Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;9(2):380–386. doi: 10.1111/j.1582-4934.2005.tb00363.x

Direct interaction between SNAP‐23 and L‐type Ca2+ channel

Won Jin Cho 1, # , Aleksandar Jeremic 1, # , Bhanu P Jena 1,
PMCID: PMC6740288  PMID: 15963257

Abstract

During secretion, membrane‐bound secretory vesicles dock and fuse at the base of porosomes in the cell plasma membrane. Among other proteins, the porosome is composed of SNAREs and Ca2+ ‐channels. Ca2+‐channels and SNAREs have been implicated in cell secretion. Several immunoprecipitation and binding studies suggest the physical interaction of the t‐SNARE proteins, Syntaxin‐1 and SNAP‐25 with various Ca2+‐channels. In this study, using yeast two‐hybrid and immunoanalysis, we demonstrate for the first time, direct interaction of SNAP‐23 and a L‐type Ca2+ ‐channel at the plasma membrane in pancreas.

Keywords: SNAP‐23, ;L‐type Ca2+ channel, yeast two‐hybrid system

References

  • 1. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA. 1997; 94: 316–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Cho SJ, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP. Structure and dynamics of the fusion pore in live cells. Cell Biol Int. 2002; 26: 35–42. [DOI] [PubMed] [Google Scholar]
  • 3. Cho SJ, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL. Structure and dynamics of the fusion pores in live GH‐secreting cells revealed using atomic force microscopy. Endocrinology 2002; 143: 1144–8. [DOI] [PubMed] [Google Scholar]
  • 4. Cho SJ, Wakada A, Pappas GD, Jena BP. New structure involved in transient membrane fusion and exocytosis. New York Acad Sci USA. 2002; 971: 254–6. [DOI] [PubMed] [Google Scholar]
  • 5. Jena BP, Cho SJ, Jeremic A, Stromer MH, Abu‐Hamdah R. Structure and composition of the fusion pore. Biophys J. 2003; 84: 1337–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Jeremic A, Kelly M, Cho SJ, Stromer MH, Jena BP. Reconstituted Fusion Pore. Biophys J. 2003; 85: 2035–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Cho WJ, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP. Structure, isolation, composition and reconstitution of the neuronal fusion pore.. Cell Biol Int. 2004; 28: 699–708. [DOI] [PubMed] [Google Scholar]
  • 8. Mochida S, Westenbroek RE, Yokoyama CT, Zhong H, Myers SJ, Scheuer T, Itoh K, Catterall WA. Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q‐type calcium channels. Proc Natl Acad Sci USA. 2003; 100, 2819–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Schroeder TJ, Jankowski JA, Senyshyn J, Holz RW, Wightman RM. Zones of exocytotic release on bovine adrenal medullary cells in culture. J Biol Chem. 1994; 269: 17215–220. [PubMed] [Google Scholar]
  • 10. Bokvist K, Eliasson L, Ammala C, Renstrom E, Rorsman P. Co‐localization of L‐type Ca2+ channels and insulin‐containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic β‐cells. EMBO J. 1995; 14: 50–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Robinson IM, Finnegan JM, Monck JR, Wightman RM, Fernandez JM. Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci USA. 1995; 92: 2474–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Cuchillo‐Ibanez I, Michelena P, Albillos A, Garcia AG. A preferential pole for exocytosis in cultured chromaffin cells revealed by confocal microscopy. FEBS Let. 1999; 459: 22–6. [DOI] [PubMed] [Google Scholar]
  • 13. Bennett MK, Calakos N, Scheller RH. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992; 257: 255–9. [DOI] [PubMed] [Google Scholar]
  • 14. Charvin N, L'Eveque C, Walker D, Berton F, Raymond C, Kataoka M, Shoji‐Kasai Y, Takahashi M, de Waard M, Seagar MJ. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alphal A subunit of the P/Q‐type calcium channel. Embo J. 1997; 16: 4591–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Yang SN, Larsson O, Branstrom R, Bertorello AM, Leibiger B, Leibiger IB, Moede T, Kohler M, Meister B, Berggren PO. Syntaxin 1 interacts with the L(D) subtype of voltage‐gated Ca2+ channels in pancreatic beta cells. Proc Natl Acad Sci USA. 1999; 96: 10164–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Wiser O, Trus M, Hernandez A, Renstrom E, Barg S, Rorsman P, Atlas D. The voltage sensitive Lc‐type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA. 1999; 96: 248–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Sheng ZH, Rettig J, Takahashi M, Catterall WA. Identification of a syntaxin‐binding site on N‐type calcium channels. Neuron 1994; 13: 1303–13. [DOI] [PubMed] [Google Scholar]
  • 18. Sheng ZH, Rettig J, Cook T, Catterall WA. (1996) Calcium‐dependent interaction of N‐type calcium channels with the synaptic core complex. Nature 1996; 379: 451–4. [DOI] [PubMed] [Google Scholar]
  • 19. Atlas D. Functional and physical coupling of voltagesensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem. 2001; 77: 972–85. [DOI] [PubMed] [Google Scholar]
  • 20. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973; 57: 315–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Fields S, Song O. A novel genetic system to detect protein‐protein interactions. Nature 1989; 340: 245–6. [DOI] [PubMed] [Google Scholar]
  • 22. Chien CT, Bartel PL, Sternglanz R, Fields S. The two‐hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA. 1991; 88: 9578–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Iwasaki H, Taniguchi Y, Ishiura M, Kondo T. Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J. 1999; 8: 1137–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Zhang P, Mo JY, Perez A, Leon A, Liu L, Mazloum N, Xu H, Lee MY. Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase delta. J Biol Chem. 1999; 274: 26647–53. [DOI] [PubMed] [Google Scholar]
  • 25. Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A 3rd, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol. 2001; 154: 549–71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Yu X, Li P, Roeder RG, Wang Z. Inhibition of androgen receptor‐mediated transcription by amino‐terminal enhancer of split. Mol Cell Biol. 2001; 21: 4614–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Anders KR, Grimson A, Anderson P. SMG‐5, required for C. elegans nonsense‐mediated mRNA decay, associates with SMG‐2 and protein phosphatase 2A. EMBO J. 2003; 22: 641–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Macfarlane DE. Two dimensional benzyldimethyl‐n‐hexadecylammonium chloride‐sodium dodecyl sulfate preparative polycrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem. 1989; 176: 457–63. [DOI] [PubMed] [Google Scholar]
  • 29. Hansen NJ, Antonin W, Edwardson JM. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem. 1999; 274: 22871–76. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES