipitone V., Systemic sclerosis stimulates angiogenesis in the chick embryo chorioallantoic membrane. Clin. Rheumatol, 17: 115, 1998. [DOI] [PubMed] [Google Scholar]
- 14. Koch A.E., Litvak M.A., Burrows J.C., Polverini P.J., Decreased monocyte‐mediated angiogenesis in scleroderma. Clin. Immunol. Immunopathol, 64: 153, 1992. [DOI] [PubMed] [Google Scholar]
- 15. Brahn E., Lehman T.J., Peacock D.J., Tang C., Banquerigo M.L., Suppression of coronary vasculitis in a murine model of Kawasaki disease using an angiogenesis inhibitor. Clin. Immunol, 90: 147, 1999. [DOI] [PubMed] [Google Scholar]
- 16. Terai M., Yasukawa K., Narumoto S., Tateno S., Oana S., Kohno Y., Vascular endothelial growth factor in acute Kawasaki disease. Am. J. Cardiol, 83: 337, 1999. [DOI] [PubMed] [Google Scholar]
- 17. Csernok E., Szymkowiak C.H., Mistry N., Daha M.R., Gross W.L., Kekow J., Transforming growth factor‐β (TGF‐β) expression and interaction with proteinase 3 (PR3) in anti‐neutrophil cytoplasmic antibody (ANCA).associated vasculitis. Clin. Exp. Immunol, 105: 104, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Cid M.C., Grant D.S., Hoffman G.S., Auerbach R., Fauci A.S., Kleinman H.K., Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J. Clin. Invest, 91: 977, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Folkman J., Angiogenesis ‐ retrospect and outlook. EXS, 59: 4, 1991. [DOI] [PubMed] [Google Scholar]
- 20. Jackson C.J., Jenkins K., Schrieber L., Possible mechanisms of type I collagen‐induced vascular tube formation. EXS, 59: 198, 1992. [DOI] [PubMed] [Google Scholar]
- 21. Koch A.E., Halloran M.M., Haskell C.J., Shah M.R., Polverini P.J., Angiogenesis mediated by soluble forms of E‐selectin and vascular cell adhesion molecule‐1. Nature, 376: 517, 1995. [DOI] [PubMed] [Google Scholar]
- 22. Koch A.E., Polverini P.J., Kunkel S.L., Harlow L.A., DiPietro L.A., Elner V.M., Elner, S.G. , Strieter, R.M. , Interleukin‐8 as a macrophage‐derived mediator of angiogenesis. Science, 258: 1798, 1992. [DOI] [PubMed] [Google Scholar]
- 23. Grant D.S., Kleinman H.K., Goldberg I.D., Bhargava M.M., Nickoloff B.J., Kinsella J.L., Polverini P.J., Rosen E.M., Scatter factor induces blood vessel formation in vivo. Proc. Natl. Acad. Sci, USA, 90: 1937, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Hernandez G.L., Volpert O.V., Iniguez M.A., Lorenzo E., Martinez‐Martinez S., Grau R., Fresno M., Redondo J.M., Selective inhibition of vascular endothelial growth factor‐mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med., 193: 607, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Mason J.C., Lidington E.A., Yarwood H., Lublin, D.M. , Haskard, D.O. , Induction of endothelial cell decay‐accelerating factor by vascular endothelial growth factor: a mechanism for cytoprotection against complement‐mediated injury during inflammatory angiogenesis. Arthritis Rheum., 44: 138, 2001. [DOI] [PubMed] [Google Scholar]
- 26. Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., Rafii S., Expression of VEGFR‐2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95: 952, 2000. [PubMed] [Google Scholar]
- 27. Koch A.E., Harlow L.A., Haines G.K., Amento E.P., Unemori E.N., Wong W.L., Pope R.M., Ferrara N., Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol., 152: 4149, 1994. [PubMed] [Google Scholar]
- 28. Sato N., Beitz J.G., Kato J., Yamamoto M., Clark J.W., Calabresi P., Frackelton A.R. Jr., Platelet‐derived growth factor indirectly stimulates angiogenesis in vitro . Am. J. Pathol. 142: 1119, 1993. [PMC free article] [PubMed] [Google Scholar]
- 29. Angiolillo A.L., Kanegane H., Sgadari C., Reaman G.H., Tosato G., Interleukin‐15 promotes angiogenesis in vivo. Biochem. Biophys. Res. Commun., 233: 231, 1997. [DOI] [PubMed] [Google Scholar]
- 30. Halloran M.M., Carley W.W., Polverini P.J., Haskell C.J., Phan S., Anderson B.J., Woods J.M, Campbell P.L., Volin M.V., Backer A.E., Koch A.E., Ley/H: an endothelial‐selective, cytokine‐inducible, angiogenic mediator. J. Immunol., 164: 4868, 2000. [DOI] [PubMed] [Google Scholar]
- 31. Neidhart M., Wehrli R., Bruhlmann P., Michel B.A., Gay R.E., Gay S., Synovial fluid CD 146 (MUC18), a marker for synovial membrane angiogenesis in rheumatoid arthritis. Arthritis Rheum., 42: 622, 1999. [DOI] [PubMed] [Google Scholar]
- 32. Vankemmelbeke M.N., Holen I., Wilson A.G., Ilic M.Z., Handley C.J., Kelner G.S., Clark M., Liu C., Maki R.A., Burnett D., Buttle D.J., Expression and activity of ADAMTS‐5. in synovium. Eur. J. Biochem., 268: 1259, 2001. [DOI] [PubMed] [Google Scholar]
- 33. Leahy K.M., Koki A.T., Masferrer J.L. Role of cyclooxygenases in angiogenesis. Curr. Med. Chem., 7: 1163, 2000. [DOI] [PubMed] [Google Scholar]
- 34. Neidhart M., Gay R.E., Gay S., Prolactin and prolactin‐like polypeptides in rheumatoid arthritis. Biomed. Pharmacother., 53: 218, 1999. [DOI] [PubMed] [Google Scholar]
- 35. Auerbach W., Auerbach R., Angiogenesis inhibition: a review. Pharmac. Ther., 63: 265, 1994. [DOI] [PubMed] [Google Scholar]
- 36. Nagashima M., Asano G., Yoshino S., Imbalance in production between vascular endothelial growth factor and endostatin in patients with rheumatoid arthritis. J. Rheumatol., 27: 2339, 2000. [PubMed] [Google Scholar]
- 37. Calabrese L., Fleischer A.B., Thalidomide: current and potential clinical applications. Am. J. Med., 108: 487, 2000. [DOI] [PubMed] [Google Scholar]
- 38. Fishman S.J., Feins N.R., D'Amoto R.J., Folkman J., Thalidomide for Crohn's disease. Gastroenterology, 119: 596, 2000. [DOI] [PubMed] [Google Scholar]
- 39. Szekanecz Z., Haines G.K., Lin T.R., Harlow L.A., Goerdt S., Rayan G., Koch A.E., Differential distribution of intercellular adhesion molecules (ICAM‐1, ICAM‐2, and ICAM‐3) and the MS‐1 antigen in normal and diseased human synovia. Their possible pathogenetic and clinical significance in rheumatoid arthritis. Arthritis Rheum., 37: 221, 1994. [DOI] [PubMed] [Google Scholar]
- 40. Johnson B., Haines G.K., Harlow L.A., Koch A.E., Adhesion molecule expression in human synovial tissues. Arthritis Rheum., 36: 137, 1993. [DOI] [PubMed] [Google Scholar]
- 41. Koch A.E., Turkiewicz W., Harlow L.A., Pope R.M., Soluble E‐selectin in arthritis. Clin. Immunol. Immunopathol., 69: 29, 1993. [DOI] [PubMed] [Google Scholar]
- 42. Wellicome S.M., Kapahi P., Mason J.C., Lebranchu Y., Yarwood H., Haskard D.O., Detection of a circulating form of vascular cell adhesion molecule‐1: raised levels in rheumatoid arthritis and systemic Lupus erythematosus . Clin. Exp. Immunol., 92: 412, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Szekanecz Z., Strieter R.M., Kunkel S.L., Koch A.E., Chemokines in rheumatoid arthritis. Springer Semin. Immunopathol., 20: 115, 1998. [DOI] [PubMed] [Google Scholar]
- 44. Koch A.E., Kunkel S.L., Strieter R.M., Chemokines in arthritis In: Koch A.E., Strieter R.M., eds., Chemokines in disease. RG Landes Company, Austin . 1996, pp 103–116. [Google Scholar]
- 45. Harris E.D., Rheumatoid arthritis: pathophysiology and implications for therapy. N. Engl. J. Med., 332: 1277, 1990. [DOI] [PubMed] [Google Scholar]
- 46. Bazan J.F., Bacon K.B., Hardiman G., Wang W., Soo K., Rossi D., Greaves D.R., Zlotnik A., Schall T.J., A new class of membrane bound chemokine with a CX3C motif. Nature, 385: 640, 1997. [DOI] [PubMed] [Google Scholar]
- 47. Mackay C.R., Chemokines: what chemokine is that Curr. Biol., 7:R384, 1997. [DOI] [PubMed] [Google Scholar]
- 48. Taub D.D., C‐C chemokines ‐ an overview In: Koch A.E., Strieter R.M., eds., Chemokines in disease, RG Landes Company, Austin , 1996, pp. 27–54. [Google Scholar]
- 49. Walz A., Kunkel S.L., Strieter R.M., C‐X‐C chemokines ‐ an overview In: Koch A.E., Strieter R.M., eds., Chemokines in disease. RG Landes Company, Austin . 1996, pp 1–25. [Google Scholar]
- 50. Zlotnik A., Yoshie O., Chemokines: a new classification system and their role in immunity. Immunity, 12: 121, 2000. [DOI] [PubMed] [Google Scholar]
- 51. Wooley P.H., Schaefer C., Whalen J.D., Dutcher J.A., Counts D.F., A peptide sequence from platelet factor 4 (CT‐112) is effective in the treatment of type II collagen induced arthritis in mice. J. Rheumatol., 24: 890, 1997. [PubMed] [Google Scholar]
- 52. Strieter R.M., Polverini P.J., Kunkel S.L., Arenberg D.A., Burdick M.D., Kasper J., Dzuiba J., Van Damme J., Walz A., Marriott D., Chan S‐ Y., Roczniak S., Shanafelt A.B., The functional role of the ELR motif in CXC chemokine‐mediated angiogenesis. J. Biol. Chem., 270: 27348, 1995. [DOI] [PubMed] [Google Scholar]
- 53. Strieter R.M., Kunkel S.L., Shanafelt A.B. The role of C‐X‐C chemokines in the regulation of angiogenesis In: Koch A.E., Strieter R.M., eds. Chemokines in disease, RG Landes Company: Austin , 1996, pp 195–209. [Google Scholar]
- 54. Moore B.B., Keane M.P., Addison C.L., Arenberg D.A., Strieter R.M., CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J. Invest. Med., 46: 113, 1998. [PubMed] [Google Scholar]
- 55. Hosaka S., Akahoshi T., Wada C., Kondo H., Expression of the chemokine superfamily in rheumatoid arthritis. Clin. Exp. Immunol., 97: 451, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Koch A.E., Kunkel S.L., Harlow L.A., Johnson B., Evanoff H.L., Haines G.K., Burdick M.D., Pope R.M., Strieter R.M., Enhanced production of monocyte chemoattractant protein‐1 in rheumatoid arthritis. J. Clin. Invest., 90: 772, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Koch A.E., Kunkel S.L., Harlow L.A., Mazarakis D.D., Haines G.K., Burdick M.D., Strieter R.M., Epithelial neutrophil activating peptide‐78: a novel chemotactic cytokine for neutrophils in arthritis. J. Clin. Invest., 94: 1012, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Rathanaswami P., Hachicha M., Sadick M., Schall T.J., McColl S.R., Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin‐8 genes by inflammatory cytokines. J. Biol. Chem., 268: 5834, 1993. [PubMed] [Google Scholar]
- 59. Ruth J.H., Volin M.V., Haines G.K. III, Woodruff, D.C. , Katschke K.J. Jr, Woods J.M, Park C.C., Morel J.C., Koch A.E., Fractalkine, a novel chemokine in rheumatoid arthritis and rat adjuvant‐induced arthritis. Arthritis Rheum., 44: 1568, 2001. [DOI] [PubMed] [Google Scholar]
- 60. Borthwick N.J., Akbar A.N., MacCormac L.P., Lowdell M., Craigen J.L., Hassan I., Grundy J.E., Salmon M., Yong K., Selective migration of highly differentiated primed T cells, defined by low expression of CD45RB, across human umbilical vein endothelial cells: effects of viral infection on transmigration. Immunology, 90: 272, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Loetscher P., Uguccioni M., Bordoli L., Baggiolini M., Moser B., Chizzolini C., Dayer J.M., CCR5 is characteristic of Th1 lymphocytes. Nature, 391: 344, 1998. [DOI] [PubMed] [Google Scholar]
- 62. Schonbeck U., Brandt E., Petersen F., Flad H.D., Loppnow H., IL‐8 specifically binds to endothelial but not to smooth muscle cells. J. Immunol., 154: 2375, 1995. [PubMed] [Google Scholar]
- 63. Salcedo R., Ponce M.L., Young H.A., Wasserman K., Ward J.M., Kleinman H.K., Oppenheim J.J., Murphy W.J., Human endothelial cells express CCR2 and respond to MCP‐1: direct role of MCP‐1 in angiogenesis and tumor progression. Blood, 96: 34, 2000. [PubMed] [Google Scholar]
- 64. Addison C.L., Daniel T.O., Burdick M.D., Liu H., Ehlert J.E., Xue Y.Y., Buechi L., Walz A., Richmond A., Strieter R.M., The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine‐induced angiogenic activity. J. Immunol, 165: 5269, 2000. [DOI] [PubMed] [Google Scholar]
- 65. Hogan M., Sherry B., Ritchlin C., Fabre M., Winchester R., Cerami A., Bucala R., Differential expression of the small inducible cytokines groa and grob by synovial fibroblasts in chronic arthritis: possible role in growth regulation. Cytokine, 6: 61, 1994. [DOI] [PubMed] [Google Scholar]
- 66. Koch A.E., Kunkel S.L., Burrows J.C., Evanoff H.L., Haines G.K., Pope R.M., Strieter R.M., Synovial tissue macrophage as a source of the chemotactic cytokine IL‐8. J. Immunol., 147: 2187, 1991. [PubMed] [Google Scholar]
- 67. Endo H., Akahoshi T., Takagishi K., Kashiwazaki S., Matsushima K., Elevation of interleukin‐8 (IL‐8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL‐8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res., 10: 245, 1991. [PubMed] [Google Scholar]
- 68. Koch A.E., Volin M.V., Woods J.M., Kunkel S.L., Connors M.A., Harlow L.A., Woodruff D.C., Burdick M.D., Strieter R.M., Regulation of angiogenesis by the C‐X‐C chemokines interleukin‐8 and epithelial neutrophil activating peptide‐78 in the rheumatoid joint. Arthritis Rheum., 44: 31, 2001. [DOI] [PubMed] [Google Scholar]
- 69. Kraan M.C., Patel D.D., Haringman J.J., Smith M.D., Weedon H., Ahern M.J., Breedveld F.C., Tak P.P., The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin‐8). Arthritis Res., 3: 65, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. De Gendt C.M., De Clerck L.S., Bridts C.H., Van Osselaer N., Stevens W.J., Relationship between interleukin‐8 and neutrophil adhesion molecules in rheumatoid arthritis. Rheumatol. Int., 16: 169, 1996. [DOI] [PubMed] [Google Scholar]
- 71. Walz A., Burgener R., Car B., Baggiolini M., Kunkel S.L., Strieter R.M., Structure and neutrophil‐activating properties of a novel inflammatory peptide (ENA‐78) with homology to interleukin 8. J. Exp. Med., 174: 1355, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Halloran M.M., Woods J.M., Strieter R.M., Szekanecz Z., Volin M.V., Hosaka S., Haines G.K. III, Kunkel S.L., Burdick M.D., Walz A., Koch A.E., The role of an epithelial neutrophil‐ activating peptide‐78‐like protein in rat adjuvant‐ induced arthritis. J. Immunol, 162: 7492, 1999. [PubMed] [Google Scholar]
- 73. Koch A.E., Kunkel S.L., Shah M.R., Hosaka S., Halloran M.M., Haines G.K., Burdick M.D., Pope R.M., Strieter R.M., Growth related gene product alpha: A chemotactic cytokine for neutrophils in rheumatoid arthritis. J. Immunol., 155: 3660, 1995. [PubMed] [Google Scholar]
- 74. Castor C.W., Andrews P.C., Swartz R.D., et al., The origin, variety, distribution, and biologic fate of connective tissue activating peptide‐III isoforms: characteristics in patients with rheumatic, renal, and arterial disease. Arthritis Rheum., 36: 1142, 1993. [DOI] [PubMed] [Google Scholar]
- 75. Castor C.W., Smith E.M., Hossler P.A., Bignall M.C., Aaron B.P., Detection of connective tissue activating peptide‐III isoforms in synovium from osteoarthritis and rheumatoid arthritis patients: patterns of interaction with other synovial cytokines in cell culture. Arthritis Rheum., 35: 783, 1993. [DOI] [PubMed] [Google Scholar]
- 76. Narumi S., Tominaga Y., Tamaru M., Expression of IFN‐inducible protein‐10 in chronic hepatitis. J. Immunol., 158: 5536, 1997. [PubMed] [Google Scholar]
- 77. Patel D.D., Zachariah J.P., Whichard L.P., CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin. Immunol., 98: 39, 2001. [DOI] [PubMed] [Google Scholar]
- 78. Buckley C.D., Amft N., Bradfield P.F., Pilling D., Ross E., Arenzana‐Seisdedos F., Amara A., Curnow S.J., Lord J.M., Scheel‐Toellner D., Salmon M., Persistent induction of the chemokine receptor CXCR4 by TGF‐beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol., 165: 3423, 2000. [DOI] [PubMed] [Google Scholar]
- 79. Nanki T., Hayashida K., El‐Gabalawy H.S., Suson S., Shi K., Girschick H.J., Yavuz, S. , Lipsky P.E., Stromal cell‐derived factor‐1‐CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol., 165: 6590, 2000. [DOI] [PubMed] [Google Scholar]
- 80. Salcedo R., Wasserman K., Young H.A., Grimm M.C., Howard O.M., Anver, M.R. , Klein man H.K., Murphy W.J., Oppenheim J.J., Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal‐derived factor‐1 alpha. Am. J. Pathol., 154: 1125, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Akahoshi T., Wada C., Endo H., Hirota K., Hosaka S., Takagishi K., Expression of monocyte chemotactic and activating factor in rheumatoid arthritis. Arthritis Rheum., 36: 762, 1993. [DOI] [PubMed] [Google Scholar]
- 82. Koch A.E., Kunkel S.L., Harlow L.A., Mazarakis D.D., Haines G.K., Burdick M.D., Pope R.M., Strieter R.M., Macrophage inflammatory protein‐1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J. Clin. Invest., 93: 921, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83. Matsui T., Akahoshi T., Namai R., Hashimoto A., Kurihara Y., Rana M., Nishimura A., Endo H., Kitasato H., Kawai S., Takagishi K., Kondo H., Selective recruitment of CCR6‐expressing cells by increased production of MIP‐3 alpha in rheumatoid arthritis. Clin. Exp. Immunol., 125: 155, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84. Ruth J.H., Morel J.C.M., Park C.C., Koch A.E., MIP‐3a expression in the rheumatoid joint. Arthritis Rheum., 43 (9 Suppl): S78, 2000. [Google Scholar]
- 85. Schall T.J., Bacon K., Toy K.J., Goeddel D.V., Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature, 347: 669, 1990. [DOI] [PubMed] [Google Scholar]
- 86. Robinson E., Keystone E.C., Schall T.J., Chemokine expression in rheumatoid arthritis (RA): evidence of RANTES and macrophage inflammatory protein (MIP)‐1 beta production by synovial T cells. Clin. Exp. Immunol., 101: 398, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87. Volin M.V., Woods J.M., Amin M.A., Connors M.A., Harlow L.A., Koch A.E., Fractalkine: a novel angiogenic chemokine in rheumatoid arthritis. Am. J. Pathol., 159: 1521, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Wedderburn L.R., Robinson N., Patel A., Varsani H., Woo P., Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum., 43: 765, 2001. [DOI] [PubMed] [Google Scholar]
- 89. Katschke K.J. jr, Rottman, J.B. , Ruth J.H., Qin S., Wu L., LaRosa G., Ponath P., Park C.C., Pope R.M., Koch A.E., Differential expression of chemokine receptors on peripheral blood, synovial fluid and synovial tissue monocytes/macrophages in rheumatoid arthritis. Arthritis Rheum., 44: 1022, 2001. [DOI] [PubMed] [Google Scholar]
- 90. Narumi S., Takeuchi T., Kobayashi Y., Konishi K., Serum levels of IFN‐inducible protein‐10 relating to the activity of systemic Lupus erythematosus . Cytokine, 12: 1561, 2000. [DOI] [PubMed] [Google Scholar]
- 91. Kaneko H., Ogasawara H., Naito T., Akimoto H., Lee S., Hishikawa T., Sekigawa I., Tokano Y., Takasaki Y., Hirose S.I., Hashimoto H., Circulating levels of beta‐chemokines in systemic Lupus erythematosus . J. Rheumatol., 26: 568, 1999. [PubMed] [Google Scholar]
- 92. Rus V., Atamas S.P., Shustova V., Luzina I.G., Selaru F., Magder L.S., Via C.S., Expression of cytokine‐ and chemokine‐related genes in peripheral blood mononuclear cells from Lupus patients by cDNA array. Clin. Immunol., 102: 283, 2002. [DOI] [PubMed] [Google Scholar]
- 93. Hase K., Tani K., Shimizu T., Ohmoto Y., Matsushima K., Sone S., Increased CCR4 expression in active systemic Lupus erythematosus . J. Leukocyte Biol., 70: 749, 2001. [PubMed] [Google Scholar]
- 94. Yamada M., Yagita H., Inoue H., Takanashi T., Matsuda H., Munechika E., Kanamaru Y., Shirato I., Tomino Y., Matsushima K., Okumura K., Hashimoto H., Selective accumulation of CCR4+ T lymphocytes into renal tissue of patients with Lupus nephritis . Arthritis Rheum., 46: 735, 2002. [DOI] [PubMed] [Google Scholar]
- 95. Galindo M., Santiago B., Rivero M., Rullas J., Alcami J., Pablos J.L., Chemokine expression by systemic sclerosis fibroblasts: abnormal regulation of monocyte chemoattractant protein 1 expression. Arthritis Rheum., 44: 1382, 2001. [DOI] [PubMed] [Google Scholar]
- 96. Yamamoto T., Hartmann K., Eckes B., Krieg T., Role of stem cell factor and monocyte chemoattractant protein‐1 in the interaction between fibroblasts and mast cells in fibrosis. J. Dermatol. Sci., 26: 106, 2001. [DOI] [PubMed] [Google Scholar]
- 97. Renzoni E., Lympany P., Sestini P., Pantelidis P., Wells A., Black C., Welsh K., Bunn C., Knight C., Foley P., du Bois R.M., Distribution of novel polymorphisms of the interleukin 8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. Arthritis Rheum., 43: 1633, 2000. [DOI] [PubMed] [Google Scholar]
- 98. Cuello C., Palladinetti P., Tedla N., Di Girolamo N., Lloyd A.R., McCluskey P.J., Wakefield D., Chemokine expression and leucocyte infiltration in Sjögren's syndrome. Br. J. Rheumatol., 37: 779, 1998. [DOI] [PubMed] [Google Scholar]
- 99. Xanthou G., Polihronis M., Tzioufas A.G., Paikos S., Sideras P., Moutsopoulos H.M., “Lymphoid” chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren's syndrome patients. Arthritis Rheum., 44: 408, 2001. [DOI] [PubMed] [Google Scholar]
- 100. Amft N., Curnow S.J., Scheel‐Toellner D., Devadas A., Oates J., Crocker J., Hamburger J., Ainsworth J., Mathews J., Salmon M., Bowman S.J., Buckley C.D., Ectopic expression of the B cell‐attracting chemokine BCA‐1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center‐ like structures in Sjögren's syndrome. Arthritis Rheum., 44: 2633, 2001. [DOI] [PubMed] [Google Scholar]
- 101. Amft N., Bowman S.J., Chemokines and cell trafficking in Sjögren's syndrome. Scand. J. Immunol., 54: 62, 2001. [DOI] [PubMed] [Google Scholar]
- 102. Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren‐Herlenius M., Expression of B cell‐attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjögren's syndrome. Scand. J. Immunol., 55: 336, 2002. [DOI] [PubMed] [Google Scholar]
- 103. Mustafa W., Sharafeldin A., Diab A., Huang Y.M., Bing H., Zhu J., Link H., Frithiof L., Klinge B., Coordinate up‐regulation of the beta‐chemokine subfamily in autoimmune sialoadenitis of MRL/lpr mice. Scand. J. Immunol., 48: 623, 1998. [DOI] [PubMed] [Google Scholar]
- 104. Liprandi A., Bartoli C., Figarella‐Branger D., Pellissier J.F., Lepidi H., Local expression of monocyte chemoattractant protein‐1 (MCP‐1) in idiopathic inflammatory myopathies. Acta Neuropathol. (Berl.), 97: 642, 1999. [DOI] [PubMed] [Google Scholar]
- 105. Confalonieri P., Bernasconi P., Megna P., Galbiati S., Cornelio F., Mantegazza R., Increased expression of beta‐chemokines in muscle of patients with inflammatory myopathies. J. Neuropathol. Exp. Neurol., 59: 164, 2000. [DOI] [PubMed] [Google Scholar]
- 106. Adams E.M., Kirkley J., Eidelman G., Dohlman J., Plotz P.H., The predominance of beta (CC) chemokine transcripts in idiopathic inflammatory muscle diseases. Proc. Assoc. Am. Physicians, 109: 275, 1997. [PubMed] [Google Scholar]
- 107. Balding C.E., Howie A. J., Drake‐Lee A.B., Savage C.O., Th2 dominance in nasal mucosa in patients with Wegener's granulomatosis. Clin. Exp. Immunol., 125: 332, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108. Haley K.J., Lilly C.M., Yang J.H., Feng Y., Kennedy S.P., Turi T.G., Thompson J.F., Sukhova G.H., Libby P., Lee R.T., Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation, 102: 2185, 2000. [DOI] [PubMed] [Google Scholar]
- 109. Casselman B.L., Kilgore K.S., Miller B.F., Warren J.S., Antibodies to neutrophil cytoplasmic antigens induce monocyte chemoattractant protein‐1 secretion from human monocytes. J. Lab. Clin. Med., 126: 495, 1995. [PubMed] [Google Scholar]
- 110. Keane M.P., Strieter R.M., The role of CXC chemokines in the regulation of angiogenesis. Chem. Immunol., 72: 86, 1999. [DOI] [PubMed] [Google Scholar]
- 111. Rinaldi N., Schwarz‐Eywill M., Weis D., Leppelmann‐Jansen P., Lukoschek M., Keilholz U., Barth T.F., Increased expression of integrins on fibroblast‐like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann. Rheum. Dis., 56: 45, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112. Vicari A.P., Ait‐Yahia S., Chemin K., Mueller A., Zlotnik A., Caux C., Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J. Immunol., 165: 1992, 2000. [DOI] [PubMed] [Google Scholar]
- 113. Volin M.V., Harlow L.A., Woods J.M., Campbell P.L., Amin M.A., Tokuhira M., Koch A.E., Treatment with sulfasalazine or sulfapyridine, but not 5‐aminosalicyclic acid, inhibits basic fibroblast growth factorinduced endothelial cell chemotaxis. Arthritis Rheum. 42, 1927, 1999. [DOI] [PubMed] [Google Scholar]
- 114. Strand C.V., Keystone E., Biologic agents for the treatment of rheumatoid arthritis In: Ruddy S., Harris E.D., jr., Sledge C.B., Budd R.C., Sergent J.S., eds., Kelley's Textbook of Rheumatology, 6th Edition, WB Saunders, Philadelphia , 2001, p 899. [Google Scholar]
- 115. Lin Y.S., Nguyen C., Mendoza J.L., Escandon E., Fei D., Meng Y.G., Modi N.B. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J. Pharmacol. Exp. Ther., 288: 371, 1999. [PubMed] [Google Scholar]
- 116. Nicosia R.F., Bonanno E., Inhibition of angiogenesis in vitro by Arg‐Gly‐Asp‐containing synthetic peptide. Am. J. Pathol., 138: 829, 1991. [PMC free article] [PubMed] [Google Scholar]
- 117. Storgard C.M., Stupack D.G., Jonczyk A., Goodman S.L., Fox R.I., Cheresh D.A., Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J. Clin. Invest., 103: 47, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118. Skotnicki J.S., Zask A., Nelson F.C., Albright, J.D. , Levin, J.I. , Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann. NY Acad. Sci. Jun., 30: 87861, 1999. [DOI] [PubMed] [Google Scholar]
- 119. Loetscher P., Dewald B., Baggiolini M., Seitz M., Monocyte chemoattractant protein 1 and interleukin 8 production by rheumatoid synoviocytes: effects of anti‐rheumatic drugs. Cytokine, 6: 162, 1994. [DOI] [PubMed] [Google Scholar]
- 120. Seitz M., Dewald B., Gerber N., Baggiolini M., Enhanced production of neutrophil‐activating peptide‐1/interleukin‐8 in rheumatoid arthritis. J. Clin. Invest., 87: 463, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121. Taylor P.C., Peters A.M., Paleolog E., Chapman P.T., Elliott M.J., McCloskey R., Feldmann M., Maini R.N., Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum., 43: 38, 2000. [DOI] [PubMed] [Google Scholar]
- 122. Gong J.H., Ratkay L.G., Waterfield J.D., Clark‐ Lewis I., An antagonist of monocyte chemoattractant protein 1 (MCP‐1) inhibits arthritis in the MRL‐lpr mouse model. J. Exp. Med., 186: 131, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
