Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(3):338–348. doi: 10.1111/j.1582-4934.2004.tb00323.x

Etoposide differentially affects bone marrow and dermal derived endothelial cells

S W Adams 1,, Lin Wang 1, J Fortney 1, Laura F Gibson 1,2,3
PMCID: PMC6740264  PMID: 15491509

Abstract

Chemotherapy alteration of the bone marrow microenvironment has the potential to influence hematopoietic recovery following transplantation. To discern the effect of specific drugs on components of the complex marrow microenvironment, in vitro models have significant utility. In the current study we sought to determine whether dermal (HEMEC‐1) and marrow derived endothelial cells (BMEC‐1) respond differently to identical chemotherapy exposure. BMEC‐1 cells were consistently more sensitive to etoposide exposure than HMEC‐1 cells, measured as reduced viability. BMEC‐1 also had reduced focal adhesion kinase (FAK) and VCAM‐1 protein expression following chemotherapy, in contrast to dermal derived endothelial cells in which neither protein was influenced dramatically by etoposide. The two endothelial cell lines had markedly different levels of baseline VE‐Cadherin protein, which was modestly altered by treatment. These data indicate that marrow derived endothelial cells have disruption of specific proteins following chemotherapy that may influence their ability to facilitate hematopoietic cell entry or egress from the marrow. In addition, these observations suggest that while BMEC‐1 and HMEC‐1 share a variety of characteristics, they differ significantly in their response to stress and should be incorporated into specific models with this consideration.

Keywords: chemotherapy, endothelial cells, chemotaxis

References

  • 1. Deleve L.D., Wang X., Tsai J., Kanel G., Strasberg S., Tokes Z.A., Sinusoidal obstruction syndrome (venoocclusive disease) in the ratae is prevented by matrix metalloproteinase inhibition, Gastroenterology, 125: 882–890, 2003. [DOI] [PubMed] [Google Scholar]
  • 2. Dressel D., Ritter C. A., Sperker B., Grube M., Maier T., Klinebiel T, Siegmund W., Beck J. F., Kroemer H. K., Busulfan induces activin A expression in vitro and in vivo: a possible link to venous occlusive disease, Clin. Pharmacol. Ther., 74: 264–274, 2003. [DOI] [PubMed] [Google Scholar]
  • 3. Coppell J.A., Brown S.A., Perry D.J., Veno‐occlusive disease: cytokines, genetics, and haemostasis, Blood Rev., 17: 63–70, 2003. [DOI] [PubMed] [Google Scholar]
  • 4. Pastorino F., Brignole C., Marimpietri D., Cilli M., Gambini C., Ribatti D., Longhi R., Allen T.M., Corti A., Ponzoni M., Vascular damage and anti‐antgiogenic effects of tumor vessel‐targeted liposomal chemotherapy, Cancer Res., 63: 7400–7409, 2003. [PubMed] [Google Scholar]
  • 5. Epperly M.W., Sikora C.A., DeFilippi S.J., Gretton J. E., Bar‐Sagi D., Archer H., Carlos T., Guo H., Greenberger J.S., Pulmonary irradiation‐induced expression of VCAM‐1 and ICAM‐1 is decreased by manganeses superoxide Kismutase‐plasmid/liposome (MnSODPL) gene therapy, Biol. Bone Marrow Transpl., 8: 175–187, 2002. [DOI] [PubMed] [Google Scholar]
  • 6. Matute‐Bello G., McDonanld G.D., Hinds M.S., Schoch H.G., Crawford S.W., Association of pulmonary function testing abnormalities and severe veno‐occlusive disease of the liver after marrow transplantation, Bone Marrow Transpl., 21: 1125–1130, 2004. [DOI] [PubMed] [Google Scholar]
  • 7. Falanga A., Vignoli A., Marchetti M., Barbui T., Defribrotide reduces procoagulant activity and increases fibrinolytic properties of endothelial cells, Leukemia, 17: 1636–42, 2003. [DOI] [PubMed] [Google Scholar]
  • 8. Rood P.M.L., Gerrisen W.R., Kramer D., Ranzijn C., Kr von dem Borne A.E.G., van der Schoot C.E., Adhesion of hematopoietic progenitor cells to human bone marrow or umbilical vein derived endothelial cell lines: a compomparison, Exp. Hematol., 27: 1306–1314, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Otto M., Bittinger F., Kriegsmann J., Kirkpatrick C.J., Differential adhesion of polymorphous neutrphilic granulocytes to macro‐ and microvascular endothelial cells under flow conditions, Pathobiology, 69: 159–171, 2001. [DOI] [PubMed] [Google Scholar]
  • 10. Netelenbos T., Drager A.M., van Het Hof B., Kessler F.L., Delouis C., Huijgens P.C., Van Den Born, J. , van Dijk W., Differences in sulfation patterns of heparan sulfate derived from human bone marrow and umbilical vein endothelial cells, Exp. Hematol., 29: 884–893, 2001. [DOI] [PubMed] [Google Scholar]
  • 11. Netelenbos T., Van Den Born, J. , Kessler F.L., Zweegman S., Merle P.A., van Oostveen J.W., Zwaginga J.J., Huijgens P.C., Drager A.M., Proteoglycans on bone marrow endothelial cells bind and present SDF‐1 toward hematopoietic progenitor cells, Leukemia, 17: 175–184, 2003. [DOI] [PubMed] [Google Scholar]
  • 12. Guller S., LaChapelle L., The role of placental Fas ligand in maintaining immune privilege at maternal‐fetal interfaces, Sem. Reprod. Endocrinol., 17: 38–44, 1997. [DOI] [PubMed] [Google Scholar]
  • 13. Park D.R., Thomswn A.R., Frevert C. W., Pham U., Skerrett S.J., Kiener P.A., Liles W.C., Fas (CD95) induces proinflammatory cytokine responses by human monocytes and monocyte‐derived macrophages, J. Immunol., 170: 6209–6219, 2003. [DOI] [PubMed] [Google Scholar]
  • 14. Buzby J.S., Knoppel E.M., Cairo M.S., Coordinated regulation of Steel factor, its receptor Kit, and cytoadhesion molecule (ICAM‐1 and ELAM‐1) mRNA expression in human vascular endothelial cells of differing origins, Exp. Hematol., 22: 122–129, 1994. [PubMed] [Google Scholar]
  • 15. Tan P.H., Chan C., Xue S.A., Dong R., Ananthesayanan B., Manunta M., Kerouedan C., Cheshire NW., Wolfe J.H., Haskard D.O., Taylor K.M., George A.J.T., Phenotypic and functional differences between human saphenous vein (HSVEC) and umbilical vein (HUVEC) endothelial cells, Atherosclerosis, 173: 171–183, 2004. [DOI] [PubMed] [Google Scholar]
  • 16. Gaugler M.‐H., Squiban C., Claraz M., Schweitzer K., Weksler B., Gourmelon P., Van Der Meeren, A. , Characteriztion of the response of human bone marrow endothelial cells to in vitro irradiation, Br. J. Haematol., 103: 980–989, 1998. [DOI] [PubMed] [Google Scholar]
  • 17. Witte L., Fuks Z., Haimovitz‐Friedman A., Vlodavsky I., Goodman S., Eldor A., Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells, Cancer Res., 49: 5066–5072, 1989. [PubMed] [Google Scholar]
  • 18. Eissner G., Kohlhuber F., Grell F., Ueffing M., Scheurich P., Hieke A., Multhoff G., Bornkamm G.W., Holler E., Critical involvement of transmemebrane tunumor necrosis factor‐α in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin, Blood, 86: 4193–1995. [PubMed] [Google Scholar]
  • 19. Gaugler M.H., Squiban C., Mouthon M.A., Gourmelon P., Van Der Meeren, A. , Irradiation enhances the support of haemopoietic cell transmigration, proliferation, and differentiation by endothelial cells, Br. J. Haematol., 113: 940–950, 2001. [DOI] [PubMed] [Google Scholar]
  • 20. Epperly M.W., Guo H., Shields D., Zhang X., Greenberger J.S., Correlation of ionizing irradiationinduced late pulmonary fibrosis with long‐term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules, In Vivo, 18: 1–14, 2004. [PubMed] [Google Scholar]
  • 21. Ades E.W., Candal F.J., Swerlick R.A., George V.G., Summers S., Bosse D.C., Lawley T.J., HMEC‐1 Establishment of an Immortalized Human Microvascular Endothelial Cell Line, J. Invest. Dermatol., 99: 683–690, 1992. [DOI] [PubMed] [Google Scholar]
  • 22. Xu Y., Swerlick R.A., Sepp N., Bosse D.C., Ades E.W., Lawley T.J., Characterization of expression and modulation of cell adhesion molecules on an immortalized human dermal microvascular endothelial cell line (HMEC‐1), J. Invest. Dermatol., 102: 833–837, 1994. [DOI] [PubMed] [Google Scholar]
  • 23. Candal F.J., Rafii S., Parker J.T., Ades E.W., Ferris B., Nachman R.L., Kellar K.L., BMEC‐1: a human bone marrow microvascular endothelial cell line with primary cell characteristics, Microvasc. Res., 52: 221–234, 1996. [DOI] [PubMed] [Google Scholar]
  • 24. Haskell C.M., Berek J.S., Cancer Treatment, W.B. Saunders Company, 1995. [Google Scholar]
  • 25. Miyake K., Medina K., Ishihara K., Kimoto M., Auerbach R., Kincade P.W., A VCAM like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture, J. Cell Biology, 114: 557–565, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Miyake K., Weissman I.L., Greenberger J.S., Kincade P.W., Evidence for a role of the integrin VLA‐4 in lympho‐hematopoiesis, J. Exp. Med., 173: 599–607, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Nagasawa T., Kikutani H., Kishimoto T., Molecular cloning and structure of a pre‐B‐cell growth‐stimulating factor, Proc. Natl. Acad. Sci. USA, 91: 2305–2309, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Papayannopoulou T., Craddock C., Homing and tracking of hematopoietic progenitor cells, Acta Haematol., 97: 97–104, 1997. [DOI] [PubMed] [Google Scholar]
  • 29. Vermeulen M., Le Pesteur, F. , Gagnerault M.C., Mary J.Y., Sainteny F., Lepault F., Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells, Blood, 92: 894–900, 1998. [PubMed] [Google Scholar]
  • 30. Nishikawa S., Ogawa M., Nishikawa S., Kunisada T., Kodama H., B lymphopoeisis on stromal cell clone: stromal cell clones acting on different stages of B cell differentiation, Eur. J. Immunol., 18: 1767–1771, 1988. [DOI] [PubMed] [Google Scholar]
  • 31. Deisher T.A., Kaushansky K., Harlan J.M., Inhibitors of topoisomerase II prevent cytokine‐induced expression of vascular cell adhesion molecule‐1, while augementing expression of endothelial leukocyte adhesion molecule‐1 on human umbilical vein endothelial cells, Cell Adhes. Commun., 1: 133–142, 1993. [DOI] [PubMed] [Google Scholar]
  • 32. Mazo I.B., von Andrian U.H., Adhesion and homing of blood‐borne cells in bone‐marrow microvessels, J. Leukocyte Biol., 66: 25–32, 1999. [DOI] [PubMed] [Google Scholar]
  • 33. Peled A., Kollet O., Ponomaryov T., Franitza S., Grabovsky V., Slav M.M., Nagler A., Lider O., Alon R., Zipori D., Lapidot T., The chemokine SDF‐1 activates the integrins LFA‐1, VLA‐4, and VLA‐5 on immature human CD‐34(+) cells: role in transedothelial/stromal migration and engraftment of NOD/SCID mice, Blood, 95: 3289–3296, 2000. [PubMed] [Google Scholar]
  • 34. Peled A., Grabovsky V., Habler L., Sandbank J., Arenzana‐Seisdedos F., Petit I., Ben Hur, H. , Lapidot T., Alon R., The chemokine SDF‐1 stimulates integrinmediated arrest of CD34(+) cells on vascular endothelium under shear flow, J. Clin. Invest., 104: 1199–1211, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Nomura H., Nielsen B.W., Marsushima K., Molecular cloning of cDNAs encoding a LD78 receptor and putative leukocyte chemotactic peptide receptors, Int. Immunol., 5: 1239–1249, 1993. [DOI] [PubMed] [Google Scholar]
  • 36. Schweitzer K.M., Drager A.M., van der Valk P., Thijsen S.F.T., Zevenbergen A., Theijsmeijer A.P., van der Schoot C.E., Langenhuijsen M.M.A.C., Constitutive expression of E‐selectin and vascular cell adhesion molecule‐1 on endothelial cells of hematopoietic tissues, Am. J. Pathol., 148: 165–175, 1996. [PMC free article] [PubMed] [Google Scholar]
  • 37. Hidalgo A., Weiss L.A., Frenette P.S., Functional selectin ligands mediating CD‐34(+) cell interactions with bone marrow endothelium are enhanced postnatally, J. Clin. Invest., 110: 559–569, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Winkler I.G., Snapp K.R., Simmons P.J., Levesque J. P., Adhesion to E‐selectin promotes growth inhibition and apoptosis of human and murine hematopoietic progenitor cells independent of PSGL‐1, Blood, 103: 1685–1692, 2004. [DOI] [PubMed] [Google Scholar]
  • 39. Gotsch U., Borges E., Bosse R., Boggemeyer E., Simon M., Mossman H., Vestweber D., VE‐cadherin antibody accelerates neutrophil recruitment in vivo, J. Cell Sci., 110: 583–588, 1997. [DOI] [PubMed] [Google Scholar]
  • 40. van Buul J.D., Voermans C., van den Berg V., Anthony E.C., Mul F.P.J., van Wetering S., van der Schoot C.E., Hordijk P.L., Migration of human hematopoeitic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin, J. Immunol., 168: 588–596, 2002. [DOI] [PubMed] [Google Scholar]
  • 41. Aplin A.E., Howe A., Alahari S.K., Juliano R.L., Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin‐cell adhesion molecules, and selectins, Pharmacol. Rev., 50: 197–263, 1998. [PubMed] [Google Scholar]
  • 42. Avraham H.K., Lee T‐H, Koh Y., Kim T‐A., Jiang S., Sussman M., Samare A.M., Avraham S., Vascular endothelial growht factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase., J. Biol. Chem., 278: 36661–36668, 2003. [DOI] [PubMed] [Google Scholar]
  • 43. Wu M.H., Guo M., Yuan S.Y., Granger H.J., Focal adhesion kinase mediates porcine venular hyperpermeability elicited by vascular endothelial growth factor, J. Physiol., 552: 691–699, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES