Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;8(4):432–444. doi: 10.1111/j.1582-4934.2004.tb00468.x

Caspases: potential targets for regulating cell death

A Philchenkov 1,
PMCID: PMC6740296  PMID: 15601572

Abstract

While in multicellular organisms all cells inexorably die, there are several different ways provided for the realization of cell death. One of them, apoptosis, represents a universal energy‐dependent and tightly regulated physiologic process of cell death in both normal and pathologic tissues. The execution of apoptosis appears to be uniformly mediated through consecutive activation of the members of a caspase family. This review briefly summarizes current knowledge on the molecular mechanisms of caspase activation and the inhibitory components of caspase cascades. The suitability of caspases as a new potential therapeutic target is discussed next. Particular attention is focused on two broad categories of caspase‐directed compounds: highly specific caspase inhibitors that distinctly block the progress of apoptosis and caspase activators that selectively induce cell death in a variety of in vitro and in vivo systems. These agents promise to be useful clinically, either alone or in combination with more conventional therapeutics.

Keywords: apoptosis, caspase, death receptor, mitochondria, cytochrome c, Bcl‐2, apoptosome, DISC, PIDDosome, IAP, endoplasmic reticulum, caspase inhibitor, caspase activator, therapy

References

  • 1. Stergiou L., Hengartner M.O., Death and more: DNA damage response pathways in the nematode C. elegans Cell Death Differ., 11: 21–28, 2004. [DOI] [PubMed] [Google Scholar]
  • 2. Black R.A., Kronheim S.R., Merriam J.E., March C.J., Hopp T.P., A pre‐aspartate‐specific protease from human leukocytes that cleaves pro‐interleukin‐1 beta, J. Biol. Chem., 264: 5323–5326, 1989. [PubMed] [Google Scholar]
  • 3. Wolf B.B., Green D.R., Suicidal tendencies: apoptotic cell death by caspase family proteinases, J. Biol. Chem., 274: 20049–20052, 1999. [DOI] [PubMed] [Google Scholar]
  • 4. Johnson D.E., Noncaspase proteases in apoptosis, Leukemia, 14: 1695–1703, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. French L.E., Tschopp J., Protein‐based therapeutic approaches targeting death receptors, Cell Death Differ., 10: 117–123, 2003. [DOI] [PubMed] [Google Scholar]
  • 6. Ferri K.F., Kroemer G., Organelle‐specific initiation of cell death pathways, Nat. Cell Biol., 3:E255–263, 2001. [DOI] [PubMed] [Google Scholar]
  • 7. Norbury C.J., Zhivotovsky B., DNA damage‐induced apoptosis, Oncogene, 23: 2797–2808, 2004. [DOI] [PubMed] [Google Scholar]
  • 8. Cory S., Huang D.C., Adams J.M., The Bcl‐2 family: roles in cell survival and oncogenesis, Oncogene, 22: 8590–8607, 2003. [DOI] [PubMed] [Google Scholar]
  • 9. Guo Y., Srinivasula S.M., Druilhe A., Fernandes‐Alnemri T., Alnemri E.S., Caspase‐2 induces apoptosis by releasing proapoptotic proteins from mitochondria, J. Biol. Chem. 277: 13430–13437, 2002. [DOI] [PubMed] [Google Scholar]
  • 10. Tinel A., Tschopp J., The PIDDosome, a protein complex implicated in activation of caspase‐2 in response to genotoxic stress, Science, 304: 843–846, 2004. [DOI] [PubMed] [Google Scholar]
  • 11. Chang D.W., Ditsworth D., Liu H., Srinivasula S.M., Alnemri E.S., Yang X., Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases, J. Biol. Chem. 278: 16466–16469, 2003. [DOI] [PubMed] [Google Scholar]
  • 12. Rao R.V., Ellerby H.M., Bredesen D.E., Coupling endoplasmic reticulum stress to the cell death program, Cell Death Differ., 11: 372–380, 2004. [DOI] [PubMed] [Google Scholar]
  • 13. Mancini M., Machamer C.E., Roy S., Nicholson D.W., Thornberry N.A., Casciola‐Rosen L.A., Rosen A., Caspase‐2 is localized at the Golgi complex and cleaves golgin‐160 during apoptosis, J. Cell Biol. 149: 603–612, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Guicciardi M.E., Leist M., Gores G.J., Lysosomes in cell death, Oncogene, 23: 2881–2890, 2004. [DOI] [PubMed] [Google Scholar]
  • 15. Liston P., Fong W.G., Korneluk R.G., The inhibitors of apoptosis: there is more to life than Bcl2, Oncogene, 22: 8568–8580, 2003. [DOI] [PubMed] [Google Scholar]
  • 16. Roth W., Kermer P., Krajewska M., Welsh K., Davis S., Krajewski S., Reed J.C., Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways, Cell Death Differ., 10: 1178–1187, 2003. [DOI] [PubMed] [Google Scholar]
  • 17. Saelens X., Festjens N., Walle L.V., van Gurp M., van Loo G., Vandenabeele P., Toxic proteins released from mitochondria in cell death, Oncogene, 23: 2861–2874, 2004. [DOI] [PubMed] [Google Scholar]
  • 18. Jia L., Patwari Y., Kelsey S.M., Srinivasula S.M., Agrawal S.G., Alnemri E.S., Newland A.C., Role of Smac in human leukaemic cell apoptosis and proliferation, Oncogene, 22: 1589–1599, 2003. [DOI] [PubMed] [Google Scholar]
  • 19. Martins L.M., Iaccarino I., Tenev T., Gschmeissner S., Totty N.F., Lemoine N.R., Savopoulos J., Gray C.W., Creasy C.L., Dingwall C., Downward J., The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper‐like motif, J. Biol. Chem., 277: 439–444, 2002. [DOI] [PubMed] [Google Scholar]
  • 20. Fadeel B., Orrenius S., Zhivotovsky B., Apoptosis in human disease: a new skin for the old ceremony?, Biochem. Biophys. Res. Commun., 266: 699–717, 1999. [DOI] [PubMed] [Google Scholar]
  • 21. Brunner T., Mueller C., Apoptosis in disease: about shortage and excess, Essays Biochem., 39: 119–130, 2003. [DOI] [PubMed] [Google Scholar]
  • 22. Kreuter M., Langer C., Kerkhoff C., Reddanna P., Kania A.L., Maddika S., Chlichlia K., Bui T.N., Los M., Stroke, myocardial infarction, acute and chronic inflammatory diseases: caspases and other apoptotic molecules as targets for drug development, Arch. Immunol. Ther. Exp., 52: 141–155, 2004. [PubMed] [Google Scholar]
  • 23. Hayakawa Y., Chandra M., Miao W., Shirani J., Brown J.H., Dorn G.W. 2nd, Armstrong R.C., Kitsis R.N., Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice, Circulation 108: 3036–3041, 2003. [DOI] [PubMed] [Google Scholar]
  • 24. Hoglen N.C., Chen L.S., Fisher C.D., Hirakawa B.P., Groessl T., Contreras P.C., Characterization of IDN‐6556 (3‐[2‐(2‐tert‐butyl‐phenylaminooxalyl)‐amino]‐propionylamino]‐4‐oxo‐5‐(2,3,5,6‐tetrafluoro‐phenoxy)‐pentanoic acid): a liver‐targeted caspase inhibitor, J. Pharmacol. Exp. Ther., 309: 634–640, 2004. [DOI] [PubMed] [Google Scholar]
  • 25. Kawasaki M., Kuwano K., Hagimoto N., Matsuba T., Kunitake R., Tanaka T., Maeyama T., Hara N., Protection from lethal apoptosis in lipopolysaccharideinduced acute lung injury in mice by a caspase inhibitor, Am. J. Pathol., 157: 597–603, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Yang B., Johnson T.S., Haylor J.L., Wagner B., Watson P.F., El Kossi M.M., Furness P.N., El Nahas A.M., Effects of caspase inhibition on the progression of experimental glomerulonephritis, Kidney Int., 63: 2050–2064, 2003. [DOI] [PubMed] [Google Scholar]
  • 27. Zhou C., Yamaguchi M., Kusaka G., Schonholz C., Nanda A., Zhang J.H., Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage, J. Cereb. Blood Flow Metab., 24: 419–431, 2004. [DOI] [PubMed] [Google Scholar]
  • 28. Chandrashekhar Y., Sen S., Anway R., Shuros A., Anand I., Long‐term caspase inhibition ameliorates apoptosis, reduces myocardial troponin‐I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction, J. Am. Coll. Cardiol., 43:295–301. 2004. [DOI] [PubMed] [Google Scholar]
  • 29. Neviere R., Fauvel H., Chopin C., Formstecher P., Marchetti P., Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis, Am. J. Respir. Crit. Care Med., 163: 218–225, 2001. [DOI] [PubMed] [Google Scholar]
  • 30. Yang W., Guastella J., Huang J.C., Wang Y., Zhang L., Xue D., Tran M., Woodward R., Kasibhatla S., Tseng B., Drewe J., Cai S.X., MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity, Br. J. Pharmacol., 140: 402–412, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Zender L., Hutker S., Liedtke C., Tillmann H.L., Zender S., Mundt B., Waltemathe M., Gosling T., Flemming P., Malek N.P., Trautwein C., Manns M.P., Kuhnel F., Kubicka S., Caspase 8 small interfering RNA prevents acute liver failure in mice, Proc. Natl. Acad. Sci. USA, 100: 7797–7802, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Roy S., Bayly C.I., Gareau Y., Houtzager V.M., Kargman S., Keen S.L., Rowland K., Seiden I.M., Thornberry N.A., Nicholson D.W., Maintenance of caspase‐3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide, Proc. Natl. Acad. Sci. USA, 98: 6132–6137, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Buckley C.D., Pilling D., Henriquez N.V., Parsonage G., Threlfall K., Scheel‐Toellner D., Simmons D.L., Akbar A.N., Lord J.M., Salmon M., RGD peptides induce apoptosis by direct caspase‐3 activation, Nature, 397: 534–539, 1999. [DOI] [PubMed] [Google Scholar]
  • 34. Jia L.T., Zhang L.H., Yu C.J., Zhao J., Xu Y.M., Gui J.H., Jin M., Ji Z.L., Wen W.H., Wang C.J., Chen S.Y., Yang A.G., Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase‐3, Cancer Res., 63: 3257–3262, 2003. [PubMed] [Google Scholar]
  • 35. Xu Y.M., Wang L.F., Jia L.T., Qiu X.C., Zhao J., Yu C.J., Zhang R., Zhu F., Wang C.J., Jin B.Q., Chen S.Y., Yang A.G., A caspase‐6 and anti‐human epidermal growth factor receptor‐2 (HER2) antibody chimeric molecule suppresses the growth of HER2‐overexpressing tumors, J. Immunol., 173: 61–67, 2004. [DOI] [PubMed] [Google Scholar]
  • 36. Tse E., Rabbitts T.H., Intracellular antibody‐caspasemediated cell killing: an approach for application in cancer therapy, Proc. Natl. Acad. Sci. USA, 97: 12266–12271, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Philchenkov A., Zavelevich M., Kroczak T.J., Los M., Caspases and cancer: mechanisms of inactivation and new treatment modalities, Exp. Oncol., 26: 82–97, 2004. [PubMed] [Google Scholar]
  • 38. Yang L., Cao Z., Li F., Post D.E., Van Meir E.G., Zhong H., Wood W.C., Tumor‐specific gene expression using the survivin promoter is further increased by hypoxia., Gene Ther., 11: 1215–23, 2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Shariat S.F., Desai S., Song W., Khan T., Zhao J., Nguyen C., Foster B.A., Greenberg N., Spencer D.M., Slawin K.M., Adenovirus‐mediated transfer of inducible caspases: a novel “death switch” gene therapeutic approach to prostate cancer, Cancer Res., 61: 2562–2571, 2001. [PubMed] [Google Scholar]
  • 40. Karlsson T., Henriksson R., Hedman H., Induction of apoptosis in resistant glioma cells by synthetic caspaseactivation, J. Neurooncol., 66: 71–79, 2004. [DOI] [PubMed] [Google Scholar]
  • 41. Nor J.E., Hu Y., Song W., Spencer D.M., Nunez G., Ablation of microvessels in vivo upon dimerization of iCaspase‐9, Gene Ther., 9: 444–451, 2002. [DOI] [PubMed] [Google Scholar]
  • 42. Xia C., Xu Z., Yuan X., Uematsu K., You L., Li K., Li L., McCormick F., Jablons D.M., Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides, Mol. Cancer Ther., 1: 687–694, 2002. [PubMed] [Google Scholar]
  • 43. Hu Y., Cherton‐Horvat G., Dragowska V., Baird S., Korneluk R.G., Durkin J.P., Mayer L.D., LaCasse E.C., Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo , Clin. Cancer Res., 9: 2826–2836, 2003. [PubMed] [Google Scholar]
  • 44. Okano H., Shiraki K., Inoue H., Kawakita T., Yamanaka T., Deguchi M., Sugimoto K., Sakai T., Ohmori S., Fujikawa K., Murata K., Nakano T., Cellular FLICE/caspase‐8‐inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma, Lab. Invest., 83: 1033–43, 2003. [DOI] [PubMed] [Google Scholar]
  • 45. Williams N.S., Gaynor R.B., Scoggin S., Verma U., Gokaslan T., Simmang C., Fleming J., Tavana D., Frenkel E., Becerra C., Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference, Clin. Cancer Res. 9: 931–946, 2003. [PubMed] [Google Scholar]
  • 46. Siegmund D., Hadwiger P., Pfizenmaier K., Vornlocher H.P., Wajant H., Selective inhibition of FLICE‐like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL‐induced apoptosis, Mol. Med., 8: 725–732, 2002. [PMC free article] [PubMed] [Google Scholar]
  • 47. Yang Q.H., Church‐Hajduk R., Ren J., Newton M.L., Du C., Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis, Genes Dev., 17: 1487–1496, 2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Pennati M., Binda M., Colella G., Golini M., Citti L., Villa R., Diadone M.G., Zaffaroni N., Radiosensitization of human melanoma cells by ribozyme‐mediated inhibition of survivin expression, J. Invest. Dermatol., 120: 648–654, 2003. [DOI] [PubMed] [Google Scholar]
  • 49. Yanamandra N., Kondraganti S., Srinivasula S.M., Gujrati M., Olivero W.C., Dinch D.H., Rao J.S., Activation of caspase‐9 with irradiation inhibits invasion and angiogenesis in SNB19 human glioma cells, Oncogene, 23: 2339–2346, 2004. [DOI] [PubMed] [Google Scholar]
  • 50. Ansell S.M., Arendt B.K., Grote D.M., Jelinek D.F., Novak A.J., Wellik L.E., Remstein E.D., Bennett C.F., Fielding A., Inhibition of survivin expression suppresses the growth of aggressive non‐Hodgkin's lymphoma, Leukemia, 18: 616–623, 2004. [DOI] [PubMed] [Google Scholar]
  • 51. Takeuchi H., Kanzawa T., Kondo Y., Komata T., Hirohata S., Kyo S., Kondo S., Combination of caspase transfer using the human telomerase reverse transcriptase promoter and conventional therapies for malignant glioma cells, Int. J. Oncol., 25: 57–63, 2004. [PubMed] [Google Scholar]
  • 52. Los M., Stroh C., Janicke R.U., Engels I.H., Schulze Osthoff K., Caspases: more than just killers?, Trends Immunol., 22: 31–34, 2001. [DOI] [PubMed] [Google Scholar]
  • 53. Philchenkov A.A., Caspases as regulators of apoptosis and other cell functions, Biochemistry (Mosc), 68: 365–376, 2003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES