Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(2):181–190. doi: 10.1111/j.1582-4934.2004.tb00273.x

Ca2+ and mitochondria as substrates for deficits in synaptic plasticity in normal brain ageing

E C Toescu 1,, A Verkhratsky 2
PMCID: PMC6740225  PMID: 15256066

Abstract

Normal brain ageing is associated with a degree of functional impairment of neuronal activity that results in a reduction in memory and cognitive functions. One mechanism proposed to explain the age‐dependent changes was the “Ca2+ hypothesis of ageing” but data accumulated in the last decade revealed a number of inconsistencies. Two important questions were raised: (a) which are, if any, the most reliable age‐associated change in neuronal Ca2+ homeostasis and (b) are these changes primary, and thus determinant of the ageing phenotype, or are they secondary to other changes in the physiology of the aged neurones. After a brief review of the evidence accumulated for the age‐induced changes in synaptic plasticity, we assess the proposal that these changes are, ultimately, determined by changes in the metabolic state of the aged neurones, that are manifest particularly after neuronal stimulation. In this context, it appears that the changes in mitochondrial status and function are of primary importance.

Keywords: mitochondria, ageing, synaptic plasticity, long‐term potentiation, afterpolarization, Ca2+ homeostasis, energy requirement

References

  • 1. la Rue A., Memory loss and aging. Distinguishing dementia from benign senescent forgetfulness and depressive pseudodementia, Psychiatr. Clin. North. Am., 5: 89–103, 1982. [PubMed] [Google Scholar]
  • 2. Giambra L. M., Arenberg D., Adult age differences in forgetting sentences, Psychol. Aging, 8: 451–462, 1993. [DOI] [PubMed] [Google Scholar]
  • 3. Hebb D. The Organization of Behavior. New York : Wiley, 1949. [Google Scholar]
  • 4. Bliss T. V., Lomo T., Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol., 232: 331–356, 1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. McNaughton B. L., Douglas R. M., Goddard G. V., Synaptic enhancement in fascia dentata: cooperativity among coactive afferents, Brain Res., 157: 277–293, 1978. [DOI] [PubMed] [Google Scholar]
  • 6. Bliss T. V. P., Collingridge G. L., A synaptic model of memory: long‐term potentiation in the hippocampus. Nature, 361: 31, 1993. [DOI] [PubMed] [Google Scholar]
  • 7. Burnashen N., Calcium permeability of ligand‐gated channels, Cell Calcium, 24: 325–332, 1998. [DOI] [PubMed] [Google Scholar]
  • 8. Malenka R. C., Nicoll R. A., Long‐term potentiation–a decade of progress?, Science, 285: 1870–1874, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Malinow R., Malenka R. C., AMPA receptor trafficking and synaptic plasticity, Ann. Rev. Neurosci., 25: 103–126, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Lisman, J. , Schulman, H. , Cline, H. , The molecular basis of CaMKII function in synaptic and behavioural memory, Nat Rev Neurosci 3: 175–190, 2002. [DOI] [PubMed] [Google Scholar]
  • 11. Grover, L. M. , Teyler, T. J. , Two components of longterm potentiation induced by different patterns of afferent activation, Nature 347: 477–479, 1990. [DOI] [PubMed] [Google Scholar]
  • 12. Morgan, S. L. , Teyler, T. J. , VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo, J Neurophysiol 82: 736–740, 1999. [DOI] [PubMed] [Google Scholar]
  • 13. Cavus, I. , Teyler, T. J. , Two forms of long‐term potentiation in aea CA1 activate different signal transduction pathways, J. Neurophysiol. 76: 3038–3047, 1996. [DOI] [PubMed] [Google Scholar]
  • 14. Foster, T. C. , Involvement of hippocampal synaptic plasticity in age‐related memory decline, Brain Res Brain Res Rev 30: 236–249, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Rosenzweig, E. S. , Barnes, C. A. , Impact of aging on hippocampal function: plasticity, network dynamics, and cognition, Prog Neurobiol 69: 143–179, 2003. [DOI] [PubMed] [Google Scholar]
  • 16. Shankar, S. , Teyler, T. J. , Robbins, N. , Aging differentially alters forms of long‐term potenatiation in rat hippocampal area CA1, J. Neurophysiol. 70: 334–341, 1998. [DOI] [PubMed] [Google Scholar]
  • 17. Abraham, W. C. , How long will long‐term potentiation last?, Philos. Trans. R. Soc. Lond. 358: 735–744, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Landfield, P. W. , McGaugh, J. L. , Lynch, G. , Impaired synaptic potentiation processes in the hippocampus of aged, memory‐deficient rats, Brain Res. 32: 523–533, 1978. [DOI] [PubMed] [Google Scholar]
  • 19. Barnes, C. A. , McNaughton, B. L. , An age comparison of the rates of aquisition and forgetting of spatial information in relation to long‐term enhancement of hippocampal synapses, Behav. Neurosci. 99: 1040–1048, 1985. [DOI] [PubMed] [Google Scholar]
  • 20. Cho K., Aggleton J. P., Brown M. W., Bashir Z. I., An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of the rat, J. Physiol. 532, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Braunewell K. H., Manahan‐Vaughan D., Long‐term depression: a cellular basis for learning?, Reviews in Neuroscience 12: 121–140, 2001. [DOI] [PubMed] [Google Scholar]
  • 22. Norris C. M., Korol D. L., Foster T. C., Increased susceptibility to induction of long‐term depression and long‐term potentiation reversal during aging, J Neurosci 16: 5382–5392, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Lee H. K., Barbarosie M., Kameyama K., Bear M. F., Huganir R. L., Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity., Nature 405: 955–959, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Martin S. J., Grimwood P. D., Morris R. G., Synaptic plasticity and memory: an evaluation of the hypothesis, Ann. Rev. Neurosci. 23: 649–711, 2000. [DOI] [PubMed] [Google Scholar]
  • 25. Khachaturian Z. S., Calcium hypothesis of Alzheimer's disease and brain aging, Ann. N. Y. Acad. Sci. 747: 1–11, 1994. [DOI] [PubMed] [Google Scholar]
  • 26. Coleman P. D., Flood D. G., Neuron numbers and dendritic extent in normal ageing and Alzheimer's disease, Neurobiol Aging 8: 521–545, 1987. [DOI] [PubMed] [Google Scholar]
  • 27. Morrison J., Hof P., Life and death of neurons in the aging brain, Science 278: 412–419, 1997. [DOI] [PubMed] [Google Scholar]
  • 28. Verkhratsky A., Toescu E., Calcium and neuronal ageing, Trends Neurosci. 21: 2–7, 1998. [DOI] [PubMed] [Google Scholar]
  • 29. Thibault O., Porter N. M., Chen K. C., Blalock E. M., Kaminker P. G., Clodfelter G. V., Brewer L. D., Landfield P.W., Calcium dysregulation in neuronal aging and Alzheimer's disease: history and new directions, Cell Calcium 24: 417–433, 1998. [DOI] [PubMed] [Google Scholar]
  • 30. Thibault O., Hadley R., Landfield P.W., Elevated postsynaptic [Ca2+]i and L‐type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity, J Neurosci 21: 9744–9756, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Xiong J., Verkhratsky A., Toescu E.C., Changes in mitochondrial status associated with altered Ca2+ homeostasis in aged cerebellar granule neurones in brain slices, J. Neurosci 22: 10761–10771, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Toescu E.C., Xiong J., Metabolic substrates of neuronal ageing, Ann. N. Y. Acad. Sci.: in press, 2003. [DOI] [PubMed]
  • 33. Murchison D., Griffith W.H., High‐voltage‐activated calcium currents in basal forebrain neurons during aging., J. Neurophysiol. 76: 158–174, 1996. [DOI] [PubMed] [Google Scholar]
  • 34. Thibault O., Landfield P.W., Increase in single L‐type calcium channels in hippocampal neurons during aging, Science 272: 1017–1020, 1996. [DOI] [PubMed] [Google Scholar]
  • 35. Kostyuk P., Pronchuk N., Savchenko A., Verkhratsky A., Calcium currents in aged rat dorsal root ganglion neurones, J Physiol Lond 461: 467–483, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Maciel L.M., Polikar R., Rohrer D., Popovich B.K., Dillmann W.H., Age‐induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca2 (+) ‐ATPase of the rat heart., Circ. Res. 67: 230–234, 1990. [DOI] [PubMed] [Google Scholar]
  • 37. Pottorf W.J., Duckles S.P., Buchholz J.N., Adrenergic nerves compensate for a decline in calcium buffering during ageing., J Auton Pharmacol 20: 1–13, 2000. [DOI] [PubMed] [Google Scholar]
  • 38. Michaelis M., Bigelow D., Sconeich C., Williams T., Ramonada L., Yin D., Huhmer A., Yao Y., Gao J., Squier T., Decreased plasma membrane calcium transport activity in aging brain, Life Sci. 59: 405–412, 1996. [DOI] [PubMed] [Google Scholar]
  • 39. Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A., Ca (2+) dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca (2+) ‐induced Ca (2+) release triggered by physiological Ca (2+) entry, EMBO J., 21: 622–630, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Clodfelter G.V., Porter N.M., Landfield P.W., Thibault O., Sustained Ca (2+) ‐induced Ca (2+) ‐ release underlies the post‐glutamate lethal Ca (2+) plateau in older cultured hippocampal neurons, Eur J Pharmacol 447: 189–200, 2002. [DOI] [PubMed] [Google Scholar]
  • 41. Verkhratsky A., Shmigol A., Kirischuk S., Pronchuk N., Kostyuk P., Age‐dependent changes in calcium currents and calcium homeostasis in mammalian neurons, Ann. N. Y. Acad. Sci. 747: 365–381, 1994. [DOI] [PubMed] [Google Scholar]
  • 42. Landfield P.W., Pitler T.A., Prolonged Ca2+‐dependent afterhyperpolarizations in hippocampal neurones of aged rats, Science 226: 1089–1092, 1984. [DOI] [PubMed] [Google Scholar]
  • 43. Moyer J.R.J., Thompson L.T., Black J.P., Disterhoft J.F., Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age‐ and concentration‐dependent manner, J. Neurophysiol. 68: 2100–2109, 1992. [DOI] [PubMed] [Google Scholar]
  • 44. Sah P., Bekkers J. M., Apical dendritic location of slow afterhypolarization current in hippocampal pyramidal neurons: implications for the integration of long‐term potentiation, J. Neurosci. 16, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Stackman, R. W. , Hammond, R. S. , Linardatos, E. , Gerlach, A. , Maylie, J. , Adelman, J. P. , Tzounopoulos, T. , Small conductance Ca2+‐activated K+ channels modulate synaptic plasticity and memory encoding, J Neurosci 22: 10163–10171, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Power J.M., Wu W.W., Sametsky E., Oh M.M., Disterhoft J.F., Age‐related enhancement of the slow outward calcium‐activated potassium current in hippocampal CA1 pyramidal neurons in vitro, J Neurosci 22: 7234–7243, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Norris C. M., Halpain S., Foster T. C., Reversal of agerelated alterations in synaptic plasticity by blockade of L‐type Ca2+ channels, J. Neurosci. 18: 3171–3179, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Marks J.D., Friedman J.E., Haddad G.G., Vulnerability of CA1 neurons to glutamate is developmentally regulated, Brain Res Dev Brain Res 97: 194–206, 1996. [DOI] [PubMed] [Google Scholar]
  • 49. Vergun O., Keelan J., Khodorov B.I., Duchen M.R., Glutamate‐induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones., J. Physiol. 519 Pt 2: 451–466, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Marks J. D., Bindokas V. P., Zhang X. M., Maturation of vulnerability to excitotoxicity: intracellular mechanisms in cultured postnatal hippocampal neurons., Brain Res Dev Brain Res 124: 101–116, 2000. [DOI] [PubMed] [Google Scholar]
  • 51. Xiong J., Camello P.J., Verkhratsky A., Toescu E.C., Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro, Neurobiol. Aging, 25: 349–359, 2004. [DOI] [PubMed] [Google Scholar]
  • 52. Porter N.M., Thibault O., Thibault V., Chen, K.‐C. , Landfield P.W., Calcium channel density and hippocampal cell death with age in long‐term culture, J. Neurosci. 17: 5629–5639, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Toescu E.C., Mitochondria and Ca2+ signaling, J. Cell. Molec. Med. 4: 164–175, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Nicholls D., Budd S., Mitochondria and neuronal survival, Physiol. Rev., 80: 315–360, 2000. [DOI] [PubMed] [Google Scholar]
  • 55. Duchen M.R., Mitochondria and calcium: from cell signalling to cell death., J. Physiol., 529: 57–68, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Lenaz G., Role of mitochondria in oxidative stress and ageing, Biochim. Biophys. Acta, 1366: 53–67, 1998. [DOI] [PubMed] [Google Scholar]
  • 57. Toescu E.C., Myronova N., Verkhratsky A., Age‐related structural and functional changes of brain mitochondria., Cell Calcium, 28: 329–338, 2000. [DOI] [PubMed] [Google Scholar]
  • 58. Lee H., Wei Y., Mitochondrial alterations, cellular reponse to oxidative stress and defective degradation of proteins in aging, Biogerontol., 2: 231–244, 2001. [DOI] [PubMed] [Google Scholar]
  • 59. Droge W., Free radicals in the physiological control of cell function, Physiol Rev., 82: 47–95, 2002. [DOI] [PubMed] [Google Scholar]
  • 60. Nicholls D.G., Mitochondrial function and dysfunction in the cell: its relevance to aging and aging‐related disease, Int. J. Biochem. Cell Biol., 34: 1372–1381, 2002. [DOI] [PubMed] [Google Scholar]
  • 61. Wakabayashi T., Megamitochondria formation ‐ physiology and pathology, J. Cell. Mol. Med., 6: 497–538, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. de Grey A.D., A proposed refinement of the mitochondrial free radical theory of aging, Bioessays 19: 161–166, 1997. [DOI] [PubMed] [Google Scholar]
  • 63. Miquel J., Economos A.C., Fleming J., Johnson J.E., Jr. , Mitochondrial role in cell aging, Exp Gerontol 15: 575–591, 1980. [DOI] [PubMed] [Google Scholar]
  • 64. McCormack J., Denton R., Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism, NIPS, 9: 71–76, 1994. [Google Scholar]
  • 65. Robb‐Gaspers L., Burnett P., Rutter G., Denton R., Rizzuto R., Thomas A., Integrating cytosolic calcium signals into mitochondrial metabolic responses, EMBO J. 17: 4987–5000, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Peng T., Jou M., Sheu S., Greenamyre J., Visualization of NMDA receptor‐induced mitochondrial calcium accumulation in striatal neurons, Exp Neurol 149: 1–12, 1998. [DOI] [PubMed] [Google Scholar]
  • 67. Toescu E.C., Verkhratsky A., Neuronal ageing from an intraneuronal perspective: roles of endoplasmic reticulum and mitochondria, Cell Calcium 34: 311–323, 2003. [DOI] [PubMed] [Google Scholar]
  • 68. Ames A., 3rds , CNS energy metabolism as related to function, Brain Res. Brain Res. Rev., 34: 42–68, 2000. [DOI] [PubMed] [Google Scholar]
  • 69. Attwell D., Laughlin S.B., An energy budget for signaling in the grey matter of the brain, J. Cereb. Blood Flow Metab., 21: 1133–1145, 2001. [DOI] [PubMed] [Google Scholar]
  • 70. Wong‐Riley M.T., Huang Z., Liebl W., Nie F., Xu H., Zhang C., Neurochemical organization of the macaque retina: effect of TTX on levels and gene expression of cytochrome oxidase and nitric oxide synthase and on the immunoreactivity of Na+ K+ ATPase and NMDA receptor subunit I, Vision Res 38: 1455–1477, 1998. [DOI] [PubMed] [Google Scholar]
  • 71. Pivovarova N.B., Hongpaisan J., Andrews S.B., Friel D.D., Depolarization‐induced mitochondrial Ca accumulation in sympathetic neurons: spatial and temporal characteristics, J Neurosci 19: 6372–6384, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. White R., Reynolds I., Mitochondrial depolarization in glutamate‐stimulated neurons ‐ an early signal specific to excitotoxin exposure, J. Neurosci. 16: 5688–5697, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Hagen T., Yowe D., Bartholomew J., Wehr C., Do K., Park J., Ames B., Mitochondrial decay in hepatocytes from old rats: Membrane potential declines, heterogeneity and oxidants increase, Proc. Natl. Acad. Sci. USA 94: 3064–3069, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES