Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(1):73–78. doi: 10.1111/j.1582-4934.2003.tb00205.x

Plasma membrane potential interferes with the respiratory burst of peripheral granulocytes

Alexandra Livescu 1,, Gina Manda 1, Carolina Constantin 1, Monica Neagu 1, Dana Iordachescu 2
PMCID: PMC6740255  PMID: 12767264

Abstract

Membrane potential is involved in the regulation of several immune functions developed by granulocytes. The Na+/K+ gradient across the plasma membrane, mainly generated by the Na+/K+ pump, plays a key role in the maintenance of membrane potential. This study is focused on the correlation between plasma membrane potential and the in vitro receptor ‐ triggered respiratory burst of normal human peripheral granulocytes. The respiratory burst was measured as superoxide anion release by the cytochrome c reduction test and plasma membrane potential was modulated by experimental changes of the extracellular potassium concentration. Results show a differentiated cellular response, depending on the in vivo activation state and on the signals received in vitro by granulocytes via CR3 or FcγR. Alteration of the membrane potassium gradient modulates the respiratory burst of unstimulated and CR3‐activated cells, whilst it does not seem to significantly interfere with the signals delivered by FcγR.

Keywords: granulocytes, respiratory burst, superoxide anion, plasma membrane potential

References

  • 1. Rijkers G. T., Justement L. B., Griffioen, A. N. , Cambier J. C., Non‐invasive techniques in cell biology. In: Grinstein S., Foskett J. K., eds. Liss A. R., Inc. NY , 1990, pp. 353–374. [Google Scholar]
  • 2. Ahlin A., Gyllenhammar H., Ringertz B., Palmbla J., Neutrophil membrane potential changes and homotypic aggregation kinetics are pH ‐ dependent: studies of chronic granulomatous disease, J. Lab. Clin. Med., 125: 392–401, 1995. [PubMed] [Google Scholar]
  • 3. Lingrel J. B., Kuntzweiler T., Na+, K+‐ATPase, J. Biol. Chem., 269: 19659–19662, 1994. [PubMed] [Google Scholar]
  • 4. Chacon‐Cruz E., Oelberg D. G., Davis P., Buescher ES., Membrane depolarization and depletion of intracellular calcium stores are associated with delay of apoptosis in human neutrophils, J. Leukoc. Biol., 64: 759–766, 1998. [DOI] [PubMed] [Google Scholar]
  • 5. Contreras R. G., Shoshani L., Flores‐Maldonado C., Lázaro A., Cereijido M., Relationship between Na+, K+ ATPase and cell attachment, J.Cell.Sci., 112: 4223–4232, 1999. [DOI] [PubMed] [Google Scholar]
  • 6. Orlov S. N, Taurin S., Thorin‐Trescases N., Hamet P., Inversion of the Intracellular Na+/K+ Ratio Blocks Apoptosis in Vascular Smooth Muscle Cells by Induction of RNA Synthesis, Hypertension, 35: 1062–1068, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Pittet D., Di Virgilio F., Pozzan T., Monod A., Lew D. P., Correlation between plasma membrane potential and second messenger generation in the promyelocytic cell line HL‐60. J. Biol. Chem., 265: 14256–14263, 1990. [PubMed] [Google Scholar]
  • 8. Rasmussen H., Rasmussen J. E., Calcium as intracellular messenger: from simplicity to complexity, Curr. Top. Cell. Regul., 31: 1–109, 1990. [DOI] [PubMed] [Google Scholar]
  • 9. Bilzer M., Lauterburg B. H., Glutathione metabolism in activated human neutrophils: stimulation of glutathione synthesis and consumption of glutathione by reactive oxygen species, Eur. J. Clin. Invest., 21: 316–322, 1991. [DOI] [PubMed] [Google Scholar]
  • 10. Kiss E., Balazs C., Bene L., Damjanovich S., Matko J., Effect of TSH and anti‐TSH receptor antibodies on the plasma membrane potential of polymorphonuclear granulocytes, Immunol. Lett., 55: 173–177, 1997. [DOI] [PubMed] [Google Scholar]
  • 11. Hrouda V., Haskovec C., Plasek J., Sigler K., Membrane potential in human myeloid leukemia cell line ML‐1: responsiveness of granulocytic and monocytic differentiated cells. Gen. Physiol. Biophys. 10: 49–57, 1991. [PubMed] [Google Scholar]
  • 12. Myers J. B., Cantiello H. F., Schwartz J. H., Tauber A. I., William B., Phorbol ester‐stimulated human neutrophil membrane depolarization is dependent on Ca2(+)‐regulated Cl‐ efflux. Am. J. Physiol., 259: C531–540, 1990. [DOI] [PubMed] [Google Scholar]
  • 13. Gallois A., Bueb J. L., Tschirhart E., Effect of SK&F96365 on extracellular Ca2+‐dependent O2‐ production in neutrophil‐like HL‐60 cells, Neuroimmunol. Inflamm., 361: 293–298, 1998. [DOI] [PubMed] [Google Scholar]
  • 14. Jankovski A., Grinstein S., A noninvasive fluorimetric procedure for measurement of membrane potential, J. Biol. Chem., 274: 26098–26104, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Virag L., Salzman A. L., Szabo C., Poly (ADP ‐ ribose synthetase activation mediates mitochondrial injury during oxidant ‐ Induced cell death, J. Immunol., 161: 3753–3759, 1998. [PubMed] [Google Scholar]
  • 16. Lachman P. J., Hobart M. J., Aston W. P., Complement technology In: Weir DM, ed. Handbook of experimental Immunology. Oxford/Blackwell Scientific Publications, 1973, chapter 5: 8. [Google Scholar]
  • 17. Walker B. A. M., Hagenlocker B. E., Stubbs E. B. Jr., Sandborg R., Agranoff B. W., Ward P. A., Signal transduction events and FcγR engagement in human neutrophils stimulated with immune complexes. J. Immunol., 146: 735–741, 1991. [PubMed] [Google Scholar]
  • 18. Boyum A., Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest., 21: 77–89, 1968. [PubMed] [Google Scholar]
  • 19. Manda G., Neagu M., Livescu A., Bostan M., Bancu A.C., Total depletion of extracellular calcium ions favors superoxide anion release by human normal peripheral granulocytes. J. Med. Biochem., 3: 333–341, 1999. [Google Scholar]
  • 20. Vicioso M. A., Garand J. J., Reglier ‐ Poupet H., Lebeaut A., Gougerot ‐ Pocidalo M. A., Chollet ‐ Martin S., Moderate inhibitory effect of interleukin ‐ 10 on human neutrophil and monocyte chemotaxis in vitro, Eur. Cytokine Netw., 9: 247–253, 1998. [PubMed] [Google Scholar]
  • 21. Gaspar R. Jr., Krasznai Z., Marian T., Tron L., Recchioni R., Falasca M., Moroni F., Pieri C., Damjanovich S., Bretylium‐induced voltage‐gated sodium current in human lymphocytes. Biochim. Biophys. Acta, 1137: 143–147, 1992. [DOI] [PubMed] [Google Scholar]
  • 22. Mantovani G., Maccio A., Madeddu C., Mura L., Massa E., Gramignano G., Lusso M.R., Murgia V., Camboni P., Ferreli L., Reactive oxygen species, antioxidant mechanisms and serum cytokine levels in cancer patients: impact of an antioxidant treatment, J. Cell. Mol. Med., 6: 570–582, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES