Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(2):169–180. doi: 10.1111/j.1582-4934.2004.tb00272.x

Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues

U Ripamonti 1,
PMCID: PMC6740261  PMID: 15256065

Abstract

Bone morphogenetic and osteogenic proteins (BMPs/OPs), members of the transforming growth factor‐β (TGF‐β) superfamily, are soluble mediators of tissue morphogenesis and induce de novo endochondral bone formation in heterotopic extraskeletal sites as a recapitulation of embryonic development. In the primate Papio ursinus, the induction of bone formation has been extended to the TGF‐β isoforms per se. In the primate and in the primate only, the TGF‐β isoforms are initiators of endochondral bone formation by induction and act in a species‐, site‐ and tissue‐specific mode with robust endochondral bone induction in heterotopic sites but with limited new bone formation in orthotopic bone defects. The limited inductive capacity orthotopically of TGF‐β isoforms is associated with expression of the inhibitory Smads, Smad6 and Smad7. In primates, bone formation can also be induced using biomimetic crystalline hydroxyapatite matrices with a specific surface geometry and without the exogenous application of osteogenic proteins of the TGF‐β superfamily, even when the biomimetic matrices are implanted heterotopically in the rectus abdominis muscle. The sequence of events that directs new bone formation upon the implantation of highly crystalline biomimetic matrices initiates with vascular invasion, mesenchymal cell migration, attachment and differentiation of osteoblast‐like cells attached to the substratum, expression and synthesis of osteogenic proteins of the TGF‐β superfamily resulting in the induction of bone as a secondary response. The above findings in the primate indicate enormous potential for the bioengineering industry. Of particular interest is that biomimetic matrices with intrinsic osteoinductivity would be an affordable option in the local context.

Keywords: bone induction, primates, TGF‐β, BMPs/OPs, hydroxyapatite biomimetic matrices, geometry, bioengineering

References

  • 1. Reddi A. H., Regulation of cartilage and bone differentiation by bone morphogenetic proteins, Curr. Opin. Cell Biol., 4: 850–855, 1992. [DOI] [PubMed] [Google Scholar]
  • 2. Ripamonti U., Ramoshebi L. N., Patton J., Matsaba, T , Teare J., Renton L., Soluble Signals and Insoluble Substrata: Novel Molecular Cues Instructing the Induction of Bone In: Massaro E. J., Rogers J. M., eds., The Skeleton. Humana Press, Totowa , New Jersey , 2004, pp. 217–227. [Google Scholar]
  • 3. Reddi A. H., Symbiosis of biotechnology and biomaterials: Applications in tissue engineering of bone and cartilage. J. Cell. Biochem., 56: 192–195, 1994. [DOI] [PubMed] [Google Scholar]
  • 4. Reddi A. H., BMPs: Action in flesh and bone. Nat. Med., 3: 837–838, 1997. [DOI] [PubMed] [Google Scholar]
  • 5. Reddi A. H., Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol., 16: 247–252, 1998. [DOI] [PubMed] [Google Scholar]
  • 6. Reddi A. H., Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials, Tissue Eng., 6: 351–359, 2000. [DOI] [PubMed] [Google Scholar]
  • 7. Ripamonti U., Ma S., Cunningham N., Yeates L., Reddi A. H., Initiation of bone regeneration in adult baboons by osteogenin, a bone morphogenetic protein. Matrix, 12: 369–380, 1992. [DOI] [PubMed] [Google Scholar]
  • 8. Ripamonti U., Duneas N., Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg., 101: 227–239, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Ripamonti U., Ramoshebi L. N., Matsaba T., Tasker J., Crooks J., Teare J., Bone induction by BMPs/OPs and related family members in primates. The critical role of delivery systems. J. Bone Joint Surg. Am., 83‐A: S1 116–SI 127, 2001. [PubMed] [Google Scholar]
  • 10. Ripamonti U., Osteogenic Proteins of the TGF‐β Superfamily In: Henry H. L., Norman A. W., eds., Encyclopedia of Hormones, Academic Press, USA , 2003, pp. 80–86. [Google Scholar]
  • 11. Ripamonti U., Tissue engineering of bone by novel substrata instructing gene expression during the de novo bone formation, Science in Africa, 2002.
  • 12. Ripamonti U., Ramoshebi L. N., Patton J., Matsaba T., Teare J., Renton L. Sculpturing the architecture of mineralized tissues: tissue engineering of bone from soluble signals to smart siomimetic matrices In: Müller RH. Müller R. H., Kayser O., eds., Pharmaceutical Biotechnology. Wiley‐VCH; 2004; Chapter16, pp. 281–297. [Google Scholar]
  • 13. Wozney J. M., Rosen V., Celeste A. J., Mitsock L. M., Whitters M. J., Kritz R. W., Hewick R. M., Wang E. A. Novel regulators of bone formation: Molecular clones and activities. Science, 242: 1528–1534, 1988. [DOI] [PubMed] [Google Scholar]
  • 14. Wozney J. M., The bone morphogenetic protein family and osteogenesis. Mol. Reprod. Dev., 32: 160–167, 1992. [DOI] [PubMed] [Google Scholar]
  • 15. Carrington J. L., Reddi A. H., Parallels between development of embryonic and matrix‐induced endochondral bone. Bioessays, 13: 403–408, 1991. [DOI] [PubMed] [Google Scholar]
  • 16. Urist M. R., DeLange R. J., Finerman G. A. M., Bone cell differentiation and growth factors. Science, 220: 680–686, 1983. [DOI] [PubMed] [Google Scholar]
  • 17. Turing A. M., The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., 237: 37, 1952. [Google Scholar]
  • 18. Sampath T. K., Rashka K. E., Doctor J. S., Tucker R. F., Hoffmann F. M., Drosophila TGF‐β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl. Acad. Sci. USA, 90: 6004–6008, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Hotten G. C., Matsumoto T., Kimura M., Bechtold R. F., Kron R., Ohara T., Tanaka H., Satoh Y., Okazaki M., Shirai T., Pan H., Kawai S., Pohl J. S., Kudo A., Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors, 13: 65–74, 1996. [DOI] [PubMed] [Google Scholar]
  • 20. Ripamonti U., Duneas N., van den Heever B., Bosch C., Crooks J., Recombinant transforming growth factor‐β1 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein‐1 (bone morphogenetic protein‐7) to initiate rapid bone formation, J. Bone Miner. Res., 12: 1584–1595, 1997. [DOI] [PubMed] [Google Scholar]
  • 21. Ripamonti U., Crooks J., Matsaba T., Tasker J., Induction of endochondral bone formation by recombinant human transforming growth factor‐β2 in the baboon (Papio ursinus). Growth Factors, 17: 269–285, 2000. [DOI] [PubMed] [Google Scholar]
  • 22. Duneas N., Crooks J., Ripamonti U., Transforming growth factor‐β1: Induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein‐1 (BMP‐7). Growth Factors, 15: 259–277, 1998. [DOI] [PubMed] [Google Scholar]
  • 23. Ripamonti U., Teare J., Matsaba T., Renton L., Site, tissue and organ specificity of endochondral bone induction and morphogenesis by TGF‐beta isoforms in the primate Papio ursinus. Proceedings of the 2001 FASEB Summer Research Conference, Tucson, Arizona USA, 2001.
  • 24. Roberts A. B., Sporn M. B., Assoian R. K., Smith J. M., Roche N. S., Wakefield L. M., Heine U. I., Liotta L. A., Falanga V., Kerhl J. H., Fauci A. S. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA, 83: 4167–4171, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Sampath T. K., Muthukumaran N., Reddi A. H. Isolation of osteogenin, an extracellular matrix‐associated, bone‐inductive protein, by heparin affinity chromatography. Proc. Natl. Acad. Sci. USA, 84: 7109–7113, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Bentz H., Nathan R. M., Rosen D., Armstrong R. M., Thompson A. Y., Segarini P. R., Matthews M. C., Dasch J. R., Piez K. A., Seyedin S. M., Purification and characterisation of a unique factor from bovine bone. J. Biol. Chem., 264: 20805–20810, 1989. [PubMed] [Google Scholar]
  • 27. Hammonds R. G., Schwall R., Dudley A., Berkemeier L., Lai C., Lee J., Cunningham N., Reddi A. H., Wood W., Mason A. J., Bone inducing activityof mature BMP‐2b produced from a hybrid BMP‐2a/2b precursor. Mol. Endocrinol., 5: 149–155, 1991. [DOI] [PubMed] [Google Scholar]
  • 28. Ripamonti U., Bosch C., van den Heever B., Duneas N., Melsen B., Ebner R., Limited chondro‐osteogenesis by recombinant human transforming growth factor β1 in calvarial defects in adult baboons (Papio ursinus). J. Bone Miner. Res., 11: 938–945, 1996. [DOI] [PubMed] [Google Scholar]
  • 29. Wakefield L. M., Smith D. M., Masui T., Harris C. C., Sporn M. B., Distribution and modulation of the cellular receptor for transforming growth factor‐beta. J. Cell Biol., 105: 965–975, 1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Shi Y., Massagué J., Mechanisms of TGF‐β signaling from cell membrane to the nucleus. Cell, 113: 685–700, 2003. [DOI] [PubMed] [Google Scholar]
  • 31. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Myazono K., Smad6 inhibits signalling by the TGF‐β superfamily. Nature, 389: 622–626, 1997. [DOI] [PubMed] [Google Scholar]
  • 32. Nakao A., Afrakhte M., Morèn A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N. ‐E., Heldin C. ‐H., Ten Dijke P., Identification of Smad7, a TGFβ‐inducible antagonist of TGF‐β signalling. Nature, 389: 631–635, 1997. [DOI] [PubMed] [Google Scholar]
  • 33. Whitman M., Feedback from inhibitory SMADs. Nature, 389: 549–551, 1997. [DOI] [PubMed] [Google Scholar]
  • 34. Myazono K., Ten Dijke P., Heldin C. ‐H. TGF‐β signaling by Smad proteins. Adv. Immunol., 75: 115–157, 2000. [DOI] [PubMed] [Google Scholar]
  • 35. Ripamonti U., van den Heever B., Crooks J., Tucker M. M., Sampath T. K., Rueger D. C., Reddi A. H., Long term evaluation of bone formation by osteogenic protein‐1 in the baboon and relative efficacy of bone‐derived bone morphogenetic proteins delivered by irradiated xenogeneic collagenous matrices. J. Bone Miner. Res., 15: 1798–1809, 2000. [DOI] [PubMed] [Google Scholar]
  • 36. Jin D. M., Takita H., Kohgo T., Atsumi K., Itoh H., Kuboki Y., Effects of geometry of hydroxyapatite as a cell substratum in BMP‐induced ectopic bone formation. J. Biomed. Mater. Res., 52: 841–851, 2000. [PubMed] [Google Scholar]
  • 37. Kuboki Y., Takita H., Tsuruga E., Inoue M., Murata M., Nagai N., Dohi Y., Ohgushi H. BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures. J. Biomed. Mater. Res., 39: 190–199, 1998. [DOI] [PubMed] [Google Scholar]
  • 38. Reddi A. H. Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts. Adv. Biol. Med. Phys., 15: 1–18, 1974. [DOI] [PubMed] [Google Scholar]
  • 39. Ripamonti U., Ma S., Reddi A. H., The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix, 12: 202–212, 1992. [DOI] [PubMed] [Google Scholar]
  • 40. Ripamonti U., Crooks J., Kirkbride A. N. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: Geometric induction of bone formation. S. Afr. J. Sci., 95: 335–343, 1999. [Google Scholar]
  • 41. Ripamonti U., Crooks J., Intrinsic osteoinductive activity of smart biomaterials with inductive and morphogenetic shape memory geometries. Abstract 7th International Academy of Shape Memory Material for Medical Use (IASMU) Montreal, Canada, 2000.
  • 42. Sampath T. K., Reddi A. H. Importance of geometry of the extracellular matrix in endochondral bone differentiation. J. Cell Biol., 98: 2192–2197, 1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. van Eeden S., Ripamonti U., Bone differentiation in porous hydroxyapatite is regulated by the geometry of the substratum: Implications for reconstructive craniofacial surgery. Plast. Reconstr. Surg., 93: 959–966, 1994. [DOI] [PubMed] [Google Scholar]
  • 44. Ripamonti U., van den Heever B., van Wyk J., Expression of the osteogenic phenotype in porous hydroxyapatites implanted extraskeletally in baboons. Matrix, 13: 491–502, 1993. [DOI] [PubMed] [Google Scholar]
  • 45. Ripamonti U., Duneas N., Tissue engineering of bone by osteoinductive biomaterials. Mater. Res. Soc. Bull., 21: 36–39, 1996. [Google Scholar]
  • 46. Thomas M. E., Richter P. W., van Deventer T., Crooks J., Ripamonti U., Macroporous synthetic hydroxyapatite bioceramics for bone substitute application, S. Afr. J. Sci., 95: 359–362, 1999. [Google Scholar]
  • 47. Ripamonti U., Smart biomaterials with intrinsic osteoinductivity: geometric control of bone differentiation In: Davies J. E., (ed) Bone Engineering, EM2 Corporation, Toronto , Canada , 2000, pp. 215–222. [Google Scholar]
  • 48. Khouri R. K., Koudsi B., Reddi A. H., Tissue transformation into bone in vivo. A potential practical application, JAMA, 266: 1953–1955, 1991. [PubMed] [Google Scholar]
  • 49. Ripamonti U., Crooks J., Rueger D. C., Induction of bone formation by recombinant human osteogenic protein‐1 and sintered porous hydroxyapatite in adult primates. Plast. Reconst. & Surg., 107: 977–988, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Parfitt A. M., Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone, J. Cell. Biochem., 55: 273–286, 1994. [DOI] [PubMed] [Google Scholar]
  • 51. Parfitt A. M., A new model for the regulation of bone resorption, with particular reference to the effects of biphosphonates, J. Bone Miner. Res., 11: 150–159, 1996. [DOI] [PubMed] [Google Scholar]
  • 52. Manolagas S. C., Jilka L., Bone marrow, cytokines, and bone remodelling. Emerging insights into the pathophysiology of osteoporosis, New Engl. J. Med., 332: 305–311, 1955. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES