Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(2):165–170. doi: 10.1111/j.1582-4934.2003.tb00215.x

Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture

Gabriella Schiera 1, Epifania Bono 1, Maria Pia Raffa 1, Alessia Gallo 1, Giovanna Laura Pitarresi 1, Italia Di Liegro 1, G Savettieri 2,
PMCID: PMC6740229  PMID: 12927055

Abstract

Brain capillary endothelial cells form a functional barrier between blood and brain, based on the existence of tight junctions that limit paracellular permeability. Occludin is one of the major transmembrane proteins of tight junctions and its peripheral localization gives indication of tight junction formation. We previously reported that RBE4.B cells (brain capillary endothelial cells), cultured on collagen IV, synthesize occludin and correctly localize it at the cell periphery only when cocultured with neurons. In the present study, we describe a three‐cell type‐culture system that allowed us to analyze the combined effects of neurons and astrocytes on differentiation of brain capillary endothelial cells in culture. In particular, we found that, in the presence of astrocytes, the neuron‐induced synthesis and localization of occludin is precocious as compared to cells cocultured with neurons only.

Keywords: astrocytes, blood‐brain barrier, brain capillary endothelial cells, cortical neurons, cocultures, occludin, tight junctions

References

  • 1. Goodenough D.A., Plugging the leaks, Proc. Natl. Acad. Sci. USA, 96: 319–321, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Bickel U., Yoshikawa T., Pardridge W.M., Delivery of peptides and proteins through the blood‐brain barrier, Adv. Drug Delivery Rev., 46: 247–279, 2001. [DOI] [PubMed] [Google Scholar]
  • 3. Huber J.D., Egleton R. D., Davis T.P., Molecular physiology and pathophysiology of tight junctions in the blood‐brain barrier, Trends Neurosci. 24: 719–725, 2001. [DOI] [PubMed] [Google Scholar]
  • 4. Nag S., The blood‐brain barrier and cerebral angiogenesis: lessons from the cold‐injury model, Trends Mol. Med., 8: 38–44, 2002. [DOI] [PubMed] [Google Scholar]
  • 5. Wolburg H., Lippoldt A., Tight junctions of the blood‐brain barrier: development, composition and regulation, Vascular Pharmacology, 38: 323–337, 2002. [DOI] [PubMed] [Google Scholar]
  • 6. Klatzo I., Neuropathological aspects of brain oedema, J. Neuropathol. Exp. Neurol. 27: 1–14, 1967. [DOI] [PubMed] [Google Scholar]
  • 7. Seitz R.J., Wechsler W., Immunohistochemical demonstration of serum proteins in human cerebral gliomas. Acta Neuropathol, 73: 145–152, 1987. [DOI] [PubMed] [Google Scholar]
  • 8. Papdopoulos M. C., Saadoun S., Woordrow C.J., Davies D. C., Costa‐Martins P., Moss R.F., Krishna S., Bell B.A., Occludin expression in microvessels of neoplastic and non‐neoplatic human brain, Neuropathol. Appl. Neurobiol., 27: 384–395, 2001. [DOI] [PubMed] [Google Scholar]
  • 9. Martin‐Pardura I., Lostaglio S., Schneemann M., Williams L., Romano M., Ruscella P., Panzerri C., Stoppacciaro A., Ruco L., Villa A., Simmons D., Dejana E., Junctional adhesion molecule, a novel member of the immunolobulin adhension molecule, a novel member of the immunolobulin superfamily taht distributes at intercellular junctions and regulates monocytes transmigration, J. Cell Biol., 142: 117–127, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Ando‐Akatsura Y., Saitou M., Hirase T., Kishi M., Sakakibara A., Furuse M., Tsukita S., Interspecies diversity of the occluding sequence: cDNA cloning of human, mouse, dog, and rat‐kangaroo homologous, J. Cell Biol., 133: 43–47, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S., Occludin: a novel intergral membrane protein localizing at tight junctions. J. Cell Biol., 123: 1777–1788, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Furuse M., Fujimoto K., Sato N., Hirase T., Tsukita S., Tsukita S., Overexpression of occludin, a tight junction‐associated intergral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction‐of interacellular multilamellar bodies bearing tight junction‐like structures. J. Cell Sci., 109: 429–435, 1996. [DOI] [PubMed] [Google Scholar]
  • 13. Furuse M., Fujita K., Hiragi T., Fujimoto K., Tsukita S., Claudin −1 and −2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol., 127: 1539–1550, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Kubota K., Furuse M., Sasaki H., Sonoda N., Fujita K., Nagafuchi A., Tsukita S., Ca2+independent cell‐adhesion activity of claudins, a family of intergral membrane proteins localized at tight junctions, Curr, Biol. 9: 1035–1038, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Simon D.B., Lu Y., Choate K. A., Velazquez H., Al Sabban E., Praga M., Casari G., Bettinelli A., Colussi G., Rodriguez‐Soriano J., McCredie D., Milford D., Sanjard S., LIfton RP., Paracellin‐1, a renal tight junction protein required for paracellular Mg2+ resorption, Science, 285: 103–106, 1999. [DOI] [PubMed] [Google Scholar]
  • 16. Sonoda N., Furuse M., Sasaki H., Yonemura S., Katahira J., Horiguchi Y., Tsukita S., Clostridium per fringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junctions barrier. J. Cell. Biol., 147: 195–204, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. McCarthy K.M., Skare I., Stankewich M.C., Furuse M., Tsukita S., Rogers R.A., Lynch R.D., Schneeberger E., Occludin is a functional component of the tight junction, J. Cell Biol., 109: 2287–2298, 1996. [DOI] [PubMed] [Google Scholar]
  • 18. Hirase T., Staddon N.M., Saitou M., Ando‐Aktsuka Y., Itoh M., Furuse M., Fujimoto K., Tsukita S., Rubin L.L., Occludin as a possible determinant of tight junction permeability in endothelial cells J. Cell Sci., 110: 1603–1613, 1997. [DOI] [PubMed] [Google Scholar]
  • 19. van Itallie C.M., Anderson J.M., Occludin confers adhesiveness when expressed in fibroblasts, J. Cell Sci., 110: 113–1121, 1997. [DOI] [PubMed] [Google Scholar]
  • 20. Cohen Y., Merzdorf C., Paul D.L., Goodenboug D.A., Cooh Termius of occludin is required for tight junction barrier function in early Xenopus embryos, J. Cell. Biol, 138: 891–899, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Savettieri G., Di Liegro I., Catania C., Licata L., Pitarresi G.L., D'Agostino S., Schiera G., De Caro V., Giandalia G., Giannola L.L., Cestelli A., Neurons and ECM regulate occludin localization in brain endothelial cells, NeuroReport, 11: 1081–1084, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Cestelli, A. , Catania C., D'Agostino S., Di Liegro I., Licata L, Schiera G., Pitarresi G.L., Savettieri G., De Caro V., Giandalia G., Giannola L.L., Functiona feature of a novel model of Blood Brain Barrier: Studies on permeation of test compounds, J. Controll Rel., 76: 139–147, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Cestelli A., Savettieri G., Ferraro D., Vitale F., Formulatin of a novel synthetic medium for selectively culturing rat CNS neurons, Dev. Brain Res., 22: 219–227, 1985. [DOI] [PubMed] [Google Scholar]
  • 24. Savettieri G., Licata L., Catania C., Raneri R., Di Liegro I., Cestelli A., Synergistic effects of laminin and thyroid hormones on neuron polarity in culture, NeuroReport, 10: 1269–1272, 1999. [DOI] [PubMed] [Google Scholar]
  • 25. Cole R., de Vellis J., Preparation of astrocytes and oligodendrocyte cultures from primary rat glial cultures In: A dissection and tissue culture Manual of the Nervous System, Alan R Liss Inc, pp 121–133, 1989. [Google Scholar]
  • 26. Savettieri G., Mazzola G., Rodriguez‐Sanchez M.B., Caruso G., Di Liegro I., Cestelli A., Modulation of Synapsin I gene expression in rat cortical neurons by extracellular matrix, Cell Mol. Neurobiol., 18: 379–388, 1998. [DOI] [PubMed] [Google Scholar]
  • 27. Grant G.A., Abbott N.J., Janigro D., Understanding the physiology of the Blood‐Brain Barrier: in vivo models, News Physiol. Sci., 13: 287–293, 1998. [DOI] [PubMed] [Google Scholar]
  • 28. Gaillard P.J., Voorwinden L.H., Nielsen J.L., Ivanov A. Atsumi R., Engman H., Ringbom C., de Boer A. G., Brimer D.D., Establishment and functional characterization of an in vitro model of the blood‐brain barrier, comprising a co‐cutlure of brain capillary endothelial cells and astrocytes, Eur. J. Pharm. Sci., 12: 215–222, 2001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES