Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;7(2):146–156. doi: 10.1111/j.1582-4934.2003.tb00213.x

Cytokine gene expression in monocytes of patients undergoing cardiopulmonary bypass surgery evaluated by real‐time PCR

Anja K Zimmermann 1, P Simon 1, J Seeburger 1, J Hoffmann 1, G Ziemer 1, H Aebert 1, H P Wendel 1,
PMCID: PMC6740292  PMID: 12927053

Abstract

Cardiopulmonary bypass (CPB) surgery induces systemic release of proinflammatory cytokines causing unspecific inflammatory reactions. This study deals with the development of a sensitive technique for detecting changes at the mRNA level in monocytes of patients undergoing CPB surgery, by using real‐time PCR. Blood samples from patients undergoing elective coronary artery bypass grafting were obtained at six different time points. RNA was extracted from isolated monocytes and cDNA was synthesized by reverse transcriptase. CPB surgery induced gene expression of IL‐β, IL‐6, IL‐8, and TNF‐alpha, followed by a decrease below the preoperative expression values 6 h post CPB. High significant increases in gene expression for IL‐8 at the end of surgery (p = 0.001) were detected. Real‐time PCR is a powerful tool for getting simultaneously numerous sensitive, accurate, and reliable results from small amounts of biological material. This method avoids time‐consuming and hazardous post‐PCR manipulations and decreases the potential risk of PCR contamination.

Keywords: cardiopulmonary bypass, cytokines, real time PCR, housekeeping gene

References

  • 1. Paparella D., Yau T.M., Young E., Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update, Eur. J. Cardiothorac. Surg., 21: 232–244, 2002. [DOI] [PubMed] [Google Scholar]
  • 2. Kerbaul F., Guidon C., Lejeune P. J., Mollo M., Mesana T., Gouin F., Hyperprocalcitonemia is related to nonininfectious postoperative severe systemic inflammatory response syndrome associated with cardiovascular dysfunction after coronary artery bypass graft surgery, J. Cardiothorac. Vasc. Anesth., 16: 47–53, 2002. [DOI] [PubMed] [Google Scholar]
  • 3. Wendel H. P., Ziemer G., Coating‐techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation, Eur. J. cardiothorac. Surg., 16: 342–350, 1999. [DOI] [PubMed] [Google Scholar]
  • 4. Weber N., Wendel H. P., Ziemer G., Gene monitoring of surface‐activated monocytes in circulating whole blood using duplex RT‐PCR, J. Biomed. Mate. Res., 56: 1–8, 2001. [DOI] [PubMed] [Google Scholar]
  • 5. Aebert H., Kirchner S., Keyser A., Birnbaum D.E., Holler E., Andreesen R., Eissner G., Endothelial apoptosis is induced by serum of patients after cardiopulmonary bypass, Eur. J. Cardiothorac. Surg., 18: 589–593, 2000. [DOI] [PubMed] [Google Scholar]
  • 6. Walker N.J., Tech.Sight. A technique whose time has come, Science, 296: 557–559, 2002. [DOI] [PubMed] [Google Scholar]
  • 7. Schmittgen T.D., Zakrajsek B.A., Mills A.G., Gorn V., Singer M.J., Reed M.W., Quantitative reverse transcription‐polymerase chain reaction to study mRNA decay: comparison of endpoint and real‐time methods, Anal. Biochem., 285: 194–204, 2000. [DOI] [PubMed] [Google Scholar]
  • 8. Morrison T.B., Weis J.J., Wittwer C.T., Quantification of low‐copy transcripts by continuous SYBR Green I monitoring during amplification, Biotechniques, 24: 954–958, 960, 962, 1998. [PubMed] [Google Scholar]
  • 9. Marten N.W., Burke E.J., Hayden J.M., Straus D.S., Effect of amino acid limitation on the expression of 19 genes in rat hepatoma cells, FASEB J., 8: 538–544, 1994. [DOI] [PubMed] [Google Scholar]
  • 10. Foss D.L., Baarsch M.J., Murtaugh M.P., Regulation of hypoxanthine phosphoribosyltransferase, glyceraldehyde‐3‐phosphate dehydrogenase and beta‐actin mRNA expression in porcine immune cells and tissues, Anim. Biotechnol., 9: 67–78, 1998. [DOI] [PubMed] [Google Scholar]
  • 11. Chang T.J., Juan C.C., Yin P.H., Chi C.W., Tsay H.J., Up‐regulation of beta‐actin, cyclophilin and GAPDH in N1S1 rat hepatoma, Oncol. Rep., 5: 469–471, 1998. [DOI] [PubMed] [Google Scholar]
  • 12. Bereta J., Bereta M., Stimulation of glyceraldehyde‐3‐phosphate dehydrogenase mRNA levels by endogenous nitric oxide in cytokine‐activated endothelium, Biochem. Biophys. Res. Commun, 217: 363–369, 1995. [DOI] [PubMed] [Google Scholar]
  • 13. Pfaffl M.W., Anew mathematical model for relative quantification in real‐time RT‐PCR, Nucleic. Acids Res., 29: e45, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Bustin S.A., Quantification of mRNA using real‐time reverse transcription PCR (RT‐PCR): trends and problems. J. Mol. Endocrinol., 29: 23–39, 2002. [DOI] [PubMed] [Google Scholar]
  • 15. Rozen S., Skaletsky H., Primer3 on the WWW for general users and for biologist programmers, Methods Mol. Biol., 132: 365–386, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Pfaffl M.W., Horgan G.W., Dempfle L., Relative expression software tool (REST) for group‐wise comparison and statistical analysis of relative expression results in realtime PCR, Nucleic Acids Res., 30: e36, 2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Rodenburg R.J., van den Hoogen F.H., van de Putte L.B., van Venrooij W.J., Peripheral blood monocytes of rheumatoid arthritis patients do not express elevated TNF alpha, IL‐1beta, and IL‐8 mRNA levels. A comparison of monocyte isolation procedures, J. Immunol. Methods, 221:.169–175, 1998. [DOI] [PubMed] [Google Scholar]
  • 18. Giulietti A., Overbergh L., Valckx D., Decallonne B., Bouillon R., Mathieu C., An overview of real‐time quantitative PCR: applications to quantify cytokine gene expression, Methods, 25: 386–401, 2001. [DOI] [PubMed] [Google Scholar]
  • 19. Klein C.A., Seidl S., Petat‐Dutter K., Offner S., Geigl J.B., Schmidt‐Kittler O., Wendler N., Passlick B., Huber R.M., Schlimok G., Baeuerle P.A., Riethmuller G., Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol., 20: 387–392, 2002. [DOI] [PubMed] [Google Scholar]
  • 20. Wang T., Brown M.J., mRNA quantification by real time TaqMan polymerase chain reaction: validation and comparison with RNase protection, Anal. Biochem., 269: 198–201, 1999. [DOI] [PubMed] [Google Scholar]
  • 21. Marty C., Misset B., Tamion F., Fitting C., Carlet J., Cavaillon J.M., Circulating interleukin‐8 concentrations in patients with multiple organ failure of septic and nonseptic origin, Crit. Care Med., 22: 673–679, 1994. [DOI] [PubMed] [Google Scholar]
  • 22. Turkoz A., Cigli A., But K., Sezgin N., Turkoz R., Gulcan O., Ersoy M.O., The effects of aprotinin and steroids on generation of cytokines during coronary artery surgery, J. Cardiothorac. Vasc. Anesth., 15: 603–610, 2001. [DOI] [PubMed] [Google Scholar]
  • 23. Hennein H.A., Ebba H., Rodriguez J.L., Merrick S.H., Keith F.M., Bronstein M.H., Leung J.M., Mangano D.T., Greenfield L.J., Rankin J.S., Relationship of the proinflammatory cytokines to myocardial ischemia and dysfunction after uncomplicated coronary revascularization, J. Thorac. Cardiovasc. Surg., 108: 626–635, 1994. [PubMed] [Google Scholar]
  • 24. Sawa Y., Ichikawa H., Kagisaki K., Ohata T., Matsuda H., Interleukin‐6 derived from hypoxic myocytes promotes neutrophil‐mediated reperfusion injury in myocardium, J. Thorac. Cardiovasc. Surg., 116: 511–517, 1998. [DOI] [PubMed] [Google Scholar]
  • 25. Wan S., Marchant A., DeSmet J.M., Antoine M., Zhang H., Vachiery J.L., Goldman M., Vincent J.L., LeClerc J.L., Human cytokine responses to cardiac transplantation and coronary artery bypass grafting, J. Thorac. Cardiovasc. Surg., 111: 469–477, 1996. [DOI] [PubMed] [Google Scholar]
  • 26. Menasche P., Haydar S., Peynet J., Du B.C., Merval R., Bloch G., Piwnica A., Tedgui A., Apotential mechanism of vasodilation after warm heart surgery. The temperaturedependent release of cytokines, J. Thorac. Cardiovasc. Surg., 107: 293–299, 1994. [PubMed] [Google Scholar]
  • 27. Steinberg J.B., Kapelanski D.P., Olson J.D., Weiler J.M., Cytokine and complement levels in patients undergoing cardiopulmonary bypass, J. Thorac. Cardiovasc. Surg., 106: 1008–1016, 1993. [PubMed] [Google Scholar]
  • 28. Finn A., Naik S., Klein N., Levinsky R.J., Strobel S., Elliott M., Interleukin‐8 release and neutrophil degranulation after pediatric cardiopulmonary bypass, J. Thorac. Cardiovasc. Surg, 105: 234–241, 1993. [PubMed] [Google Scholar]
  • 29. Sawa Y., Shimazaki Y., Kadoba K., Masai T., Fukuda H., Ohata T., Taniguchi K., Matsuda H., Attenuation of cardiopulmonary bypass‐derived inflammatory reactions reduces myocardial reperfusion injury in cardiac operations, J. Thorac. Cardiovasc. Sur., 111: 29–35, 1996. [DOI] [PubMed] [Google Scholar]
  • 30. Kawamura T., Wakusawa R., Okada K., Inada S., Elevation of cytokines during open heart surgery with cardiopulmonary bypass: participation of interleukin 8 and 6 in reperfusion injury, Can. J. Anaesth., 40: 1016–1021, 1993. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES