Abstract
β‐Thalassemia is uncommon (0.5%) in the Romanian population, but it must be considered in the differential diagnosis of hypochromic anemia. The molecular characterization of β‐thalassemia is absolutely necessary for molecular diagnosis, as well as any genetic epidermiological study in this region. Molecular analyses consist of mutation detection by molecular scanning of β‐globin gene. This gene has 3 exons and 2 introns, involved in β‐thalassemic pathogenesis. Clinical application of DNA analysis on β‐thalassemic chromosomes allowed characterization of 29 persons with different β‐thalassemia mutations among 58 patients with anemia. The experimental strategy was based on sequential PCR amplification of most of the β‐globin gene and running on denaturing gradient gel electrophoresis of amplification products. Definitive characterization of mutations in samples identified with shifted DGGE patterns was performed ARMS‐PCR and/or PCR‐restriction enzyme analysis methods. Eight different β‐thalassemia alleles were identified, the most common being IVS I‐110 (G‐A) and cd 39 (C‐T). Comparison of overall frequency of mutations in the neighboring countries, shows that these results are in the frame of overall distribution of these mutations in Mediterranean area, especially in Greece and in Bulgaria. Molecular diagnosis is useful for differentiating mild from severe alleles, for genetic counseling, as well as for mutation definition in carriers, identified by hematological analysis necessary for prenatal testing and genetic counseling.
Keywords: β‐globin gene, β‐thalassemia, mutation screening, gene scanning, DNA analysis, DGGE, ARMS, PCR, PCR‐RFLP
References
- 1. Weatherall D. J., Clegg J. B., The thalassemia syndromes, 3rd ed. Oxford ; Blackwell, 1981. [Google Scholar]
- 2. Orkin S. H., Kazazian H. H. Jr., The mutation and polymorphism of the human β‐globin gene and its surrounding DNA, Annu. Rev. Genet., 18: 131–171, 1984. [DOI] [PubMed] [Google Scholar]
- 3. Collins F. S., Weissman S. M., The molecular genetics of human hemoglobin, Prog. Nucl. Acid Res. Mol. Biol., 31: 315–462, 1984. [DOI] [PubMed] [Google Scholar]
- 4. Olivieri N. F., The β‐thalassemias. New Engl. J. Med., 341: 99, 1999. [DOI] [PubMed] [Google Scholar]
- 5. Rund D., Cohen T., Filon D., Dowling C. E., Warren T. C., Barak I., Rachmilewitz E., Kazazian H. H. Jr., Oppenheim A., Evolution of a genetic disease in an ethnic isolate: β‐thalassemia in the Jews of Kurdistan. Proc. Natl. Acad. Sci. USA, 88: 310, 1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Myers R., Maniatis T., Lerman L., Detection and localization of single base changes by denaturing gradient gel electrophoresis, Methods Enzymol., 155: 501–527, 1987. [DOI] [PubMed] [Google Scholar]
- 7. Abrams E. S., Stanton V. P. Jr., Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids, Methods Enzymol., 212: 71–104, 1992. [DOI] [PubMed] [Google Scholar]
- 8. Sambrook J., Russell D., Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York , 2001. [Google Scholar]
- 9. Kanavakis, E. , Traeger‐Synodinos J., Vrettou C., Maragoudaki E., Tzetis, Prenatal diagnosis of thalassemia syndromes by rapid DNA analytical methods. Molec. Hum. Reprod., 3: 523, 1997. [DOI] [PubMed] [Google Scholar]
- 10. Losekoot M., Fodde R., Harteveld C. L., Denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA: a rapid and reliable diagnostic approach to beta thalassemia, Br. J. Haematol., 76: 269–274, 1990. [DOI] [PubMed] [Google Scholar]
- 11. Old J. M., Hemoglobinopathies In: Elles R. ed., Molecular Diagnosis of Genetic Diseases, Humana Press Inc., Totowa NJ , pp 169–183, 1996. [Google Scholar]
- 12. Diaz‐Chico J. C., Yang K. G., Stoming T. A., Efremov D. G., Kutlar A., Kutlar F., Aksoy M., Altay C., Gurgey A., Kilinc Y., Mild and severe beta‐thalassemia among homozygotes from Turkey: identification of the types by hybridization of amplified DNA with synthetic probes. Blood, 71: 248–251, 1988. [PubMed] [Google Scholar]
- 13. Kazazian H. H. Jr., Orkin S. H., Boehm C. D., Sexton J. P., Antonarakis S. E., β‐Thalassemia due to a deletion of the nucleotide which is substituted in the beta S‐globin gene, Am. J. Hum. Genet., 35: 1028–33, 1983. [PMC free article] [PubMed] [Google Scholar]
- 14. Benito A., Villegas A., Perez‐Cano R., Bernal R., β‐thalassaemia in south‐western Spain: high frequency of G–>A (IVS I‐1) mutation, Br. J. Haematol., 92: 336–338, 1996. [DOI] [PubMed] [Google Scholar]
- 15. Oner R., Altay C., Gurgey A., Aksoy M., Kilinc Y., Stoming T. A., Reese A. L., Kutlar A., Kutlar F., Huisman TH., β‐thalassemia in Turkey, Hemoglobin, 14: 1–13, 1990. [DOI] [PubMed] [Google Scholar]
- 16. Scerri C. A., Abela W., Galdies R., Pizzuto M., Grech J. L., Felice A. E., The beta + IVS, I‐NT no. 6 (T → C) thalassaemia in heterozygotes with an associated Hb Valletta or Hb S heterozygosity in homozygotes from Malta, Br. J. Haematol., 83: 669–671, 1993. [DOI] [PubMed] [Google Scholar]
- 17. Tamagnini G. P., Goncalves P., Ribeiro M. L., Kaeda J., Kutlar F., Baysal E., Huisman T. H., β‐thalassemia mutations in the Portuguese; high frequencies of two alleles in restricted populations. Hemoglobin, 17: 31–40, 1993. [DOI] [PubMed] [Google Scholar]
- 18. Baysal E. Indrak K., Bozkurt G., Berkalp A., Aritkan E., Old J. M., Ioannou P., Angastiniotis M., Droushiotou A., Yuregir G. T., The β‐thalassaemia mutations in the population of Cyprus, Br. J. Haematol., 81: 607–609, 1992. [DOI] [PubMed] [Google Scholar]
- 19. Trecartin R. F., Liebhaber S. A., Chang J. C., Lee K. Y., Kan Y. W., Furbetta M., Angius A., Cao A., β°‐thalassemia in Sardinia is caused by a nonsense mutation. J. Clin. Invest., 68: 1012–1017, 1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Jankovic L., Efremov G. D., Petkov G., Kattamis C., George E., Yang K. G., Stoming T. A., Huisman T. H. Two novel polyadenylation mutations leading to β+‐thalassemia, Br. J. Haematol., 75: 122–126, 1990. [DOI] [PubMed] [Google Scholar]
- 21. Spritz R. A., Jagadeeswaran P., Choudary P. V., Biro P. A., Elder J. T., DeRiel J. K., Manley J. L., Gefter M. L., Forget B. G., Weissman S. M., Base substitution in an intervening sequence of a beta+‐thalassemic human globin gene, Proc. Natl. Acad. Sci. USA, 78: 2455–2459, 1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Old J. M., Varawalla N. Y. and Weatherall D. J., Rapid detection and prenatal diagnosis of β‐thalassemia: studies in Indian and Cypriot populations in the UK, Lancet, 33: 834–837, 1990. [DOI] [PubMed] [Google Scholar]
- 23. Novelletto A., Hafez M., Deidda G., Di Rienzo A., Felicetti L., El‐Tahan H., El‐Morsi Z., El‐Ziny M., AlTonbary Y., Sittien A. and Terrenato L., Molecular characterization of β‐thalassemia mutations in Egypt. Hum. Genet. 85: 272, 1990. [DOI] [PubMed] [Google Scholar]
- 24. Huistman T. H. J., β‐Thalassemia in four Mediterranean countries; an editorial commentary. Hemoglobin 14: 35, 1990. [DOI] [PubMed] [Google Scholar]
- 25. Hussein I. R., Temtamy S. A., El‐Beshlawy A., Fearon A., Shalaby Z., Vassilopoulos G., Kazazian H. H. Jr., Molecular characterization of β‐thalassemia in Egyptians. Hum Mutat 2: 48, 1993. [DOI] [PubMed] [Google Scholar]
- 26. Kollia P., Karababa P. H., Sinopoulou K., Voskaridou E., Borissiou M., Papadakis M. and Loukopulos D., β‐thalassemia mutations and the underlying β gene cluster haplotypes in the Greek populations, Gene Geography, 6: 59–70, 1992. [PubMed] [Google Scholar]
- 27. Petcov G., Efremov G., Efremov, Dimovski A., Tchaicarova P., Thaicarov R., Rogina B., Agarwal S., Kutlar A., Kutlar F., Beta‐thalassemia in Bulgaria, Hemoglobin, 14: 25–33, 1990. [DOI] [PubMed] [Google Scholar]
- 28. Treisman R., Orkin S. H., Maniatis T., Specific transcription and RNA splicing defects in five cloned β‐thalassemia genes, Nature, 302: 591–596, 1983. [DOI] [PubMed] [Google Scholar]
- 29. Meloni A., Rosatelli M. C., Faa V., Sardu R., Saba L., Murru S., Sciarratta G. V., Baldi M and Tannoia N., Promotor mutations producing mild β‐thalassemia in the Italian population, Br. J. Haematol., 80: 222–226, 1992. [DOI] [PubMed] [Google Scholar]
- 30. Kalaydjieva L., Eigel A. and Horst J., The molecular basis of β‐thalassemia in Bulgaria. J Medic Genet 26: 614–618, 1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Gilman J. G., Manca L., Frogheri L., Pistidda P., Guiso L., Longinotti M., Masala B., Mild β+ (‐87) ‐thalassemia CACCC box mutation is associated with elevated fetal hemoglobin expression in cis, Am. J. Hematol., 45: 265–267, 1994. [DOI] [PubMed] [Google Scholar]
- 32. Kanavakis E., Traeger‐Synodinos J., Tzetis M., Metaxotou‐Mavromati A., Ladis V., Kattamis K., Molecular characterization of homozygous (high Hb A2) β‐thalassemia intermedia in Greece, Pediatr. Hematol. Oncol., 12: 37–45, 1995. [DOI] [PubMed] [Google Scholar]
