Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(3):429–432. doi: 10.1111/j.1582-4934.2002.tb00522.x

Tissue cultures from adult human postmortem subcortical brain areas

RWH Verwer 1,, EJG Dubelaar 1, WTJMC Hermens 1, DF Swaab 1
PMCID: PMC6740291  PMID: 12417060

Abstract

Animal models used to study human aging and neurodegeneration do not display all symptoms of these processes as they are found in humans. Recently, we have shown that many cells in neocortical slices from adult human postmortem brain may survive for extensive periods in vitro. Such cultures may enable us to study age and disease related processes directly in human brain tissue. Here, we present observations on subcortical brain tissue.

Keywords: aging, viability, human brain, tissue culture

References

  • 1. Uylings H.B.M., West M., Coleman P.D., de Brabander J.M., Flood D.G., Neuronal and cellular changes in the aging brain In: Clark C.M., Trojanowski J.Q., eds., Neurodegenerative Dementias: Clinical Features and Pathological Mechanisms, McGraw‐Hill, New York , 2000, pp. 61–76. [Google Scholar]
  • 2. Verwer R.W.H., Hermens W.T.J.M.C., Dijkhuizen P.A., Ter Brake O., Baker R.E., Salehi A., Sluiter A.A., Kok M.J.M., Müller L.J., Verhaagen J., Swaab D.F., Cells in human postmortem brain tissue slices remain alive for several weeks in culture. FASEB J., 16: 54–60, 2002. [DOI] [PubMed] [Google Scholar]
  • 3. Verwer R.W.H., Hermens W.T.J.M.C., Ter Brake O., Verhaagen J., Swaab D.F., Life after death Neurology, 59: 2002. (in press). [DOI] [PubMed] [Google Scholar]
  • 4. Romijn H.J., de Jong B.M., Ruijter J.M., (1988) A procedure for culturing rat neocortex explants in a serum‐free medium. J. Neurosci. Meth., 23: 75–83, 1988. [DOI] [PubMed] [Google Scholar]
  • 5. Hermens W.T.J.M.C., Ter Brake O., Dijkhuizen P.A., Sonnemans M.A.F., Grimm D., Kleinschmidt J.A., Verhaagen J., Purification of recombinant adeno‐associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible reparation of vector stocks for gene transfer in the nervous system. Hum. Gene Ther., 10: 1885–1891, 1999. [DOI] [PubMed] [Google Scholar]
  • 6. Verwer R.W.H., Baker R.E., Boiten, E.F.J. , Dubelaar E.J.G., van Ginkel C.J.M., Sluiter A.A., Swaab D.F., Postmortem brain tissue cultures from elderly control subjects and patients with a neurodegenerative disease. Exp. Gerontol., 38: 2003. (in press). [DOI] [PubMed] [Google Scholar]
  • 7. Cenci M.A., Wishaw I.Q., Schallert T., Animal models of neurological deficits: how relevant is the rat Nature Rev. Neurosci., 3: 574–579, 2002. [DOI] [PubMed] [Google Scholar]
  • 8. Hardy J., Selkoe D.J., The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science, 297: 353–356, 2002. [DOI] [PubMed] [Google Scholar]
  • 9. Flood D.G., Coleman P.D., Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol. Aging, 9: 453–462, 1988. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES