Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(4):572–577. doi: 10.1111/j.1582-4934.2004.tb00483.x

Issues in stem cell plasticity

S Filip 1,, D English 2, J Mokrý 3
PMCID: PMC6740252  PMID: 15601587

Abstract

Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from„surplus” embryos left from in vitro fertilization, evoked immediately ideas on the posibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue‐specific (multipotent) stem cells are capable, under suitable conditions of producing a while spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names ‐„non‐orthodox differentiation” or„transdifferentiation”. In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one‐type tissue to lool and act as cells of another tissue? Are these changes netural? Could these trans‐formations be used to treat diseases? What about the bioethic issue? However, the most serious task “still remains to be soloved ‐ how to detect, harvestand culture stem cells for therapy of certain diseases”.

Keywords: stem cells, plasticity, transdifferentiation, cell fusion, cell therapy

References

  • 1. Smith A. Embryonic stem cells. Marshak D.R., Gardner D.K., and Gottlieb D. eds. Cold Spring Harbor Laboratory Press., 205–230, 2001. [Google Scholar]
  • 2. Wilmut I., Beaujean N., de Sousa P.A., Dinnyes A., King T.J., Paterson L.A., Wells D.N., Young L.E., Somatic cell nuclear transfer, Nature, 419: 583–583, 2002. [DOI] [PubMed] [Google Scholar]
  • 3. Filip S., Mokrý J., Hruška I., Adult stem cells and their importance in cell therapy, Folia Biol.(Prague), 49: 9–14, 2003. [PubMed] [Google Scholar]
  • 4. Brazelton T.R., Rossi F.M., Keshet G.I., Blau H.M., From marrow to brain: expression of neuronal phenotypes in adult mice, Science, 290: 1775–1779, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S., Sharkis S.J., Multi‐organ, multi‐lineage engraftment by a single bone marrow‐derived stem cell, Cell, 105: 369–377, 2001. [DOI] [PubMed] [Google Scholar]
  • 6. Quesenberry P.J., Abedi M., Aliotta J., Colvin G., Demers D., Dooner M., Greer D., Hebert H., Menon M.K., Pimentel J., Paggioli D., Stem cell plasticity: an overview, Blood Cells Mol. Dis., 32: 1–4, 2004. [DOI] [PubMed] [Google Scholar]
  • 7. Bianco P., Cossu G., Uno, nessuno e centomila: searching for the identity of mesodermal progenitors, Exp. Cell Res., 251: 257–263, 1999. [DOI] [PubMed] [Google Scholar]
  • 8. Anderson D.J., Gage F.H., Weissman I.L. Can stem cells cross lineage boundaries?, Nat. Med., 7: 393–395, 2001. [DOI] [PubMed] [Google Scholar]
  • 9. Lagasse E., Connors H., Al‐Dhalimy M., Reitsma M., Dohse M., Osborne L., Wang X., Finegold M., Weissman I.L., Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6: 1229–1234, 2000. [DOI] [PubMed] [Google Scholar]
  • 10. Rutenberg M.S., Hamazaki T. Singh A. M., Terada N., Stem cell plasticity, beyond alchemy, Int. J. Hematol., 79: 15–21, 2004. [DOI] [PubMed] [Google Scholar]
  • 11. Krause D. S., Plasticity of marrow‐derived stem cells, Gene Ther., 9: 754–758, 2002. [DOI] [PubMed] [Google Scholar]
  • 12. Verfaillie CM., Adult stem cells: assessing the case for pluripotency, Trends Cell Biol., 12: 502–508, 2002. [DOI] [PubMed] [Google Scholar]
  • 13. Verfaillie C.M., Pera M.F., Lansdorp P.M. Stem cells, hype and reality. Hematology (Am. Soc. Hematol. Educ. Program), 369–391, 2002. [DOI] [PubMed]
  • 14. Eisenberg L.M., Eisenberg C.A., Stem cell plasticity, cell fusion, and transdifferentiation, Birth Defect Res. Part. C. Embryo Today, 69: 209–218, 2003. [DOI] [PubMed] [Google Scholar]
  • 15. Martin‐Redon E., Watt S.M., Exploitation of stem cell plasticity, Transfusion Medicine, 13: 325–349, 2003. [DOI] [PubMed] [Google Scholar]
  • 16. Almeida‐Porada G., Porada C., Zanjani E.D., Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation, Int. J. Hematol., 79: 1–6, 2004. [DOI] [PubMed] [Google Scholar]
  • 17. Huttmann A., Li C.L., Duhrsen U., Bone marrow‐derived stem cells and “plasticity”, Ann. Hematol., 82: 599–604, 2003. [DOI] [PubMed] [Google Scholar]
  • 18. Verfaillie C.M., Schwartz R., Reyes M., Jianf Y., Unexpected potential of adult stem cells, Ann. N.Y. Acad. Sci., 996: 231–234, 2003. [DOI] [PubMed] [Google Scholar]
  • 19. Vogel G. Stem cell policy, can adult stem cells suffice?, Science, 292: 1820–1822, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Deisseroth K., Singla S., Toda H., Monje M., Palmer T.D., Malenka R.C., Excitation ‐ neurogenesis coupling in adult neural stem/progenitor cells, Neuron, 42: 535–552, 2004. [DOI] [PubMed] [Google Scholar]
  • 21. Raff M. Adult stem cell plasticity: fact or artifact?, Annu. Rev. Cell. Biol., 19: 1–22, 2003. [DOI] [PubMed] [Google Scholar]
  • 22. Goodell M.A., Stem‐cell “plasticity”: befuddled by the muddle, Curr. Opin. Hematol., 10: 208–213, 2003. [DOI] [PubMed] [Google Scholar]
  • 23. Till J.E., McCulloch E.A., A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res., 14: 213–222, 1961. [PubMed] [Google Scholar]
  • 24. Heike T., Nakahata T., Stem cell plasticity in the hematopoietic system, Int. J. Hematol., 79: 7–14, 2004. [DOI] [PubMed] [Google Scholar]
  • 25. Lagasse E., Shizuru J.A., Uchida N., Tsukamoto A., Weissman I.L., Toward regenerative medicine, Immunity, 14: 425–436, 2001. [DOI] [PubMed] [Google Scholar]
  • 26. Weissman I.L., Transplanting stem and progenitor cell biology to the clinic: bariers and opportunities, Science, 287: 1442–1446, 2000. [DOI] [PubMed] [Google Scholar]
  • 27. Weissman I.L., Anderson D. J., Gage F., Stem and progenitor cells: origins, phenotypes, lineage, commitment, and transdifferentiations, Annu. Rev. Cell. Dev. Biol., 17: 387–403, 2001. [DOI] [PubMed] [Google Scholar]
  • 28. Björnson C.R., Rietze R.L., Reynolds B.A., Magli M.C., Vescovi A.L. A turning brain into blood a hematopoietic fate adopted by neural stem cells in vivo. Science 283: 534–537, 1999. [DOI] [PubMed] [Google Scholar]
  • 29. Van der Kooy D., Weiss S. Why stem cells Science, 287: 1439–1441, 2000. [DOI] [PubMed] [Google Scholar]
  • 30. Clarke D.L., Johansson C.B., Wilbertz J., Veress B., Nilsson E., Karlstrom H., Lendahl U., Frisen J. Generalized potential of adult stem cells. Science 288: 1660–1663, 2000. [DOI] [PubMed] [Google Scholar]
  • 31. Frisen J. Stem cell plasticity?, Neuron, 35: 415–418, 2002. [DOI] [PubMed] [Google Scholar]
  • 32. Wang X., Willenbring H., Akkari Y., Torimaru Y., Foster M., Al‐Dhalimy M., Lagasse E., Finegold M., Olson S., Grompe M. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature, 24, 422: 897–901, 2003. [DOI] [PubMed] [Google Scholar]
  • 33. Jiang Y., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz‐Gonzalez X.R., Reyes M., Lenvik T., Lund T., Blackstad M., Du J., Aldrich S., Lisberg A., Low W.C., Largaespada D.A., Verfaillie C.M., Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418: 41–49, 2002. [DOI] [PubMed] [Google Scholar]
  • 34. Filip S., Mokrý J., Karbanová J., Vávrová J., English D., Local envirometal factors determine hematopoietic differentiation of neural stem cells, Stem Cells Dev., 13: 113–120, 2004. [DOI] [PubMed] [Google Scholar]
  • 35. Schwartz R.E., Reyes M., Koodie L., Jiang Y., Blackstad M., Lund T., Lenvik T., Johnson S., Hu W.S., Verfaillie C.M., Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte‐like cells, J. Clin. Invest., 109: 1291–302, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Khoszotehrani K., Bianchi D.W. Fetal cell micro‐chimerism: helpful or harmful to the parous woman?, Curr. Opin. Obstet. Gynecol., 15: 195–199, 2003. [DOI] [PubMed] [Google Scholar]
  • 37. Alison M.R., Poulson R., Jeffery R., Quaglia A., Jacob J., Novelli M., Prentice G., Williamson J., Wright N.A. Hepatocytes from non‐hepatic adult stem cells. Nature 406: 257, 2000. [DOI] [PubMed] [Google Scholar]
  • 38. Lisker R., Ethical and legal issues in therapeutic cloning and the study stem cells, Arch. Med. Res., 34: 607–611, 2003. [DOI] [PubMed] [Google Scholar]
  • 39. Lemischka I. The power of stem cells reconsidered?, Proc. Natl. Acad. Sci. USA, 96: 14193–14195, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Lemischka I., A few thoughts about the plasticity of stem cells, Exp. Hematol., 30: 848–852, 2002. [DOI] [PubMed] [Google Scholar]
  • 41. Mc Culloch E.A., Stem cells and diversity, Leukemia, 17: 1042–1048, 2003. [DOI] [PubMed] [Google Scholar]
  • 42. Soria B., Roche E., Berna G., Leon‐Quinto T., Reig J.A., Martin F., Insulin‐secreting cells derived from embryonic stem cells normalize glycemia in streptozocin‐induced diabetes mice, Diabetes, 49: 157–162, 2000. [DOI] [PubMed] [Google Scholar]
  • 43. McDonald J.W., Liu X.Z., Qu Y., Liu S., Mickey S.K., Turetsky D., Gottlieb D.I., Choi D.W., Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord, Nat. Med., 5: 1410–1412, 1999. [DOI] [PubMed] [Google Scholar]
  • 44. Horwitz E.M., Prockop D.J., Gordon P.L., Koo W.W., Fitzpatrick L.A., Neel M.D., McCarville M.E., Orchard P.J., Pyeritz R.E., Brenner M.K. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97: 1227–31, 2001. [DOI] [PubMed] [Google Scholar]
  • 45. Snyder E.Y., Daley G.Q., Goodell M., Taking stock and planing for the next decade: realistic prospects for stem cell therapies for the nervous sytem, J. Neurosci. Res., 76: 157–168, 2004. [DOI] [PubMed] [Google Scholar]
  • 46. Wang F.S., Trester C., Bone marrow cells and myocardial regeneration, Int. J. Hematol., 79: 322–327, 2004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES