Abstract
We investigated the time‐dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X‐rays) and we looked at various markers to follow the early‐to‐late apoptotic events: phospholipid translocation (identified through annexin V‐fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence‐labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X‐rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter‐related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of “early‐to‐late” apoptosis appears to be a fixed program.
Keywords: EL4 cells, apoptosis, staurosporine, tubercidine, x‐rays, phospholipid translocation, lipid package, membrane anisotropy, DNA fragmentation, DAPI test
References
- 1. Kerr J. F. R., Wyllie, A. H. , Currie, A. R. , Apoptosis: a basic biological phenomenon with wide‐ranging implications in tissue kinetics, Br. J. Cancer, 26: 239–257, 1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Arends M. J., Morris R. G., Wyllie A. H., Apoptosis. The role of the endonuclease, Am. J. Pathol., 136: 593–608, 1990. [PMC free article] [PubMed] [Google Scholar]
- 3. Denecker G, Dooms H, van Loo G., Vercammen D., Grooten J., Fiers W., Declercq W. and Vandenabeele P., Phosphatidyl serine exposure during apoptosis precedes release of cytochrome c and decrease in mitochondrial transmembrane potential, FEBS Lett., 465: 47–52, 2000. [DOI] [PubMed] [Google Scholar]
- 4. Devaux P. F., Protein involvement in transmembrane lipid asymmetry, Ann. Rev. Biophys. Biomol. Struct., 21: 417–439, 1992. [DOI] [PubMed] [Google Scholar]
- 5. Devaux P. F., Lipid transmembrane asymmetry and flip‐flop in biological membranes and in lipid bilayers, Curr. Opinion Struct. Biol., 3: 489–494, 1993. [Google Scholar]
- 6. Op den Kamp J. A. F., Lipid asymmetry in membranes, Ann. Rev. Biochem., 48: 47–71, 1979. [DOI] [PubMed] [Google Scholar]
- 7. Kagana V. E., Fabisiaka J. P., Shvedovad A. A., Tyurinaa Y. Y., I , Tyurina V. A., Schorb N. F., and Kawaia K., Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis, FEBS Lett., 477: 1–7, 2000. [DOI] [PubMed] [Google Scholar]
- 8. Shiratsuchi A., Osada S., Kanazawa S., Nakanishi Y., Essential role of phosphatidylserine externalization in apoptosing cell phagocytosis by macrophages, Biochem. Biophys. Res. Comm., 246: 549–555, 1998. [DOI] [PubMed] [Google Scholar]
- 9. Andree H. A., Reutelingsperger C. P., Hauptmann R., Hemker H. C., Hermens W. T., Willems G. M., Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers, J. Biol. Chem., 265: 4923–4928, 1990. [PubMed] [Google Scholar]
- 10. Thiagarajan P., Tait J. F., Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets, J. Biol. Chem., 265: 17420–17423, 1990. [PubMed] [Google Scholar]
- 11. Ashman R. F., Peckham D., Alhasan S., Stunz L. L., Membrane unpacking and the rapid disposal of apoptotic cells, Immunol. Lett., 48: 159–166, 1995. [DOI] [PubMed] [Google Scholar]
- 12. Kuhry J.‐G., Duportail G., Bronner C., Laustriat G, Plasma membrane fluidity measurements on whole living cells by fluorescence anisotropy of trimethylammoniumdiphenylhexatriene, Biochim. Biophy. Acta, 845: 60–67, 1985. [DOI] [PubMed] [Google Scholar]
- 13. Evans W. H., Preparation and characterization of lymphocyte plasma membranes, Laboratory Techniques in Biochemistry and Molecular Biology, 7: 32–45, 1979. [Google Scholar]
- 14. Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Meth., 65: 55–61, 1983. [DOI] [PubMed] [Google Scholar]
- 15. Shinitzky M., Barenholz Y., Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta, 515: 367–394 1978. [DOI] [PubMed] [Google Scholar]
- 16. Lentz B. R., Moore B. M., Barrow D. A., Light scattering effects in the measurement of membrane microviscosity with diphenylhexatriene, Biophys. J., 25: 489–494, 1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Kapuscinski J., DAPI: A DNA‐specific fluorescent probe, Biotech. Histochem., 70, 220–233, 1995. [DOI] [PubMed] [Google Scholar]
- 18. Masotti L., Cavatorta P., Avitabile M., Barcellona M. L., von Berger J., Ragusa N., Characterization of 4'‐6 diamidino‐2 phenylindole (DAPI) as a fluorescent probe of DNA structure, Italian J. Biochem., 31: 90–99, 1982. [PubMed] [Google Scholar]
- 19. Hinshaw V. S., Olsen C. W., Dybdahl‐Sissoko N., Evans D., A mechanism of cell killing by influenza A and B viruses, J. Virology, 68: 3667–3673, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Haertel S., Quantifizierung von Strukturen, Kinetik und Dynamik nekrobiologischer Prozesse mit Hilfe bildverarbeitender konfokaler Fluoreszenzmikroscopie, PhD Diss, University of Bremen, Germany , 2000. [Google Scholar]
- 21. Schwartzman R. A., Cidlowski J. A., Apoptosis: The biochemistry and molecular biology of programmed cell death, Endocrine Rev., 14: 133–151, 1993. [DOI] [PubMed] [Google Scholar]
- 22. Pothana S., Dong Z., Mikhailov V., Denton M., Weinberg J.M. and Venkatachalam M.A., Apoptosis: definition, mechanisms, and relevance to disease, Am. J. Med., 107, 489–506, 1999. [DOI] [PubMed] [Google Scholar]
- 23. Nielson KH, Olsen CA, Allred DV, O'Neill KL, Burton GF, Bell JD, Susceptibility of S49 lymphoma cell membranes to hydrolysis by secretory phospholipase A(2) during early phase of apoptosis, Biochim. Biophys. Acta, 1484: 163–74, 2000. [DOI] [PubMed] [Google Scholar]
- 24. Albanese J, Dainiak N., Ionizing radiation alters Fas antigen ligand at the cell surface and on exfoliated plasma membrane‐derived vesicles: implications for apoptosis and intercellular signaling, Radiat. Res., 153: 49–61, 2000. [DOI] [PubMed] [Google Scholar]
- 25. Matés J. M., and Sánchez‐Jiménez F.M., Role of reactive oxygen species in apoptosis: implications for cancer therapy, Int. J. Biochem. & Cell Biol., 32: 157–170, 2000. [DOI] [PubMed] [Google Scholar]
- 26. Pervaiz S., Hirpara J. L., Clément M.‐V., Caspase proteases mediate apoptosis induced by anticancer agent preactivated MC540 in human tumor cell lines, Cancer Lett., 128: 11–22, 1998. [DOI] [PubMed] [Google Scholar]
- 27. Smeets E. F., Comfurius P., Bevers E. M., Zwaal R. F. A., Calcium‐induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochim. Biophys. Acta, 1195: 281–286, 1994. [DOI] [PubMed] [Google Scholar]
- 28. Williamson P., Kulick A., Zachowski A., Schlegel R. A., Devaux P. F., Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes, Biochemistry, 31: 6355–6360, 1992. [DOI] [PubMed] [Google Scholar]
- 29. Bratton D. L., Fadok V. A., Richter D. A., Kailey J. M., Guthrie L. A., Henson P. M., Appearance of phosphatidylserine on apoptotic cells requires calcium‐mediated nonspecific flip‐flop and is enhanced by loss of the aminophospholipid translocase, J. Biol. Chem., 272: 26159–26165, 1997. [DOI] [PubMed] [Google Scholar]
- 30. Hampton M. B., Vanags D. M., Poern‐Ares I., Orrenius S., Involvement of extracellular calcium in phosphatidylserine exposure during apoptosis, FEBS Lett., 399: 277–282, 1996. [DOI] [PubMed] [Google Scholar]
- 31. van Engeland M., Kuijpers H. J. H., Ramaekers F. C. S., Reutelingsperger C. P. M., Schutte B., Plasma membrane alterations and cytosceletal changes in apoptosis, Exp. Cell Res., 235: 421–430, 1997. [DOI] [PubMed] [Google Scholar]
- 32. Messam C. A., Pittman R. N., Asynchrony an commitment to die during apoptosis, Exp. Cell Res., 238: 389–398, 1998. [DOI] [PubMed] [Google Scholar]
- 33. Jacobson M. D., Weil M., Raff M. C., Role of Ced‐3/ICE‐family proteases in staurosporine‐induced programmed cell death, J. Cell Biol., 133: 1041–1051, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Rudel T., Bokoch G. M., Membrane and morphological changes in apoptotic cells regulated by caspase‐mediated activation of PAK2, Science, 276: 1571–1574, 1997. [DOI] [PubMed] [Google Scholar]
- 35. Ojeda F., Folch H., Guarda M. I., Jastorff B., Diehl H. A., Induction of apoptosis in thymocytes: New evidence for an interaction of PKC and PKA pathways, Biol. Chem. Hoppe-Seyler 376: 389–393, 1995. [PubMed] [Google Scholar]
- 36. Bloch A., Leonard R. J., Nichol C. A., On the mode of action of 7‐deaza‐adenosine. Biochim. Biophys. Acta, 138: 10–25, 1967. [DOI] [PubMed] [Google Scholar]
- 37. Palayoor S. T., Macklis R. M., Bump E. A., Coleman C. N, Modulation of radiation‐induced apoptosis and G/M block in murine T‐lymphoma cells, Radiat. Res., 141: 235–243, 1995. [PubMed] [Google Scholar]
- 38. Kruman I. A., Matylevich N. P., Beletsky I. P., Afanasyev V. N., Umansky S. R., Apoptosis of murine BW 5147 thymoma cells induced by dexamethasone and γ‐irradiation, J. Cell Physiol., 148: 267–273, 1991. [DOI] [PubMed] [Google Scholar]
- 39. Radford I. R., Murphy T. K., Radiation response of mouse lymphoid and myeloid cell lines. Part3. Different signals can lead to apoptosis and may influence sensitivity to killing by DNA double strand breakage, Int. J. Radiat. Biol., 65: 229–239, 1994. [DOI] [PubMed] [Google Scholar]