Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;5(4):417–428. doi: 10.1111/j.1582-4934.2001.tb00177.x

Apoptosis in human embryo development: 3. Fas‐induced apoptosis in brian primary cultures

Roxana Nat 1, E Radu 1, T Regalia 1, L M Popescu 1,
PMCID: PMC6740267  PMID: 12067476

Abstract

Fas (APO‐1/CD95) is an important apoptotic mediator for both immune and nervous systems. In the present study, we have investigated the expression and function of Fas in human embryonic/fetal brain primary cultures from 12 human embryos and fetuses with gestational ages between 5 to 22 weeks. Anti‐Fas fluorescent antibody was used for labeling of Fas positive cells and for quantitation of Fas expression in brain cultures. To demonstrate that Fas receptor is functional in human embryonic/fetal brain cells, anti‐Human‐Fas monoclonal antibody (0.5 μg/ml) was used to induce apoptosis in brain primary cultures. Apoptosis was investigated by flow‐cytometry and fluorescent microscopy using TUNEL and annexin V labeling. Fas was found to be expressed in the embryonic/fetal human primary brain cultures, on neuronal and glial cells or their precursors, varying with gestational ages. Cross‐linking of Fas induced apoptosis in brain cultures indicating that Fas receptor functions as a death receptor. We also showed that cell death triggered through Fas receptor was caspase dependent, hence it was blocked by a selective caspase‐8 inhibitor (IETD‐fmk).These results suggest that Fas is involved in neuronal apoptosis in the developing human brain.

Keywords: Fas (APO‐1/CD95), apoptosis, human development, brain primary culture ‐TUNEL, annexin V, caspase‐8, neurons, glial cells

References

  • 1. Burek M.J., Oppenheim R.W., Programmed cell death in the developing nervous system. Brain Pathol., 6:427–446, 1996. [DOI] [PubMed] [Google Scholar]
  • 2. Clarke P.G.H. Developmental cell death: morphological diversity and multiple mechanisms. Anal. Embryol, 181, 195–213, 1990. [DOI] [PubMed] [Google Scholar]
  • 3. Haydar T.F., Kuan C.‐Y., Flavell R.A., Rakic P. The role of cell death in regulating the size and shape of mammalian forebrain. cereb. Cortex, 9, 621–626, 1999. [DOI] [PubMed] [Google Scholar]
  • 4. Oppenheim R. W., Cell death during development of nervous system, Ann. Rev. Neurosci., 14:453–501, 1991. [DOI] [PubMed] [Google Scholar]
  • 5. Jacobson M.D., Programmed cell death and the control of the cell survival: lessons from the nervous system, Science, 262:695–700, 1993. [DOI] [PubMed] [Google Scholar]
  • 6. Saunders J.W., Death in embryonic system, Science, 154:604–612, 1966. [DOI] [PubMed] [Google Scholar]
  • 7. Caviness V.S.J., Takahaski T., Nowakowski R.S., Time and neocortical neurogenesis: a general development and evolutionary model, Trends. Neurosci., 18:379–383, 1995. [DOI] [PubMed] [Google Scholar]
  • 8. Clarke P.G., Posada A., Primi M.G., Castagne V., Neuronal death in the central nervous system during development, Biomed. Pharmacother., 52(9): 356–62, 1998. [DOI] [PubMed] [Google Scholar]
  • 9. Milligan C.E., Schwartz L.M., Programmed cell death during animal development, Prog. Neurobiol., 48:441–460, 1997. [DOI] [PubMed] [Google Scholar]
  • 10. Ferrer I., Tortosa A., Blanco R., Martin F., Serrano T., Planas A., Macaya A., Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis‐associated internucleosomal DNA fragmentation, Neurosci. Lett., 182, 77–79, 1994. [DOI] [PubMed] [Google Scholar]
  • 11. Kallen B, Cell degeneration during normal ontogenesis of the rabbit brain, J. Anat. 89, 153–161, 1955. [PMC free article] [PubMed] [Google Scholar]
  • 12. Blaschke A.J., Stanley K., Chun J., Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex, Development, 122:1165–1174, 1996. [DOI] [PubMed] [Google Scholar]
  • 13. Blaschke A.J., Weiner J.A., Chung J., Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system, J. Comp. Neurol., 396:1 39–50, 1998. [DOI] [PubMed] [Google Scholar]
  • 14. Yagiuma H., Tomita M., Takashita N., McKay S., Cardwell C., Yin Q.‐W., Oppenheim R.W., A novel type of programmed cell death in the cervical spinal cord of the chick embryo, J. Neurosci, 16:3685–3703, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Cowan W.M., Fawcett J.W., Regressive events in neurogenesis, Science, 225:1258–1265, 1984. [DOI] [PubMed] [Google Scholar]
  • 16. Rakic S., Zecevic M., Programmed cell death in the developing human telencephalon, European Journal of Neuroscience, 12:2721–2734, 2000. [DOI] [PubMed] [Google Scholar]
  • 17. Voiculescu B., Nat R., Lin E., Josef C., Apoptosis in human embryo development: 1. Cerebral cortex, J. Cell. Mol. Med., 4(4), 284–288, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Nat R., Voiculescu B., Stanciu C., Vidulescu C., Cergan R., Badiu C., Popescu L.M., Apoptosis in human embryo development: 2. Cerebellum, J. Cell. Mol. Med., 5(2), 179–187, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Becher B., Barker P.A., Owens T., Antel J., CD 95‐CD95L: can the brain learn from the immune system?, Trends. Neurosci., 21:114–117, 1998. [DOI] [PubMed] [Google Scholar]
  • 20. Raoul C. Henderson C. E., Pettmann B., Programmed cell death of embryonic motoneurons triggered through the Fas death receptor, The Journal of Cell Biology, 147(5), 1049–1061, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Cheema Z. F., Wade S. B., Sata M., Walsh K., Sohrabji F., Miranda R. C., Fas/Apo [apoptosis] ‐ 1 and associated proteins in the differentiating cerebral cortex: induction of caspase‐dependent cell death and activation of NF‐kB, The Journal of Neuroscience, 19(5): 1754–1770, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Felderhoff‐Mueser U., Taylor L., Greenwoo K., Kozma M., Stibenz D., Joashi U.C., Ewards A.D., Mehmet H., Fas/CD95/APO‐1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic‐ischemic injury to the developing rat brain, Brain Pathol. 10:17–29, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Popescu B. O., Popescu L.M., Neuronal apoptosis triggered by anti‐Fas (CD95, APO‐1) antibody is enhanced by dexamethasone, J. Med.Biochem., 4:1–14, 2000. [Google Scholar]
  • 24. Martin‐Villalba A., Herr I., Jeremias I., Hahne M., Brandt R., Vogel J., Schenkel J., Herdegen T., Debatin K.M., CD95 ligand (Fas‐L/APO1‐L) and tumor necrosis factor‐related apoptosis‐inducing ligand mediate ischemia‐induced apoptosis in neurons, J. Neurosci., 19:3809–3817, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Nagata S., Goldstein P., The Fas death factor, Science 267: 1449–1456, 1995. [DOI] [PubMed] [Google Scholar]
  • 26. Gorman A.M., Orrenius S., Ceccatelli S., Apoptosis in neuronal cells: role of caspases, Neuroreport, 9: R49–R55, 1998. [DOI] [PubMed] [Google Scholar]
  • 27. Loo D.T., Rillema J. R. Measurement of cell death, Meth. Cell Biol., 57, 251–264, 1993. [DOI] [PubMed] [Google Scholar]
  • 28. Gavrieli Y., Sherman Y., Ben‐Sasson S.A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell. Biol., 119:493–501, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Simonati A., Rosso T., Rizzuto N., DNA fragmentation in normal development of the human central nervous system, Neuropathol. Appl. Neurobiol., 23:3,203–11, 1997. [PubMed] [Google Scholar]
  • 30. Menezes J.R.L., Luskin M.B. Expression of neuron‐specific tubulin defines a novel population in the proliferative layers of the developing telencephalon, J. Neurosci., 14, 5399–5416, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Boulder Commitee , Embryonic vertebrate central nervous system: revised terminology, Anat Rec, 166:257–261, 1970. [DOI] [PubMed] [Google Scholar]
  • 32. Larsen W.J., Human embriology, Churchill Livingstone, New York , 1997. [Google Scholar]
  • 33. Norman M.G., Central nervous system In Developmental Pathology of the Embryo and Fetus (Eds Dimmick J.E. and Kalousek D.K.), Philadelphia , Lippincott, 1992. [Google Scholar]
  • 34. Muller F., O'Rahilly R., The human brain at stages 21–23 with particular reference to the cerebral cortical plate and to the development of the cerebellum, Anat. Embryol., 182:375–400, 1990. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES