Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(1):85–92. doi: 10.1111/j.1582-4934.2004.tb00262.x

Differential gene expression in infarct scar and viable myocardium from rat heart following coronary ligation

Y‐J Xu 1, D Chapman 1, I MC Dixon 1, R Sethi 1, X Guo 1, N S Dhalla 1,
PMCID: PMC6740260  PMID: 15090263

Abstract

Post‐myocardial infarction (MI) remodeling of cardiac myocytes and the myocardial interstitium results in alteration of gross ventricular geometry and ventricular dysfunction. To investigate the mechanisms of the remodeling process of the heart after large MI, the expression of various genes in viable left ventricle and infarct scar tissue were examined at 16 weeks post‐MI. Steady‐state expression of Na+‐K+ATPase α‐1 and −2, phospholamban (PLB), α‐myosin heavy chain (α‐MHC), ryanodine receptor (Rya) and Ca2+ ATPase (Serca2) mRNAs were decreased in the infarct scar vs noninfarcted sham‐operated controls (P < 0.05). On the other hand, Giα2 and β‐MHC mRNAs were upregulated (P < 0.05, respectively) in the infarct scar whereas Na+‐K+ ATPase‐β, Na+‐Ca2+ exchanger and Gs mRNAs were not altered vs control values. In viable left ventricle, the a‐1 subunit of Na+‐K+ATPase, α‐3, β‐isoforms, Rya, β‐MHC, Giα2, Gs and Na+‐Ca2+ exchanger were significantly elevated while expression of the a‐2 subunit of Na+‐K+ ATPase, PLB and Serca2 were significantly decreased compared to controls. Expression of CK2α mRNA was elevated in noninfarcted heart (145 ± 15%) and diminished in the infarct scar (66 ± 13%) vs controls. Expression of β‐MHC mRNA was elevated in both viable and infarct scar tissues of experimental hearts (140 ± 31% and 183 ± 30% vs. controls, respectively). These results suggest that cardiac genes in the infarcted tissue and viable left ventricle following MI are differentially regulated.

Keywords: myocardial infarction, gene expression, heart failure, infarct scar, casein kinase 2

References

  • 1. Dhalla N.S., Afzal N., Beamish R.E., Naimark B., Takeda N., Nagano M., Pathophysiology of cardiac dysfunction in congestive heart failure, Can. J. Cardiol., 9: 873–887, 1993. [PubMed] [Google Scholar]
  • 2. Nakao K., Minobe W., Roden R., Bristow M.R., Leinwand L.A., Myosin heavy chain gene expression in human heart failure, J. Clin. Invest., 100: 2362–2370, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Lowes B.D., Minobe W., Abraham W.T., Rizeq M.N., Bohlmeyer T.J., Quaife R.A., Roden R.L., Dutcher D.L., Robertson A.D., Voelkel N.F., Badesch D.B., Groves B.M., Gilbert E.M., Bristow M.R., Changes in gene expression in the intact human heart. Downregulation of alpha‐myosin heavy chain in hypertrophied, failing ventricular myocardium, J. Clin. Invest., 100: 2315–2324, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Peterson D.J., Ju H., Hao J., Panagia M., Chapman D.C., Dixon I.M.C., Expression of Gi‐2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction, Cardiovasc. Res., 41: 575–585, 1999. [DOI] [PubMed] [Google Scholar]
  • 5. Kim S.O., Baines C.P., Critz S.D., Pelech S.L., Katz S., Downey J.M., Cohen M.V., Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in the preconditioned rabbit heart, Biochem. Cell. Biol., 77: 559–567, 1999. [PubMed] [Google Scholar]
  • 6. Freed D.H., Moon M.C., Borowiec A.M., Jones S.C., Zahradka P., Dixon I.M.C., Cardiotrophin‐1: expression in experimental myocardial infarction and potential role in post‐MI wound healing, Mol. Cell. Biochem., 254: 247–256, 2003. [DOI] [PubMed] [Google Scholar]
  • 7. Gabbiani G., The myofibroblast in wound healing and fibrocontractive diseases, J. Pathol., 200: 500–503, 2003. [DOI] [PubMed] [Google Scholar]
  • 8. Frangogiannis N.G., Michael L.H., Entman M.L., Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb), Cardiovasc. Res., 48: 89–100, 2000. [DOI] [PubMed] [Google Scholar]
  • 9. Cleutjens J.P.M., Blankesteijn W.M., Daemen M.J., Smits J.F., The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions, Cardiovasc. Res., 44: 232–241, 1999. [DOI] [PubMed] [Google Scholar]
  • 10. Cala S.E., Jones L.R., GRP94 resides within cardiac sarcoplasmic reticulum vesicles and is phosphorylated by casein kinase II, J. Biol. Chem., 269: 5926–5931, 1994. [PubMed] [Google Scholar]
  • 11. Xu Y.J., Rathi S.S., Chapman D.C., Arneja A.S., Dhalla N.S., Mechanisms of lysophosphatidic acid‐induced DNA synthesis in vascular smooth muscle cells, J. Cardiovasc. Pharmacol., 41: 381–387, 2003. [DOI] [PubMed] [Google Scholar]
  • 12. Sethi R., Elimban V., Chapman D., Dixon I.M.C., Dhalla N.S., Differential alterations in left and right ventricular G‐proteins in congestive heart failure due to myocardial infarction, J. Mol. Cell. Cardiol., 30: 2153–2163, 1998. [DOI] [PubMed] [Google Scholar]
  • 13. Chomczynski P., Sacchi N., Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction, Anal. Biochem., 162: 156–159, 1987. [DOI] [PubMed] [Google Scholar]
  • 14. Li D., Dobrowolska G., Aicher L.D., Chen M., Wright J.H., Drueckes P., Dunphy E.L., Munar E.S., Krebs E.G., Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle, J. Biol. Chem., 274: 32988–32996, 1999. [DOI] [PubMed] [Google Scholar]
  • 15. Davie J.R., Inhibition of histone deacetylase activity by butyrate, J. Nutrition, 133: 2485S–2493S, 2003. [DOI] [PubMed] [Google Scholar]
  • 16. Vilk G., Derksen D.R., Litchfield D.W., Inducible expression of the regulatory protein kinase CK2beta subunit: incorporation into complexes with catalytic CK2 subunits and reexamination of the effects of CK2beta on cell proliferation, J. Cell. Biochem., 84: 84–99, 2001. [DOI] [PubMed] [Google Scholar]
  • 17. Yamagishi H., Kim S., Nishikimi T., Takeuchi K., Takeda T., Contribution of cardiac renin‐angiotensin system to ventricular remodelling in myocardial‐infarcted rats, J. Mol. Cell. Cardiol., 25: 1369–1380, 1993. [DOI] [PubMed] [Google Scholar]
  • 18. Sun Y., Weber K.T., Angiotensin II receptor binding following myocardial infarction in the rat, Cardiovasc. Res., 28: 1623–1628, 1994. [DOI] [PubMed] [Google Scholar]
  • 19. Fraccarollo D., Bauersachs J., Kellner M., Galuppo P., Ertl G., Cardioprotection by long‐term ET(A) receptor blockade and ACE inhibition in rats with congestive heart failure, Cardiovasc. Res., 54: 85–94, 2002. [DOI] [PubMed] [Google Scholar]
  • 20. Nguyen Q.T., Cernacek P., Calderoni A., Stewart D.J., Picard P., Sirois P., White M., Rouleau J.L., Endothelin A receptor blockade causes adverse left ventricular remodeling but improves pulmonary artery pressure after infarction in the rat, Circulation, 98: 2323–2330, 1998. [DOI] [PubMed] [Google Scholar]
  • 21. Kim S.O., Hasham M.I., Kratz S., Pelech S.L., Insulinregulated protein kinases during postnatal development of rat heart, J. Cell. Biochem., 71: 328–339, 1998. [DOI] [PubMed] [Google Scholar]
  • 22. Lai L.P., Raju V.S., Delehanty J.M., Yatani A., Liang C.S., Altered sarcoplasmic reticulum Ca2+ ATPase gene expression in congestive heart failure: effect of chronic norepinephrine infusion, J. Mol. Cell. Cardiol., 30: 175–185, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Pennock G.D., Spooner P.H., Summers C.E., Litwin S.E., Prevention of abnormal sarcoplasmic reticulum calcium transport and protein expression in post‐infarction heart failure using 3, 5‐diiodothyropropionic acid (DITPA), J. Mol. Cell. Cardiol., 32: 1939–1953, 2000. [DOI] [PubMed] [Google Scholar]
  • 24. Heerdt P.M., Holmes J.W., Cai B., Barbone A., Madigan J.D., Reiken S., Lee D.L., Oz M.C., Marks A.R., Burkhoff D., Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in endstage heart failure, Circulation, 102: 2713–2719, 2000. [DOI] [PubMed] [Google Scholar]
  • 25. Huang Y., Liu H., Li Y., Alterations in myosin heavy chain isoform gene expression during the transition from compensatory hypertrophy to congestive heart failure in rats, Chin. Med. J., 114: 183–185, 2001. [PubMed] [Google Scholar]
  • 26. Sjuve R., Haase H., Ekblad E., Malmqvist U., Morano I., Arner A., Increased expression of non‐muscle myosin heavy chain‐B in connective tissue cells of hypertrophic rat urinary bladder, Cell Tissue Res., 304: 271–278, 2001. [DOI] [PubMed] [Google Scholar]
  • 27. Urbanek K., Quaini F., Tasca G., Torella D., Castaldo C., Nadal‐Ginard B., Leri A., Kajstura J., Quaini E., Anversa P., Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy, Proc. Natl. Acad. Sci. USA, 100: 10440–10445, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Semb S.O., Lunde P.K., Holt E., Tonnessen T., Christensen G., Sejersted O.M., Reduced myocardial Na+, K+‐pump capacity in congestive heart failure following myocardial infarction in rats, J. Mol. Cell. Cardiol., 30: 1311–1328, 1998. [DOI] [PubMed] [Google Scholar]
  • 29. Trouve P., Carre F., Belikova I., Leclercq C., Dakhli T., Soufir L., Coquard I., Ramirez‐Gil J., Charlemagne D., Na+‐K+‐ATPase alpha2‐isoform expression in guinea pig hearts during transition from compensation to decompensation, Am. J. Physiol., 279: H1972–H1981, 2000. [DOI] [PubMed] [Google Scholar]
  • 30. Mittmann C., Eschenhagen T., Scholz H., Cellular and molecular aspects of contractile dysfunction in heart failure, Cardiovasc. Res., 39: 267–275, 1998. [DOI] [PubMed] [Google Scholar]
  • 31. Piper C., Bilger J., Henrichs E.M., Schultheiss H.P., Horstkotte D., Doerner A., Is myocardial Na+‐Ca2+ exchanger transcription a marker for different stages of myocardial dysfunction? Quantitative polymerase chain reaction of the messenger RNA in endomyocardial biopsies of patients with heart failure, J. Am. Coll. Cardiol., 36: 233–241, 2000. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES